Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kate E. Tierney, M.S. Graduate Program in the School of Earth Sciences The Ohio State University 2010 Dissertation Committee: Matthew R. Saltzman, Advisor William I. Ausich Loren Babcock Stig M. Bergström Ola Ahlqvist Copyright by Kate Elizabeth Tierney 2010 Abstract The Permian is one of the most important intervals of earth history to help us understand the way our climate system works. It is an analog to modern climate because during this interval climate transitioned from an icehouse state (when glaciers existed extending to middle latitudes), to a greenhouse state (when there were no glaciers). This climatic amelioration occurred under conditions very similar to those that exist in modern times, including atmospheric CO2 levels and the presence of plants thriving in the terrestrial system. This analog to the modern system allows us to investigate the mechanisms that cause global warming. Scientist have learned that the distribution of carbon between the oceans, atmosphere and lithosphere plays a large role in determining climate and changes in this distribution can be studied by chemical proxies preserved in the rock record. There are two main ways to change the distribution of carbon between these reservoirs. Organic carbon can be buried or silicate minerals in the terrestrial realm can be weathered. These two mechanisms account for the long term changes in carbon concentrations in the atmosphere, particularly important to climate. In order to study these changes, this study investigates chemical proxies that reflect the operation of these mechanisms. ii Marine limestones preserve the two proxies that we use to investigate changes to carbon, δ13Ccarb and 87Sr/86Sr. δ13Ccarb primarily records changes to the amount of organic carbon that is being buried (added to the lithospheric reservoir). 87 Sr/86Sr records the weathering of silicate weathering. By examining these proxies, a better understanding of what was happening to the carbon system during this pivotal interval. Three lithologic sections have been examined and samples collected for analysis, two sections in Nevada and one in Southern China. These sections are long ranging in time and thick, implying that they are a detailed record of the ocean-atmosphere system through the Permian System. Analysis from samples collected at these localities give a detailed record of changes, previously unreported in the literature. This dissertation describes these records and begins to interpret their climatic interpretations. iii Dedication To my son, Norman iv Acknowledgments My thanks go to Matt Saltzman, my long-time adviser. Also, Brad Cramer, your patience is the stuff of legend, and you can have your couch back now. The faculty of our school, thank you for you time and sincere interest in my stream of questions. And my peers and friends in the Orton Sauna, I’ll clean up my station now. v Vita June 1991 …………………………………….…Roosevelt High School, Seattle WA March, 2002………………..….B.A. Geological Sciences, The Ohio State University March, 2002………………...……..….B.A. Anthropology, The Ohio State University March, 2005……………………M.S. Geological Sciences, The Ohio State University 2009-present..................... Graduate Teaching Associate, The Ohio State University 2009 .......................................Summer Quarter Lecturer, The Ohio State University 2008-2009 .........................Graduate Teaching Associate, The Ohio State University 2007-2008 ..............................................National Science Foundation GK-12 Fellow 2002-2007 ........................Graduate Teaching Associate at The Ohio State University 2005............................................... Appalachian Basin Industrial Association Fellow 2003-2006................. Summer Quarter Lecturer at The Ohio State University, Marion 2000-2007 ................Undergraduate Teaching Associate at The Ohio State University 2000-2001 .........Undergraduate Research Assistant at the Microscopic and Analytical Research Center, Department of Geological Sciences at The Ohio State University Major interest: Geological Sciences vi Table of Contents Abstract…………………………………...………………………………..…..……...ii Dedication……………………………………………………………….……..……..iv Acknowledgments……………………………………………………….……..……...v Vita……………………………………………………………………..…..….……...vi List of Tables……………………………………………………………..………....viii List of Figures…………………………………………………………………...…....ix Chapter 1: Introduction……………………………………………………..................1 Chapter 2: Permian 87Sr/86Sr from carbonates of the Pequop Mountains, Nevada, USA and Tieqaio section, Laibin, Guangxi Province, P. R. China: a high resolution record sheds light on climatic event timing, sea level change, and flux variation through an interval of systemic reorganization.........................11 Chapter 3: High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate..............................39 Chapter 4: An early Permian (Asselian-Sakmarian) carbon isotope excursion from Nevada.............................................................................................................65 Combined References..…………………………....…………………………………90 Appendix A................................................................................................................107 vii List of Tables Table 1. data from Nine Mile Canyon, Nevada, USA...............................................108 Table 2. data from Rockland Ridge, Nevada, USA...................................................124 Table 3. data from Tieqiao, Guanxi Province, China................................................137 viii List of Figures Introduction Figure 1.1 Model of CO2 through the Phanerozoic.......................................................1 Figure 2.1 Phanerozoic 87Sr/86Sr curve (Veizer, 1999)................................................12 Figure 2.2 Paleogeographic map in the early Permian showing localities..................14 Figure 2.3 Locality map showing the Pequop Mountians, Nevada.............................15 Figure 2.4 Locality map showing Tieqiao Section, Guangxi, China...........................16 Figure 2.5 Stratigraphy and δ13Ccarb and 87Sr/86Sr data in Nevada..............................18 Figure 2.6 Stratigraphy and δ13Ccarb and 87Sr/86Sr data in China.................................19 Figure 2.7 Permian Tectonic events and 87Sr/86Sr data...............................................21 Figure 2.8 87Sr/86Sr data changes in slope...................................................................23 Figure 2.9 87Sr/86Sr plotted against Sr ppm from Nevada...........................................25 Figure 2.10 87Sr/86Sr plotted against Sr ppm from China...........................................26 Figure 2.11 87Sr/86Sr plotted with data from Korte et al., 2006..................................28 Figure 3.1 Paleogeographic map in the early Permian showing localities..................41 Figure 3.2 Locality map showing the Pequop Mountians, Nevada.............................42 Figure 3.3 Locality map showing Tieqiao Section, Guangxi, China...........................43 Figure 3.4 Permian timescale with regional conodont zonation..................................45 Figure 3.5 Cross plot of δ13Ccarb and δ18O data from Nevada and China....................48 ix Figure 3.6 Permian δ13Ccarb data plotted in stratigraphic order against time...............50 Figure 3.7 δ13Ccarb data from Pequop Mountains plotted against stratigraphy............53 Figure 3.8 δ13Ccarb data from Tieqiao plotted against stratigraphy..............................55 Figure 3.9 Korte et al., 2005 δ13Ccarb data plotted again time and composite δ13Ccarb data (this study) plotted against time...........................................................................58 Figure 4.1 Paleogeographic map in the early Permian showing localities..................66 Figure 4.2 Locality map showing the Pequop Mountians, Nevada.............................67 Figure 4.3 Asselian-Artinskian timescale with regional conodont zonations..............69 Figure 4.4 δ13Ccarb data from Asselian-Sakmarian of Nevada with lithologic column, defined glacial intervals, regional sea-level curves and pCO2 curve............71 Figure 4.5 δ13Ccarb plotted against δ18O data from Nine Mile Canyon........................73 Figure 4.6 Model of potential causes of δ13Ccarb excursions........................................75 x Chapter 1 Introduction Global climate change is one of the greatest challenges of modern science. In order to constrain models that seek to predict the path of future climate changes, it is necessary to fully document and interpret ancient analogs. The interval of geologic time that is considered to be most similar to the modern (Pleistocene) ice age is the early Permian Period (~300270 million years ago). Both the early Permian and recent times share similarities in low atmospheric carbon dioxide (CO2) levels, low sea-level, and widespread glaciation (Crowell, 1995; Kovalevich et al., 1998; Berner, 2004; Lowenstein et 1 al., 2005). Atmospheric CO2 levels ~ 300 million years ago decreased to near modern levels before rising again later in the Permian (Figure 1, Royer et al., 2004; Berner, 2005). Glaciers existed in the southern hemisphere continent of Gondwana, which was later assembled into part of the supercontinent, Pangea, and extended to the mid-latitudes (e.g., Isbell et al., 2003). Glacial conditions continued through the early Permian, although the timing of deglaciation based on physical evidence remains controversial (Veevers and Powell, 1987; Veevers et al., 1994; Isbell et al., 2003; Fielding et al., 2006; Frank et al., 2006). My dissertation documents geochemical proxy evidence for the global carbon cycling during the Permian icehouse to greenhouse (ice free) transition. This evidence helps constrain the timing and cause(s) of deglaciation. Processes There are two geologic processes that remove CO2 from the oceanatmosphere system and store it in rock reservoirs (lithosphere): 1) burial of photosynthetically produced organic carbon; and 2) burial of inorganic carbon as limestone during silicate weathering (Berner, 2004). If a decrease in organic carbon burial played a role in the Permian icehouse-greenhouse transition, this would be recorded in changes in the carbon isotopic composition of seawater (δ13Ccarb). Similarly, a change in the rate of weathering of silicate rocks should have left a record in the strontium isotopic composition (87Sr/86Sr) of seawater. 2 Carbon Isotopes Time periods of globally elevated δ13Ccarb values are commonly associated with episodes of enhanced Corg burial (Arthur et al., 1987; Derry et al., 1992; Berner, 2006). The net effect of organic carbon burial should be the drawdown of atmospheric pCO2 (Kump and Arthur, 1999). Previously published work on δ13Ccarb values shows consistently elevated δ13Ccarb values preserved in Permian carbonates. This indicates large amounts of organic carbon burial and generally reduced pCO2. However, fluctuations may indicate relative decreases in organic carbon burial that contributed to rising pCO2 that has been associated with deglacial transitions (e.g., Montañez et al., 2007). By coupling theδ with trends in 87 13 Ccarb record Sr/86Sr that can be used to infer transient changes (steady-state perturbations) in rates of silicate weathering, the documented curves will be used in box models of the geochemical carbon cycle to examine potential factors that could change pCO2 during the icehouse greenhouse climate transition. Furthermore, it is critical that these trends be compared with geologic indicators of climate change such as palynology and sedimentology (e.g., Ziegler et al., 2002). Strontium Isotopes The Permian seawater 87 Sr/86Sr shift to less radiogenic values has been interpreted by Martin and Macdougall (1995) to reflect increased aridity in the Pangean super-continental interior, which is thought to have occurred at some early stage of the Permian based on sedimentologic, palynologic, and pedogenic 3 evidence (e.g., Tabor and Montañez, 2002; 2004; Ziegler et al., 2002; Tramp et al., 2004; Montañez et al., 2007). The reduction in net precipitation could have decreased silicate weathering, thereby acting to increase atmospheric pCO2, triggering the end of the Permo-Carboniferous glaciation (cf. Berner, 2006). Although recent advances have been made in the stratigraphic resolution of both the evidence for increased aridity in the Permian and the temporal extent of glaciation (e.g., Tabor and Montañez, 2002; Isbell et al. 2003; Jones and Fielding, 2004), additional work is needed to resolve cause-and-effect relationships (Montañez et al., 2007). If the 87Sr/86Sr decrease in the Permian can be interpreted to reflect changes in the hydrologic cycle (Martin and Macdougall, 1995), the most significant changes occurred in the late early to middle Permian, however, a growing amount of literature indicates that a major atmospheric reorganization over the Pangean interior (Parrish and Peterson, 1988; Parrish, 1993; Gibbs et al., 2002) was already well-established by the late Pennsylvanianearly Permian (Tabor and Montañez, 2002; 2004; 2005; Tramp et al., 2004; Montañez et al., 2007). Similarly, there is increasing evidence that the youngest global advance of glaciers during the Late Paleozoic Ice Age (glacial stage III of Isbell et al., 2003) has an upper stratigraphic limit of the Artinskian (early Permian; Isbell et al., 2003; Jones and Fielding, 2004; Montañez et al., 2007), which is substantially earlier than previous interpretations depicting a more protracted glaciation ending in the middle to late Permian (Veevers and Powell, 1987; Crowell, 1995). These stratigraphic uncertainties may account for the 4 discrepancies among numerical climate models for the early-middle Permian (e.g., Hyde et al., 2006). An hypothesis for global deglaciation in the Permian may involve increased aridity and a transient reduction in silicate weathering that produced a steady-state perturbation towards higher pCO2; this scenario predicts that the icehouse-greenhouse transition have a close chronostratigraphic link with the onset of the decline in 87Sr/86Sr values (Martin and Macdougall, 1995). However, the need to address multiple working hypotheses for linkages among the carbon cycle, climate, and 87 Sr/86Sr is critical. Although a decrease in continental weathering could produce a reduced flux of radiogenic Sr entering the global ocean and account for the 87 Sr/86Sr drop seen in the Permian, there are other possible interpretations of these data that I will explore by comparing my biostratigraphically-calibrated Sr isotope curve to geologic evidence of tectonic events in various regions. For example, the Sr flux may have remained essentially constant, while a reduction in the 87 Sr/86Sr ratio of the dominant source rocks being weathered (volcanic versus non-volcanic terrestrial silicates) could account for the observed trend. Alternatively, an increase in hydrothermally derived Sr to the global ocean from mid-ocean ridges would have a similar effect (Faure and Mensing, 2004). The need to address multiple working hypotheses for linkages among the carbon cycle, climate, and 87 Sr/86Sr is further underscored by the fact that the turnaround towards increasing 87 Sr/86Sr values later in the Permian is not 5 apparently accompanied by a return to glacial conditions. Therefore this rise in 87 Sr/86Sr has not been linked to enhanced silicate weathering that reduced pCO2. In this instance, a more plausible scenario involves a lowering of the ratio of volcanic to non-volcanic weathering (e.g., Berner, 2006b). Because the onset of declining 87Sr/86Sr values is poorly constrained by comparison to the later parts of the Permian record that include the turnaround to more radiogenic values, the proposed investigation to more precisely define the timing of this older inflection point will allow for more detailed comparisons between the two events. Part I This chapter covers the 87Sr/86Sr data produced from three sections in two localities, the Pequop Mountains in Nevada and the Tieqiao Section in Laibin, China. These data give insight into the timing of the change in silicate weathering and related CO2 drawdown. Part II This chapter shows the composite δ13Ccarb data from Nevada and China from the Ghzelian (upper Pennsylvanian) through the lower Changhsingian (uppermost Permian). This curve is high resolution and biostratigraphically constrained. Here I outline the changes that happen to the carbon cycle through this volatile interval in earth’s climate history. Part III 6 This chapter examines in detail the lower Permian interval in detail. This interval is the peak of the LPIA, however is poorly constrained in time and the cause of this extreme climate event is not well defined. References Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., 1987. The CenomanianTuronian oceanic anoxic event II: Palaeoceanographic controls on organic matter production and preservation. In: Brooks, J., and Fleet, A.J., (Eds.), Marine Petroleum Source Rocks. Geological Society of London Special Publication, v. 26, pp. 401-420. Berner, R.A., 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. American Journal of Science, v. 304, pp. 438-453. Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p. Berner, R.A., 2006a. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 over Phanerozoic time. Geochimica et Cosmochimica Acta, v. 70, pp. 5653-5664. Berner, R.A., 2006b. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science, v. 306, pp. 295302. Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 62-74. Derry, L.A., Jacobsen, S.B., and Kauffman, A.J., 1992. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, v. 56, pp. 13171329. Faure, G., and Mensing, T.M., 2004. Isotopes: Principles and Application. Wiley, 928 p. Fielding, C.R., Rygel, M.C, Frank, T.D., Birgenheier, L.P., Jones, A.T., and Roberts, J., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern Australia discloses multiple alternating 7 glacial and non-glacial intervals. Geological Society of America, Abstracts with Programs, v. 38, p. 317. Frank, T.D., Birgenheier, L.P., Fielding, C.R., and Rygel, M.C., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern Australia provides a framework for examining far-field stable isotope records. Geological Society of America, Abstracts with Programs, v. 38, pp. 318. Gibbs, M.T., Rees, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and Rowley, D.B., 2002. Simulations of Permian climate and comparisons with climate sensitive sediments. Journal of Geology, v. 110, pp. 33-55. Hyde, W.T., Grossman, E.L., Crowley, T.J., Pollard, D., and Scotese, C.R., 2006. Siberian glaciation as constraint on Permian-Carboniferous CO2 levels. Geology, v. 34, pp. 421-424. Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A. and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega EndMembers in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24. Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153156. Kovalevich, V.M., Peryt, T.M., and Petrichenko, O.I., 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal of Geology, v. 106, pp. 695-712. Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198. Lowenstein, T.K., Horita, J., Kovalevych, V.M., and Timofeef, M.N., 2005. The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, v. 69, pp. 1701-1719. Martin, E.E., and MacDougall, J.D., 1995. Sr and Nd isotopes at the Permian/Triassic Boundary: A record of climate change. Chemical Geology, v. 125, pp. 73-99. 8 Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91. Parrish, J.T., and Peterson, F., 1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States – A comparison. Sedimentary Geology, v. 56, pp. 261-282. Parrish, J.T., 1993. Climate of the supercontinent Pangea. Journal of Geology, v. 101, pp. 215-233. Royer, D.L., Berner, R.A., Montañez, Tabor, N.J., and Beerling, D.J., 2004. CO2 as a primary driver of Phanerozoic climate. Geological Society of America, Today, v. 14, pp. 4-10. Tabor, N.J., and Montañez, I.P., 2002. Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: Insights from pedogenic mineral δ18O compositions. Geology, v. 30, pp. 1127-1130. Tabor, N.J., and Montañez, I.P., 2004. Morphology and distribution of fossil soils in the Permo Pennsylvanian Wichita and Bowie Groups, north-central Texas, USA: Implications for western equatorial Pangean paleoclimate during icehouse- greenhouse transition. Sedimentology, v. 51, pp. 851884. Tabor, N.J., and Montañez, I.P., 2005. Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 127- 146. Tramp, K.L., Elmore, R.D., and Soreghan, G.S., 2004. Paleoclimatic inferences from paleopedology and magnetism of the Permian Maroon Formation loessite, Colorado, USA. Geological Society of America, Bulletin, v. 116, pp. 671-686. Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487. Veevers, J.J., Conaghan, P.J., Powell, C., Cowan, E.J., McDonnell, K.L., and Shaw, S.E., 1994. Eastern Australia. In: Veevers, J.J. and Powell, C., 9 (Eds.), Permian-Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland. Geological Society of America, Memoir, v. 184, pp. 11-171. Ziegler, A.M., Rees, P.M., and Naugolnykh, S.V., 2002. The Early Permian floras of Prince Edward Island, Canada: Differentiating global from local effects of climate change. Canadian Journal of Earth Sciences, v. 39, pp. 223-238. 10 Chapter 2 Permian 87Sr/86Sr from carbonates of the Pequop Mountains, Nevada, USA and Tieqaio section, Laibin, Guangxi Province, China: Implications for climate, sea level change, and chronostratigraphy Abstract One of the largest drops in the Phanerozoic 87 Sr/86Sr curve occurred during the Permian. A new curve has been developed spanning this interval, including more than 100 new data points, from thick carbonate-rich sections in two localities. Most of the Cisuralian was collected from two sections in the Pequop Mountains, Nevada. The upper Cisuralian, Guadalupian, and a large part of the Lopingian were collected in southern China at the Tieqiao section. These sections have been collected in conjunction with new conodonts and fusulinid studies of these sections. Through this nearly 49 million years of Earth history, there is a first order trend that descends from high values near 0.7084 in the base of the Permian to low values below 0.7070 in the Wordian (mid-Guadalupian). This first order curve can be subdivided into eight legs, each defined by an inflection point in the curve. If they represent primary seawater values and are not an artifact of local sedimentation rates, these changes in the slope indicate geologic events that reflect global changes in the balance of the fluxes that determine the sea-water 11 87 Sr/86Sr ratio. Continental Sr fluxes could be affected by variation in climate or sea level, a switch in the dominant rock that was being weathered, or a variation in spreading rates at mid-ocean ridges. Introduction The Permian is known to be a time of systemic reorganization of the Earth system, including multiple large extinction events, a long-term change in climate state and major chemical events that have been preserved in the rock record (Isbell et al., 2003; Isbell et al., 2006; Korte et al., 2006; Fielding et al., 2008; Wignall et al., 2009; Tierney et al., in prep. a, in prep. b). The Permian climate 12 transition from an ice covered to an ice free world is the most complete deep-time analogy that exists for modern climate change because it is the only other time that such an icehouse to greenhouse transition occurred on a fully vegetated planet (Montañez et al., 2007). Examining the 87Sr/86Sr curve may provide a proxy for atmospheric carbon dioxide (by way of changes in silicate weathering) (Berner, 2006) as well as a tool for stratigraphic correlation through a pivotal interval in Earth history. Phanerozoic seawater 87 Sr/86Sr variation has been investigated by numerous groups (Peterman et al., 1970; Veizer and Compston, 1974; Faure et al., 1978; Burke et al., 1982, Veizer et al., 1999). Studies of specific time intervals have also been published (e.g., Korte et al., 2005), providing detailed information on particular events in the 87 Sr/86Sr record and offering explanations for what geologic events were driving the trends. The riverine input of Sr to seawater is several times larger than the hydrothermal flux at mid-ocean ridges, which provides mantle-derived strontium (Davis et al., 2003; Kump and Arthur, 1997). The continental flux has several factors that contribute to the 87 Sr/86Sr value (Palmer and Edmond, 1989), including the lithology of the rocks being weathered (basalt has less radiogenic Sr compared to granite) and the rates of physical and chemical weathering (Shields et al., 2003; Dessert et al., 2003). Tectonic uplift increases exposure of weatherable material and together with climate controls chemical weathering rates and solute transport (Stallard, 1995). 13 Published strontium isotope studies on the Permian have thus far focused on measurements from low-Mg biogenic calcite, particularly brachiopods (e.g., Korte et al., 2006) as well as conodont apatite (Martin and Macdougall, 1995) . These fossils were screened to avoid diagenetic alteration and overprinting of the 87 Sr/86Sr value. This study uses non-biogenic carbonate from limestones in order to overcome the stratigraphic limitations of using fossils as the sample medium and will allow a meter-by-meter evaluation of stratigraphic relationships between 87 Sr/86Sr values and all other stratigraphic indicators. With existing screened biogenic calcite measurements as a baseline for comparison (e.g., Korte et al. 2006), the stratigraphic intervals not previously covered by biogenic samples can be measured on samples taken from the matrix of carbonate rocks, allowing a continuity of high-resolution analysis that has previously not been achieved. 14 Geologic Setting During the Permian most tectonic plates were assembled into the supercontinent Pangea (Scotese, 1998; Figure 2). Samples were collected from two localities on opposite sides of the supercontinent. The sections encompassing the latest Pennsylvanian Gzhelian Stage through the lowest Kungurian Stage (Permian) come from the Pequop Mountains in Nevada, USA, which is on the Laurentian Plate and was located on the western margin of the continent during this time (Wardlaw et al., 1998; Snyder and Sweet, 2002). This region was a shallow epeiric sea with open access to the oceans. Sediment accumulated in dropdown basins resulting in thick sections (almost a kilometer each) in close proximity to each other containing continuous faunal successions (Sweet and Snyder, 2002; Figure 3). The second 15 locality, encompassing the upper Artinskian through Changhsingian stages (Permian), is the Tieqaio section, Laibin, Guangxi Province, China. This section was located on the eastern margin of the supercontinent in the Jiangnan Basin on the South China block, between the Cathaysian and Yangtze cratons (Wang et al., 2004). This section also had open communication with the ocean and since it was continuously subsiding, accumulated a thick sediment wedge (Shen et al., 2007; Figure 4). Globally, at the base of the Kungurian Stage conodont faunas show regional endemicity at the species level, and at the base of the Guadalupian Series 16 conodonts show endemicity at the genus level (Behnken, 1975; Mei and Henderson, 2001). The endemic nature of conodonts and other fauna during this interval indicates that the ocean was not mixing as completely as at other times. Understanding why these biologic differences occurred probably relates to climate change, and in particular, changes in glacial extent and volume and and their resulting effects on circulation in the oceans and atmosphere. Previous work The evolution of atmospheric carbon dioxide and long term climate change has been linked to plate tectonics (e.g., Berner, 2004). Glaciation in the Permian was originally thought to have occurred as a single massive episode that ended during the Sakmarian (e.g., Veevers and Powell, 1987). Much early work on Permian glacial history was based on low-latitude cyclothems, which have been interpreted to reflect changes in glacial volume in the southern hemisphere (Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979; Veevers and Powell, 1987; Heckel, 1994). Work on glacially proximal localities in regions such as Antarctica and Australia has advanced our understanding of the timing of southern hemisphere glaciations (Isbell, 2008) and provides evidence for discrete post-Sakmarian episodes in which ice sheets returned (Fielding et al., 2008). Climate 17 Estimation of the extent and timing of glaciation in the late Paleozoic has been an ongoing discussion that was initially focused primarily on low latitude cyclothemic deposits (Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979; Veevers and Powell, 1987; Heckel, 1994) but has been reformed in recent years ( 18 e.g., Jones and Fielding, 2004; Montañez et al., 2007; Fielding et al., 2008). Fielding et al. (2008) redefined the Late Paleozoic Ice Age (LPIA) to include 4 discrete episodes of southern hemisphere continental glaciation within the Permian, rather than a single episode (Glacial III) as proposed by Isbell et al. (2003). The first two of these episodes (P1 lower Asselian, 299 Ma to middle Sakmarian, 291 Ma and P2 upper Sakmarian, 287 Ma – mid-Artinskian, 280 Ma) 19 are considered major continental glaciations with large lateral extent. The second two of these glacial episodes are considered relatively small (P3 upper Kungurian, 273 Ma – upper Roadian, 268 Ma and P4 Wordian, 267 Ma – lowest most Wuchiapingian, 260 Ma), possibly not even of continental scale, as there is no evidence of bedrock displacement along coastlines in periglacial environments. Biostratigraphic evidence that distinguishes these episodes is largely terrestrial, making it difficult to fit these events into the marine biostratigraphic framework that is used to correlate Paleozoic strata (Figure 5 and 6). Other climate indicators, such as widespread coals (indicating high humidity) in the early Permian yield to redbeds and evaporites (indicating increasing aridity) around the middle of the Artinskian. These arid conditions persisted until the latest Lopingian. Increased continental aridity causing decreased delivery of radiogenic strontium to the oceans has been thought to play a major role in the overall decline in strontium isotope values that occurs through the Permian (Figure 7). Strontium Isotope Stratigraphy The Phanerozoic marine 87 Sr/86Sr curve first published by Peterman (1970) and later refined (Burke et al., 1982; Koepnick et al., 1985; Denison et al., 1994; Veizer et al., 1999; McArthur et al., 2001; Gradstein et al., 2004) does not provide a detailed enough biostratigraphic framework within which to relate trends in the curve to global climatic events. Two groups have produced 87Sr/86Sr 20 curves through the Permian that are tied to biostratigraphic zones (Martin and Macdougall, 1995; Korte et al., 2006). These papers better define the timing of the previously recognized trend towards less radiogenic values that started near the base of the Permian and continued until the Guadalupian before returning to higher values across the Permian-Triassic boundary. These papers use meticulously screened low-Mg calcite from brachiopods and conodonts to 21 create global composites. These studies are the foundation upon which this work is based, but because the samples were collected from such disparate localities, correlation is at times questionable. The approach taken in my work is to minimize stratigraphic uncertainty by measuring strontium isotopes in continuous measured sections for which good biostratigraphic control is generally available. Methods For this study, rock samples were collected in tandem with conodont samples allowing correlation in the relationship between 87 Sr/86Sr values, stratigraphic, order and conodont biostratigraphy. Rock samples were first cut using a water-based diamond-bladed saw to produce thin-section billets, then cleaned using ultrapure water (deionized, 18 MΩ) in an ultrasonic bath to remove excess sediment. Fine-grained micritic components were preferentially microdrilled for analysis. Powders were analyzed for 87 Sr/86Sr and Sr concentration ([Sr]) in the Radiogenic Isotope Laboratory (RIL) at The Ohio State University using Sr purification and mass spectrometry procedures described in detail by Foland and Allen (1991). Sr was extracted from powders using ultrapure reagents; powder aliquots of ~25 mg were pretreated with 1M ammonium acetate (pH 8) and then leached in 4% acetic acid (Montañez et al., 1996). The leachate solution was separated from residue and then spiked with an 84 Sr tracer. Samples were purified for Sr using a cation exchange resin and a 2N HCl based ion-exchange. Purified Sr was then loaded with HCl on a Re double22 filament configuration. Isotopic compositions were measured using dynamic multicollection with a MAT-261A thermal ionization mass spectrometer. The RIL laboratory value for the SRM 987 standard is (87Sr/86Sr) = 0.710242 ± 0.000010 (one-sigma external reproducibility). For the 87 Sr/86Sr values the associated uncertainties given are for two-sigma mean internal reproducibilities, typically based upon 100 measured ratios. The 87 Sr/86Sr reported ratios are normalized for instrumental fractionation using a normal Sr ratio of 86 Sr/88Sr=0.119400. A critical issue in analyzing trends in 87 Sr/86Sr is the potential for secondary influences to alter the primary seawater values. In general, in samples 23 that are diagenetically altered or in which non-marine strontium is present in Rb or Sr-rich siliciclastic phases (e.g., clays), the radiogenic values. 87 Sr/86Sr is shifted to more Thus a line drawn along the least radiogenic values is considered the most dependable. We attempted to minimize leaching of Sr from non-carbonate phases by pretreatment with 1M ammonium acetate as described above (after Montañez et al., 1996). In order to address diagenesis in this study, the [Sr] of the analyzed rock was plotted against the 87 Sr/86Sr isotopic ratio. When the rock is diagenetically altered, Sr concentrations are in most cases reduced (Montañez et al., 1996). However, since initial ocean [Sr] can differ, as well as the original mineralogy (calcite vs. aragonite), there is no set standard for rejecting 87Sr/86Sr values based on Sr concentrations and evaluation must be made on a case-by-case basis. Based upon the range of [Sr] in samples from the Permian samples, a threshold of 100 ppm was used to exclude data points from the plotted 87 Sr/86Sr curve. Most samples had Sr concentrations well above this threshold, ranging to well above 1000 ppm in some parts of the section and averaging ~ 500 ppm in others. Results While 87Sr/86Sr values peak in the upper Gzhelian at 0.7085, a line through the least radiogenic values changes little (~ 0.7081 to 0.7082) from the late Ghzelian into the early Asselian. This interval is the first leg of the curve. 87 Sr/86Sr A substantial drop from the upper-most Asselian to just below the 24 Sakmarian, defines leg 2 of the curve. This sharp drop constitutes a change of 0.002 in approximately a million years. Leg 3 encompasses approximately the same change in the strontium ratios as leg 2, but spread out over approximately 10 million years. The least radiogenic values achieved at Ninemile Canyon are 0.7077. At Rockland Ridge values continue the overall downward trend and define leg 4 of the curve. The base of the Tieqaio section shows quickly descending 87Sr/86Sr values from 0.7077 to just above 0.7074 within the first ~30 meters. At the base of the Kungurian values have fallen to define leg 5. Leg 6 is defined by a gentler slope, though values are still declining. Values shift from just above 0.7074 down to 0.7070 in the Roadian. In the next 5 million years values descend only very 25 slightly to just below 0.7070. This slight decrease constitutes leg 7 of the 87 Sr/86Sr curve. The low of just below 0.7070 defines the base of leg 8, which then begins the upward trend to just above 0.7070 in the lowest most Changhsingian. This slight increase precedes the major increase that occurs at the Permian-Triassic boundary. Discussion The high resolution, stratigraphically ordered 87Sr/86Sr values produced in this study through the Permian have at least two potential uses. First and most simply, these values can be used as a stratigraphic tool for correlation. This usage 26 is based on the fact that dissolved Sr has a very long residence time of millions of years in the oceans but is well mixed in the oceans and thus consistent globally at any single time horizon (DePaolo and Ingram, 1985; Andersson et al., 1992; Paytan et al., 1993). Sr isotope stratigraphy is particularly useful in an interval like the Cisuralian and lower Guadalupian where the rate of change in the curve is marked. A LOWESS curve (LOcally Weighted Scatterplot Smoother of Cleveland, 1979,1981; Chambers et al., 1983; Thisted, 1988; Cleveland et al.,1992) has been fitted to the Phanerozoic 87 Sr/86Sr curve creating a two-sided 95% confidence interval (CI) from which the age of any individual sample can be estimated. This 95% CI is very narrow in intervals with many chronostratigraphic tie points and a high density of data (for the time period from 0-7 Ma the half-width is ±0.000003), but diminishes back in time intervals with less data (McArthur and Howarth, 2004). For most of the Paleozoic, precision aims at ±0.000015, but the Permian CI exceeds this half-width because of a paucity of data. Figure 10 shows a comparison of the data from this study with the results of Korte et al. (2006). The new dataset can be used as a correlation tool (e.g.,, Korte sample ru 25 from the Usolka section in the Ural Mountains has an 87Sr/86Sr value of 0.707964 for the Asselian Streptognathodus constrictus conodont Zone; range for entire zone is 0.707964-0.708005, n = 4. In Nevada, the samples that record this approximate value begin at Similarly, the overlying St. barskovi Zone has a range of values between 0.707897 and 0.708058 in Korte et al. (2006). The 27 base of the Sakmarian is at the base of the Sw. merrilli Zone, which has values that range from 0.707643 up to 0.707830 in Korte et al. (2006). In the Ninemile Canyon section, the base of the Sakmarian is constrained by this same conodont zone at approximately 900 meters in the section where similar Sr values occur (0.707939). The Sakmarian-Artinskian boundary is 0.707776 in the Ninemile Canyon section, which is biostratigraphically constrained (Sweetognathus whitei Zone). This can be compared with positions from samples in the dataset of Korte et al. (2006), where the lowest Artinskian value in sample sb12 from Tempelet Svalbard is 0.707702, but is not yet assigned to a conodont zone. This difference of 0.000074 is significant, and may reflect that the boundary can be defined using 28 fusulinids or conodont identification. In Korte et al. (2006), no Kungurian samples are constrained by biostratigraphy, and therefore cannot be compared with the Chinese dataset. In the Tieqiao Section, basal Kungurian data shows values of 0.707421. This compares favorably with the 0.707470 value in sample sbNor3 from Akselova West Svalbard, which provides generally good agreement with a difference of 0.000049. Basal Guadalupian samples in China have values of ~0.7071, consistent with samples in Korte et al. (2006) from the type section in the Guadalupe Mountains. In the lowest Capitanian Korte et al. (2006), show a value of 0.706854 in sample GM 8 from Road cut 46.5 miles from Carlsbad. The stratigraphically lowest Capitanian sample is also the lowest value in the Tieqiao dataset, giving a value of 0.706954, a difference of 0.0001. Although this is a substantially different value, also it is the same as the second lowest value in the Korte et al. (2006) dataset. Additional work is therefore needed to verify the magnitude of this difference and determine its origin. Kani et al. (2008) examine the 87 Sr/86Sr values from a mid-Panthalasssic paleoatoll. At this locality the Permian minimum value was defined (0.706914± 0.000012) in the fusulinid Yabeina Zone with a second minimum in a biostratigraphically barren interval between the Lepidolina and CodonofusiellaReichelina Zone. At Tieqiao, minimum values of 0.706954 occur in the bed H116 in the middle of the Capitanian (Yabeina Zone; Shen et al., 2007). In the partly time-equivalent Neoschwagerina Zone above this, values are approximately 0.707216 and then drop to 0.707006 before the Codonofusiella 29 Zone. This is likely the second minimum. It has been suggested that this is a low stand in sea level in the Tieqiao section during this interval (Wignall et al., 2009). This may account for a partial truncation of the second minimum. The second minimum occurs just before the Guadalupian-Lopingian Boundary, with a rapid increase to values of 0.707230 at the boundary in Japan and China. Sr isotope data can also be used is as a proxy indicator of changes in atmospheric CO2 and potentially indicate a driving mechanism for long-term climate change. This connection is based on the silicate weathering mechanism of removing CO2 from the atmosphere and depositing it as carbonate in the oceans (Berner, 2005). The Sr drop through much of the Permian is consistent with progressively less continental weathering of radiogenic (granitic) silicates. This decreasing rate of silicate weathering may reflect the large scale tectonic-scale events that were diminishing in the early half of the Permian, including the waning of the Hercynian and Uralian orogenies that had peaked in the Late Pennsylvanian (e.g., Scotese and McKerrow, 1990, Zeigler, 1989). Another factor that may relate to decreased silicate weathering is the increasing aridification of the Pangean continental interior (e.g. Stephenson and Osterloff, 2002, Tabor et al., 2008). Other factors contributing to the Sr decline through much of the early to middle Permian may have included the initiation of the opening of the Neotethys Ocean (Stampfli, 2000; Stampfli et al., 2001) and the cessation of basaltic magmatism in 30 the Paleotethys (Béchennec, 1988; Blendinger, 1988; Béchennec et al., 1993; Pillevuit et al., 1997). The Permian Sr curve shows the previously well-defined descent, but by looking at the inflection points defined in our high-resolution curve, it becomes possible to link these to shorter term glacial events that should have affected delivery of strontium to the oceans. The most prominent and likely shorter-term climate events to affect delivery of strontium to the oceans are the episodic glacial events that extend through much of the Cisuralian and Guadalupian. As glaciations occur, they enhance silicate weathering, potentially affecting Sr delivery to the oceans. For example, in the Cenozoic, Zachos et al. (1999) point to the exhumation and erosion of the Antarctic Shield as having created smaller scale features on the overall increase in 87 Sr/86Sr values. However, because we cannot say with much confidence precisely when the glacial events happened biostratigraphically, declaring a coincidence or causal relationship here represents an untested hypothesis only. At the base of the Permian boundary, the onset of a marked decrease in 87 Sr/86Sr values of more than 0.0003 may correspond to the initiation of the P1 episode of glaciation (299-291 Ma) of Fielding et al. (2008). Another inflection point occurs in the mid-Sakmarian, smaller in magnitude but longer lasting than the previous one. This inflection point may correspond to the onset of the P2 episode (287-280 Ma), estimated to be the largest of the Late Paleozoic Ice Age events. The next inflection in the curve is in the upper Artinskian (a drop of 31 0.0002 in just less than 30 meters of rock). This relatively extreme variation may be in part an artifact of sediment condensation. The samples could actually be older than published reports suggest. This is a possibility, as the lithologies are more fissile and thinner bedded than any of the subsequent sections. A flooding event following deglaciation could produce sediment starvation at the end of the P2 glacial. Conclusion The overall decrease in Permian strontium isotope values is attributed to a combination of tectonic-scale factors. Deglaciation of the massive southern hemisphere glaciers has also been called upon to have contributed to the downward trend that persists through the Permian (Korte, 2006). New understanding of Permian glacial volume and duration, however, changes the way glaciation plays into the shape of the curve. This study fills in the blanks in the strontium record of the Permian, reduces stratigraphic uncertainty in regard biostratigraphic correlation and most importantly, may constrain the timing of climatic events within the Permian. This high resolution record shows evidence of changes in strontium fluxes which may be directly caused by the fluctuations in the glacial state. 32 References Andersson, P.S., Wasserburg, G.J., and Ingri, J., 1992. The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters, v. 113, pp. 459-472. Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont biostratigraphy in western and southwestern United States. Journal of Paleontology, v. 49, pp. 284-315. Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p. Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science, v. 306, pp. 295302. Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, v. 10, pp. 516-519. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, T.A., 1983. Graphical methods for data analysis. Pacific Grove, CA: Wadsworth and Belmont. Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, v. 74, pp. 829-836. Cleveland, W.S., 1981. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistical Association, v. 74, p. 45. Cleveland W.S., Grosse, E., and Shyu, W.M., 1992. Local regression models. In: Chambers, J.M., and Hastie, T., (Eds.), Statistical Models in South Pacific Grove, CA. Wadsworth and Brooks/Cole, pp. 309-376. Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, v. 278, pp. 1345-1372. Davis, A.C., Bickle, M.J., and Teagle, D.A.H., 2003. Imbalance in the oceanic strontium budget. Earth and Planetary Science Letters, v. 211, pp. 173187. 33 Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., and Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chemical Geology, v. 112, pp. 145-167. DePaolo, D.J., and Ingram, B., 1985. High-resolution stratigraphy with strontium isotopes. Science, v. 227, pp. 938-941. Dessert, C., Dupré, B. Gaillardet, J., Franҫois, L.M., and Allègre, C.J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, v. 202, pp. 257-273. Faure, G., Assereto, R., and Tremba, E.L., 1978. Strontium isotope composition of marine carbonates of Middle Triassic to Early Jurassic age, Lombardic Alps, Italy. Sedimentology, v. 25, pp. 523-538. Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57. Frakes, L.A., 1979. Climates through Geologic Time. Elsevier, Amsterdam, 310 p. Gradstein, F.M., Ogg, J.G., and Smith, A.G., (Eds.), 2004. A geologic time scale 2004. Cambridge University Press, Cambridge, United Kingdom, 589 p. Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic and eustatic controls on sedimentary cycles, Concepts in Sedimentology and Paleontology, v. 4, pp. 65-87. Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega EndMembers in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24. Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age 34 in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70. Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 7182. Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153156. Kani, T., Fukui, M., Isozaki, Y., and Nohda, S., 2008. The Paleozoic minimum of 87 Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A critical turning point in the Late Paleozoic. Journal of Asian Earth Sciences, v. 32, pp. 22-33. Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F., Otto, J.B., and Waite, L.E., 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data. Chemical Geology, Isotope Geoscience Section, v. 58, pp. 55-81. Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v, 224, pp. 333-351. Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 89-107. Kump, L.R., and Arthur, M.A., 1997. Global chemical erosion during the Cenozoic weatherability balances the budgets. In: Ruddiman, W.F., (Ed.), Tectonic uplift and climate change, New York, Plenum Press, pp. 399425. Martin, E., and Macdougall, J., 1995. Sr and Nd isotopes at the Permian/Triassic boundary: A record of climate change. Chemical Geology, v. 125, pp. 7399. McArthur, J.M, Howarth, R.J., and Bailey, T.R., 2001. Strontium isotope stratigraphy, LOWESS Version 3: Best fit to the barine Sr-isotope curve 35 for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, v. 109, pp. 155-170. McArthur, J.M., and Howarth, R.J., 2004. Stronitum isotope stratigraphy. In: Gradstein, J.G., Ogg, J.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, pp. 96-125. Mei, S., and Henderson, C.M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp. 237-260. Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., Bosserman, P.J., 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, v. 24, pp. 917-920. Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91. Morante, R., 1996. Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology, v. 11, pp. 289-310. Palmer, M.R., and Edmond, J.M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, v. 92, pp. 11-26. Paytan, A, Kastner, M., Martin, E.E., Macdougall, J.D., and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, v. 366, pp. 445-449. Peterman, Z.E., Hedge, C.E., and Tourtelot, H.A., 1970. Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochimica et Cosmochimica Acta, v. 34, pp. 105-120. Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986. Textural, elemental and isotopic variations among constituents in Middle Devonian limestones, North America. Journal of Sedimentary Petrology, v. 56, pp. 715-727. Scotese, C., 2002. PALEOMAP Project. www.scotese.com Scotese, C.R., and McKerrow, W.S., 1990. Revised world maps and introduction. In: McKerrow, W.S. and Scotese, C.R., (Eds.), Paleozoic Paleogeography 36 and Biogeography. Geological Society of London, Memoirs, v. 12, pp. 121. Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139. Shields, G.A., Carden, G.A., Veizer, J., Meidla, T., Rong, J., and Li, R., 2003. Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, v. 67, pp. 2005-2025. Stallard, R.F., 1995. Relating chemical and physical erosion. In: Brantley, S.L. (Ed.), Reviews in Mineralogy, v. 31, pp. 543-564. Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado. Thisted, R.A., 1988. Elements of Statistical Computing. Chapmand and Hall, New York, 427 p. Tierney, K.E., and others. in prep. High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate. Tierney, K.E., and others. in prep. An early Permian (Asselian-Sakmarian) carbon isotope excursion from Nevada. Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487. Veizer, J., and Compston W., 1974. 87Sr/86Sr in Precabrian carbonates as an index of crustal evolution. Geochimica et Cosmochimica Acta, v. 40, pp. 905915. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek 37 F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, v. 161, pp. 59-88. Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth and Planetary Science Letters, v. 220, pp. 57-67. Wanless, H.R., and Shepard, F.P., 1936. Sea level and climatic changes related to late Paleozoic cycles. Geological Society of America Bulletin, v. 47, pp. 1177-1206. Wardlaw, B.R., Davydov, V., Mei, S., and Henderson, C., 1998. New reference sections for the Upper Carboniferous and Lower Permian in Northeast Nevada. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 31, pp. 5-8. Wignall, P.B., Bedrine, S. Bond, D.P.G., Wang, W., Lai, X.L., Ali, J.R., and Jiang, H.S., 2009. Facies analysis and sea-level change at the Guadalupian-Lopingian global stratotype (Laibin, south China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society of London, v. 166, pp. 655-666. Zachos, J.C., Opdyke, B.N., Quinn, T.M., Jones, C.E., Halliday, A.N., 1999. Early Cenozoic glaciation, Antarctic weathering and seawater 87Sr/86Sr: Is there a link? Chemical Geology, v. 161, pp. 165-180. 38 Chapter 3 High-resolution carbon isotope composite curve for the Permian System: implications for organic carbon burial and global climate Abstract More than 1,000 marine carbonate carbon isotope (δ13Ccarb) samples from two sections in the Pequop Mountains, Nevada, USA, and the Tieqiao section, near Laibin, Guangxi Province, China were analyzed to create a stratigraphicallyordered, biostratigraphically well-constrained, high-resolution composite δ13Ccarb curve for the Permian System. Samples were collected in conjunction with conodont biostratigraphic sampling and from sections with well-established foraminiferal biostratigraphic control. Previously published Permian composite δ13Ccarb curves indicate elevated δ13Ccarb values >+4.0‰ for most of the Permian but are relatively low in sample resolution. The high-resolution data presented here demonstrate that there is significant structure to the Permian δ13Ccarb curve, including both discrete positive and negative δ13Ccarb excursions. Because there is a paucity of Permian δ13Ccarb data, particularly for the Cisuralian and Guadalupian series, many of the events from these intervals identified by this study remain to be identified elsewhere, and require verification 39 before they can be demonstrated to be global events. In contrast, considerable data exists from the Lopingian Series. Some of the events from the uppermost Guadalupian and Lopingian identified here have been documented from other localities, which allows comparisons between data sets and discussion of the global nature of these events. For example, our study can verify that the Kamura event and the negative excursion at the Guadalupian-Lopingian boundary are truly global geochemical features of the Permian δ13Ccarb record. Introduction The Permian was a time of transition from the glacial interval that dominated the Pennsylvanian and early Permian to the Triassic which was icefree and considered to be an interval of global climate amelioration (Frakes and Francis, 1988; Crowley and Baum, 1991, 1992; Crowell, 1999; Mei and Henderson, 2001; Isbell, 2003; Fielding et al., 2008). The nature of the icehousegreenhouse transition and timing of global events that may have driven this change remains controversial due to the lack of good biostratigraphic indicators (Isbell, 2003a, 2003b; Isbell et al., 2006; Rygel et al., 2007; Fielding et al., 2008). Although chemostratigraphic investigations have been carried out in recent years (Korte et al., 2005; Grossman et al., 2008), the limited time resolution of these studies (1-3 samples per million years) makes it difficult to identify global excursions that may improve Permian chronostratigraphy. Furthermore, considering the evidence for a highly variable climate during the Permian icehouse-greenhouse transition, as observed in the terrestrial (tillites, periglacial 40 lake deposits, coals, evaporites, redbeds) and marine (ocean circulation, faunal turnover) records, it seems likely that the carbon isotopic composition of the oceans was undergoing fluctuations as well (Mei and Henderson, 2001; Davydov et al, 1999). Here, a biostratigraphically constrained carbon isotope (δ13Ccarb) curve is reported from the sampling of marine limestones in measured sections of Nevada, USA (Asselian-Artinskian) and South China (Kungurian-Changhsingian). This investigation has shown that there is structure to the δ13Ccarb curve, including possible excursions throughout the Permian. These excursions can serve as important chemostratigraphic horizons (or tie points). Further, when the carbon isotope fluctuations are considered in conjunction with the rock record, it may 41 become possible to address the causes of deglaciation as Earth experienced the first icehouse-to-greenhouse transition with fully vegetated continents (Montañez et al., 2007). The first reporting for many of the events noted, this is a preliminary study that needs to be ground tested for repeatability to discern which of these events are truly global in nature and which could be locally influenced. Geologic Background In the Permian, the Pangean supercontinent was fully assembled with the Panthalassic Ocean surrounding the continent and the Tethys Ocean shaping the boundary Ziegler Scotese, eastern (Figure et 1, al., 1997; 2002). The Cisuralian interval was collected from two sections 20 km apart in the Pequop Mountains in northeastern Nevada, USA (Ninemile Canyon and Rockland Ridge; Figure 42 2). The carbonates present in these mountains were originally deposited in basins with open communication to the Panthalassic Ocean on the western margin of the North American plate (Robinson,1961; Sweet and Snyder, 2002). The Guadalupian and Lopingian samples were collected at the Tieqiao Section, near Laibin, in Guangxi Province, China. This section records sedimentation from the Jiangnan Basin on the South China block, between the Cathaysian and Yangtze cratons (Wang et al., 2004; Figure 3). The strata were deposited on a continuously subsiding platform creating a thick sediment wedge that had open communication to the Tethys Ocean. 43 In the early Permian, conodont faunas were cosmopolitan but by the beginning of the Kungurian Age conodont faunas become regionally endemic at the species level (Behnken, 1975; Mei and Henderson, 2001). Near the beginning of the Guadalupian Epoch species became endemic at the genus level. The endemic nature of conodonts and other fauna during this interval indicates that the global ocean was not mixing as completely as at other times (Figure 4). Previous work Carbon Isotopes The Permian has not yet been subject to the intense and systematic isotopic treatment as other Paleozoic time periods (e.g. Saltzman, 2005). The interval that is best studied is the Permian-Triassic boundary interval. The endPermian biotic event is associated with a negative carbon isotope excursion and, as is the case throughout the Phanerozoic, debate continues about the driving mechanism for changes in δ13Ccarb (ocean anoxia: Wignall and Twitchett, 1996; Isozaki, 1997; outgassing of oceanic H2S: Kump et al., 2005; methane clathrate release due to global warming: Krull and Retallack, 2000; Siberian Trap volcanism: Renne and Basu, 1991; Bolide impact: Becker and Poreda, 2001; Kaiho et al., 2001; Becker et al., 2004; Kerr, 2004; Koeberl et al., 2004; chemocline upward event: Riccardi et al., 2007; Kershaw, 2008). It is also instructive to note that the end-Permian event has been documented in multiple 44 sections worldwide (Iran: Korte et al., 2004; Slovenia: Dolenec et al., 2004; Schwab and Spangenberg, 2004; Japan; Musashi et al., 2001; Austria: Magaritz et al., 1992; Wolbach et al., 1994; China: Krull et al., 2004), which suggests that events documented elsewhere in the Permian section may also be recognizable globally. Previously, there were two major δ13Ccarb composite curves published for the Permian (Korte et al., 2005; Grossman et al., 2008). The samples in the δ13Ccarb curve produced by Korte et al., (2005) are differentiated into two 45 categories depending on how reliable each sample is shown to be, and considering factors such as cathodoluminescence, trace element concentration, and stratigraphic certainty. Although the curve includes samples tied to biostratigraphic zones within stages, the sampling density is still low and makes it difficult to identify true excursions. The curve produced by Grossman et al. (2008) is based on lowmagnesium calcite from screened brachiopod shells and extends up from the Pennsylvanian through the Cisuralian and Guadalupian (Permian). This curve has stage-level biostratigraphic control on individual samples, which limits the ability to correlate trends globally and to identify excursions. Both the Korte et al. (2005) and Grossman et al. (2008) curves confirm that values in the Permian are generally elevated relative to typical Paleozoic levels. Climate Estimation of the extent and timing of glaciation in the Late Paleozoic has been an ongoing discussion focused primarily on low latitude cyclothemic deposits (Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979; Veevers and Powell, 1987; Heckel, 1994). The extent and timing of the Late Paleozoic Ice Age has been redefined by Fielding et al. (2008) to include four episodes of southern hemisphere continental glaciation in the Permian. The first two of these episodes (P1: lower Asselian, 299 Ma - middle Sakmarian, 291 Ma and P2: upper Sakmarian, 287 Ma – mid-Artinskian, 280 Ma) are considered major continental 46 glaciations with relatively large lateral extent, though a single large ice dome is questioned (Isbell, 2003a). The second two of these glacial episodes are considered relatively small (P3: upper Kungurian, 273 Ma – upper Roadian, 268 Ma and P4: Wordian, 267 Ma – lowest most Wuchiapingian, 260 Ma), possibly not of continental scale, as there is no evidence of bedrock displacement along coastline in periglacial environments common to the first to events. Biostratigraphic evidence that distinguishes these episodes is largely terrestrial, making it difficult to fit these events into the marine biostratigraphic framework. Methods Samples were collected in measured sections in conjunction with conodont samples starting in the Gzhelian (latest Pennsylvanian) at Ninemile Canyon in the Pequop Mountains, Nevada. Sampling continued upward through the lower Artinskian before switching over to Rockland Ridge approximately 20 km north starting in the upper Sakmarian through the lower most Kungurian. Samples were collected at the Tieqiao section in China starting in the uppermost Artinskian through the lowermost Changhsingian. These sections in Nevada and China contain enough biostratigraphic overlap to ensure continuity in the composite section. 47 All samples were drilled on a clean carbonate surface for approximately 500 μg of powder. For each sample, 75-95 μg was analyzed for δ18O relative to Vienna Peedee Belemnite Limestone standard (V-PDB) and δ13Ccarb. Asselian and Sakmarian samples from Ninemile Canyon, Nevada, were measured by Yohei 48 Matsui in Andrea Grottoli’s Stable Isotope Biogeochemistry Laboratory at The Ohio State University using a Kiel device coupled to a Finnigan Delta IV Plus stable isotope ratio mass spectrometer. Samples were acidified under vacuum with 100% ortho-phosphoric acid. The resulting CO2 was cryogenically purified and delivered to the mass spectrometer. Approximately 10% of samples were run in duplicate. The standard deviation of repeated measurements of an internal standard was ±0.03‰ for δ13C and ±0.09‰ for δ18O Artinskian samples from Rockland Ridge, Nevada were measured by Greg Cane at the University of Kansas Keck Paleoenvironmental and Environmental Stable Isotope Laboratory under the direction of Luis Gonzalez. Samples here were processed using a Kiel Carbonate Device III and a Finnigan MAT253 Isotope Ratio Mass Spectrometer. Samples were roasted under vacuum at 200o for one hour then acidified using 100% prepared phosphoric acid at 75 o. CO2 is trapped cryogenically, then transferred online to an IRMS instrument where it is measured 8 times versus a calibrated CO2 reference tank for δ. Standards used for calibration were NBS-18 Carbonatite and NBS-19 Limestone giving a precision better than ±0.02‰ for δ13C and better than ±0.05‰ for δ18O. Samples from the Artinskian through the Changhsingian from Tieqaio, China were measured by Michael Joakimski at Erlangen University, Germany. Carbonate powders were reacted with 100% phosphoric acid at 70 o C using a Gasbench II connected to a Finnigan Five Plus mass spectrometer. All values are reported in per mil concentration relative to V-PDB using NBS 19 as the standard. 49 50 R Reproducibility was checked by replicate analysis of laboratory standards and 10% of samples were run in duplicate. Values can be considered dependable to with in ±0.02‰. Results Values of δ13Ccarb at the base of the Cisuralian are ~2.0‰. The basal Asselian low point is followed by a stepwise increase through the Asselian culminating in an excursion in the Sakmarian with peaks of +4.4‰ and +4.8‰ VPDB. Through the remainder of the Sakmarian and the Artinskian there is a steady decrease, reaching the lowest point in the Cisuralian at ~0.3‰ just above the base of the Artinskian (Figure 7). Values in the lower Artinskian are the lowest in the Cisuralian reaching almost 0.0‰. From this point there is an increasing trend to approximately +3.8‰ over an estimated 4 million years. Above this, there is some short-term oscillation, but it is at a low amplitude through the remainder of the Artinskian. Most of the Kungurian shows oscillations between ~+2‰ and ~+4‰. A short term rise to +5.4‰ and return to values of 1.0‰ occurs just above the KungurianRoadian boundary (Figure 8). The Guadalupian shows three distinct isotopic intervals corresponding closely to stage boundaries. The curve in the Roadian begins with low values of ~ 1‰ and then reaches higher values averaging +3.5‰. The Wordian is characterized by lower values averaging +1.6‰. Values in the Capitanian shift positively to average +2.4‰. 51 The Capitanian interval of more positive δ13Ccarb values ends sharply in the upper Capitanian negative excursion. The negative shift reaches a low of -2.8. In the uppermost Capitanian, starting in conodont Jinogondolella granti Zone, values are elevated to ~+3‰. These heavy values extend across the GuadalupianLopingian boundary to C. postbitteri and end in the C. dukouensis Zone, where values descend to a low of -3.2‰. The Wuchiapingian starts with these relatively low values near -3.2‰, but quickly recovers to a distinctly elevated interval where values average +3.7‰ before reaching a high of +6.3‰. The top of the Wuchiapingian shows a negative shift back to values ~ +2.0‰. The age of this negative shift is not clearly defined, however, because the highest reported conodont, C. leveni, is more than 120 m below. Furthermore, the shift is 286 m below the first appearance of Palaeofusulina, which marks the middle Wuchiapingian. Discussion The Permian δ13Ccarb curve documented in this study shows features that may have been obscured in previous studies because of poor chronostratigraphic control and low sample resolution. Many of the events documented in this here (Figure 9) therefore require confirmation from high-resolution studies elsewhere in the world where biostratigraphic control is adequate. The basal Asselian through mid-Sakmarian are dominated by an increasing trend that culminates in an excursion to values almost +5‰. The 52 Neostrep pequopensis Unit Foram Conodont Series Stage Kung. Neostrop pnevi δ13Ccarb P. leonardensis P. deltoides Pr. guembeli R. stanislavi Ch. haxkinsi 1850 1775 1750 1725 1700 1675 1650 Chalaroschwagerina solita Ch.nelsoni Eoparafusulina liearis 1625 1600 1575 1550 1525 100 meters Sweetognathus whitei Artinskian Rockland Ridge 1825 1800 1500 Cisuralian 1475 1450 1425 1400 1375 1350 1325 Grainstone Wackestone Mounds Covered Sand Silt Chert Sweet. merrilli Neogond uralensis Sch. cribroseptata Sch. tersaPs. lineonada 1025 1000 975 950 925 Strep. constrictus Strep. isolatus Strep. brownvillensis 1050 Sch. aff. moelleriP. giganteaEo. allisonensis St. barskovi Strep. postfusus Strep. fusus Strep wabaunsensis = ppm Sr less than 100 1275 1075 P. kansanensis Sch. campa-Pseudo fus. longissimoideaLep. koschmanniTr. ventricosus Ninemile Canyon Asselian Sakmarian Sweet. binodosus 1300 1100 900 875 850 825 800 775 725 Gzhellian Late Pennsylvanian 750 700 Strep. virgilicus (s.l.) 675 650 625 600 0 1 2 3 4 5 6 Figure 3.7. δ13Ccarb data from Ninemile Canyon and Rockland Ridge Nevada plotted against stratigraphy. 53 steady increase in values over millions of years indicates enhanced organic carbon burial in the global oceans related to glacial conditions that likely caused vigorous circulation and upwelling (see Chapter 4 in this thesis; and Tierney et al., in prep.) Values through most of the Kungurian oscillate between +2‰ and +4‰, similar to the curve from the Pennsylvanian icehouse world (Saltzman, 2005). In the upper Kungurian in the interval that bears the fusulinid Schwagerina chihsiaensis, low values of ~ 2‰ suggest relatively low rates of organic carbon production and burial in a post-glacial world with less vigorous upwelling. The rapid increase in values in the interval bearing the fusulinids Neomisellina, Neoschwagerina, and Minojapanella pulchra reaches peak values of +5.4‰.This shift back to heavier values may be related to the return of vigorous ocean circulation as indicated by the presence of phosphates and organic-rich shales such as the Phosphoria Formation (Carol et al., 1998; Stephens and Caroll, 1999). The next interval of positive δ13Ccarb values observed across the Guadalupian-Lopingian boundary was named the Kamura Event by Isozaki et al., (2006), based on original documentation in the study of a paleo-atoll that has accreted to become part of modern southern Japan. This event, including a plateau of δ13Ccarb values of ~+5‰ in the Lepidolina fusulinid Zone followed by a decline by 4‰ in the Codonofusulina-Reichelina Zone, is attributed to a collapse in primary productivity related to the end of the Guadalupian cool period (e.g., Tong et al., 1999; Hallam and Wignall, 1999; Beauchamp and Baud, 2002). The 54 negative shift that ends the Kamura event (Wignall et al., 2009) shares much in common with the negative shift at the Permian-Triassic boundary (P-TB), most 55 importantly its association with a major biotic crisis. This biotic event eliminated approximately 50% of species. The cause of both events may have been flushing of organically-derived 12CO2 enriched anoxic bottom waters (Kershaw, 1999). To the west of Tieqiao at Xiong Jia Chang Section, Wignall et al., (2009) relate the negative excursion in the Prexuanhanensis Conodont Zone and the concurrent foraminifer extinction to the emplacement of volcanics associated with the Emeishan Large Igneous Province (LIP). At Gouchang, about 50 km away from the eastern margin of the LIP shows the extinction interval and the following negative excursion by approximately 20 meters of strata. The association of the emplacement of the LIP, the extinction and the negative δ13Ccarb excursion they conclude is likely a result of cooling and emission of SO2 and sulfate aerosol formation in the atmosphere and consequent environmental changes. The single negative shift noted in this study is followed by subsequent negative shifts identified in this study that may be related to further activity in this and other LIPs around the world. However, the negative excursion and extinction event discussed by Wignall et al. is also associated with changes in base level, so the changes attributed to the onset of volcanic influence may be acting in combination with other factors already at work at the start of the extinction event, such as changes in glacial mass and ocean-circulation changes. This is testable by looking for precipitated micritic mud and microbialite crust associated with this boundary event. Although the Kamura event is clearly recorded in our section, there is evidence for regional variability in δ13Ccarb. Just 56 before the Guadalupian-Lopingian Boundary our data shows values of ~3‰ associated with the fusulinids Neomisellina, Neoschwagerina, and Minojapanella pulchra. Values rapidly decline to exhibit a negative excursion to values as low as -3.2‰ with the first appearance of Codonofusulina-Reichelina and the conodont Clarkina postbitteri. These values are consistent with the findings of earlier studies form this section and the GSSP at Meishan (Wang et al., 2004; Kaiho et al., 2005) but absolute values are different than those shown at Kamura. Offset of δ13Ccarb values from are not unheard of between sections representing the Panthalassic and Tethys Oceans. This has been shown before by Mii et al. (2006) in the Pennsylvanian values. However, in that case the Tethian values were more elevated compared to the Panthalassic Ocean values possibly due to upwelling in Panthalassic Ocean. This is opposite of what is observed here in the Permian, suggesting that upwelling may have characterized the Tethys at this time. Above the negative excursion at the Guadalupian-Lopingian Boundary, values recover to average ~3.7‰ but reach highs above +6‰. This suggests that significant burial of organic matter may have been occurring in a stagnant ocean related to enhanced preservation rather than high primary production (Saltzman, 2005). 57 58 Conclusion I present a new biostratigraphically well-constrained, stratigraphically ordered high-resolution δ13Ccarb composite for the Permian System. Trends identified here are in some cases well known in other regions, but in other time intervals the trends must be documented elsewhere to determine whether they were global in scope. The best known event occurs near the Guadalupian- Lopingian boundary and may be useful for intercontinental correlation. The structure of the δ13Ccarb curve will allow it to be used as a stratigraphic tool and perhaps contribute to untangling the complicated climate story that is so relevant to our modern climate change. References Beauchamp, B., and Baud, A., 2002. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 184, pp. 37- 63. Becker, L., and Poreda, R.J., 2001. Fullerene and mass extinction in the geologic record. Meteoritic and Planetary Sciences, v. 36, p. A17. Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harison, T.M., Nicholson, C., and Iasky, R., 2004. Bedout: A possible end-Permian impact crater offshore of northwestern Australia. Science, v. 304, pp. 1469-1477. Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont biostratigraphy in western and southwestern United States. Journal of Paleontology, v. 49, pp. 284-315. Caroll A., Stephens, N.P., Hendrix, M.S., Glenn, and G.R., 1998. Eolian-derived siltstone in the Upper Permian Phosphoria Formation: Implications for marine upwelling. Geology, v. 26, pp. 1023-1026. Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, v. 278, pp. 1345-1372. 59 Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the climate system. Geological Society of America, Memoir, v. 192, pp. 1106. Crowley, T.J., and Baum, S.K., 1991. Estimating Carboniferous sea-level fluctuations from Gondwana ice extent. Geology, v. 19, pp. 975-977. Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, v. 20, pp. 507-510. Dolenec, M., Ogorelec, B., and Lojen, S., 2003. Upper Carboniferous to lower Triassic carbon isotopic signature in carbonate rocks of the western Tethys (Slovenia). Geologica Carpathica, v. 54, pp. 217-228. Dolenec, T., Orgorelec, B., Dolenec, M., and Lojen, S., 2004. Carbon isotope variability and sedimentology of the upper Permian carbonate rocks and changes across the Permian-Triassic boundary in the Masore section (western Slovenia). Facies, v. 50, pp. 287-299. Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A.T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57. Frakes, L.A., 1979. Climates through Geologic Time: Amsterdam, Elsevier, 310 p. Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp.547549. Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B., Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp. 222-233. Hallam, A., and Wignall, P.B., 1999. Mass extinction and sea-level changes. Earth-Science Reviews, v. 48, pp. 217-250. 60 Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic and eustatic controls on sedimentary cycles. Concepts in Sedimentology and Paleontology, v. 4, pp. 65-87. Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme depositional environments: Mega end members in geologic time. Geological Society of America, Special Paper, v. 370, pp. 5-24. Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70. Isozaki,Y., 1997. Permo-Triassic boundary Superanoxia and stratified superocean: Records from lost deep-sea. Science, v. 276, pp. 235-238. Isozaki, Y., Kawahata, H., and Ota, A., 2006. A unique carbon isotope record across the Guadalupian-Lopingian (middle-upper Permian) boundary in mid-oceanic paleo-atoll carbonates: The high-productivity “Kamura Event” and its collapse in Panthalassa. Global and Planetary Change, v. 55, pp. 21-38. Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K., Ueshima, M., Chen, Z., and Shi, G. R., 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, v. 29, pp. 815-818. Kaiho, K., Chen, Z.Q., Ohashi, T., Arinobu, T., Sawada, K., and Cramer, B.S., 2005. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 172-180. Kerr, R.A., 2004. Evidence of a huge, deadly impact found off the Australian coast? Science, v. 304, pp. 941. Kershaw, S., Zhang, T., and Lan, G., 2008. A microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental 61 significance. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 146, pp. 1-18. Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, AB., Sephton, M.A., 2004. Geochemistry of the end-Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology, v. 32, pp. 1053-1056. Korte, C., Kozur, H.W., Joachimski, M.M., Strauss, H., Veizer, J., and Schwark, L., 2004. Carbon, sulfer, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Science, v. 93, pp. 565-581. Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, pp. 333-351. Krull, E.S., and Retallack, G.J., 2000. δ13C depth profiles from paleosols across the Permian –Triassic boundary: Evidence for methane release. Geological Society of America Bulletin, v. 112, pp. 1459-1472. Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y., and Li, R., 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 204, pp. 297-315. Kump, L.R., Pavlov, A., Arthur, M.A., 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, v. 33, pp. 397-400. Magaritz, M., Krishnamurty, R.V., Holser, W.T., 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian-Triassic boundary. American Journal of Science, v. 292, p. 727-739. Mei, S., and Henderson, C. M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp.237–260. Mii, H.S., Grossman, E.L., Yancey, T.E., Chuvashov, B., Egorov, A., 2001. Isotopic records of brachiopod shells from the Russian Platform— evidence for the onset of mid-Carboniferous Glaciation. Chemical Geology, v. 175, pp. 133-147. 62 Musashi, M. Isozaki, Y., Koike, T., and Kreulen, R., 2001. Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the PermoTriassic boundary: evidence for 13C-depleted superocean. Earth and Planetary Science Letters, v. 191, pp. 9-20. Renne, P.R, and Basu, A.R., 1991. Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary. Science, v. 253, pp. 176-179. Riccardi, A., Kump, L.R., Arthur, M.A., and D’Hondt, S., 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 248, pp. 73-81. Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P., 2008. The magnitude of late Paleozoic glacio-eustatic fluctuations: A synthesis. Journal of Sedimentary Research, v. 78, pp. 500-511. Saltzman, M.R., 2005. Phosphorus, nitrogen, and the redox eveolution of the Paleozoic Oceans. Geology, v. 33, pp. 573-576. Schwab, V., and Spangenberg, J.E., 2004. Organic geochemistry across the Permian-Triassic transition at the Idrijca Valley, western Slovenia. Applied Geochemistry, v. 19, p. 55-72. Scotese, C., 2002. PALEOMAP Project. www.scotese.com Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139. Stephens, N.P., and Caroll, A.R., 1999. Salinity stratification in the Permian Phosphoria sea: A proposed paleoceanographic model. Geology, v. 27, pp. 899-902. Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado. Tierney, K.E., and others. in prep. High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate. 63 Veevers, J.J., and Powell, M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America Bulletin, v. 98, pp. 475-487. Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower Carboniferous sequence stratigraphy of South China. Journal of China University of Geosciences, v. 7, pp. 87-94. Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian Boundary. Earth and Planetary Science Letters, v. 220, pp. 57-67. Wanless, H.R., and Shepard F.P., 1936. Sea level and climate change related to the late Paleozoic cycles. Geological Society of America, Bulletin, v. 47, pp. 1177-1206. Wignall, P.B., and Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, v. 272, pp. 1155-1158. Wignall, P.B., Morante, R., and Newton, R., 1998. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine, v. 135, pp. 47-62. Wignall, P.B., Sun, Y., Bond, D.P.G., Izon, G., Newton, R.J., Védrine, S., Widdowson, M., Ali, J.R., Lai, X., Jiang, H., Cope, H., and Bottrell, S.H., 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, v. 324, pp. 1179-1182. Wolbach, W.S., Roegge, D.R., and Gilmour, I., 1994. The Permian-Triassic of the Gartnerkofel-1Core (Carnic Alps, Austria): Organic carbon isotope variation. Conference on New Developments Regarding the K/T Event and Other Catastrophes in Earth History, Lunar and Planetary Institute, Houston, pp. 133-134. Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian, and Proterozoic. Oxford University Press, Oxford, pp. 111-146. 64 Chapter 4 An early Permian (Asselian-Sakmarian) carbon isotope excursion documented from Nevada Abstract: A δ13Ccarb curve starting just below the base of the Permian and continuing through the basal Artinskian Stage shows a previously unrecognized carbon isotope excursion. The excursion starts just below the Asselian-Sakmarian boundary, peaking in the mid-Sakmarian, with values of +4.8‰ and returning to baseline values of ~+1.0‰ in the upper Sakmarian. While previous studies have suggested that values remain high through the entire Permian (~+4‰) and excursions cannot be identified, the δ13Ccarb curve noted here indicates that excursions can potentially be identified with increased sample resolution. The δ13Ccarb excursion shown here correlates closely to the main phase of the Late Paleozoic Ice Age (LPIA), which reaches its climax in the Asselian and Sakmarian. The excursion is here linked to high oceanic primary productivity caused by the glaciation and added nutrient delivery to the photic zone driven by eolian transport and active circulation in the oceans. 65 Introduction The Cisuralian (early Permian) is a time thought to be the acme of the Late Paleozoic Ice Age (LPIA) (Frakes and Francis, 1988; Crowley and Baum, 1991, 1992; Crowell and Peryt, 1995: Crowell, 1999; Isbell, 2003; Fielding et al., 2008). The timing and extent of glacial episodes and their relation to climate change and global carbon cycling, however, are still debated (Dickins, 1996; Isbell et al., 2003; Montañez et al., 2007). One approach to a better understanding of the causes and consequences of Permian glacial episodes is to compare biostratigraphically well constrained carbon isotope stratigraphy with the episodic 66 physical record of glaciation during this interval. The early Permian has been characterized in a previous study by consistently high carbon isotope values averaging around ~+4‰ (Korte et al., 2005). Grossman et al. (2008) showed greater variability than this, but several of the major fluctuations in the curve do not correlate globally, so they may reflect local controls on carbon cycling or stratigraphic uncertainty in correlations. These previously published composite curves use brachiopod calcite and although they may include a large number of samples for a single time horizon, the stratigraphic resolution can be as low as to ~1-2 samples per million years in certain time intervals (e.g., the ‘good’ brachiopods of Korte et al., 2005 in the Cisuralian). Here we develop a new, relatively δ13Ccarb high curve resolution for the Permian (Cisuralian) using micritic limestones collected from measured sections in northeast Nevada. We then examine the relationship 67 between events in the δ13Ccarb record, glaciations, and global climate. Geological settings During the latest Pennsylvanian and early Permian the supercontinent Pangea was fully assembled, with Nevada located along the western margin of the North American plate, a few degrees north of the equator (Sweet and Snyder,2002 Figure 1). Tectonic changes in the area created relatively short-lived dropdown basins that collected sediment to form thick strata for the life of that basin (Hodgkinson, 1961; Wardlaw et al., 1998; Sweet and Snyder, 2002). The Ninemile Canyon section is located in the Pequop Mountains in northeast Nevada (Figure 2). During the late Paleozoic this area was covered with a shallow epeiric sea that had open communication with the open ocean. The Ninemile Canyon section includes strata spanning the Kasimovian Stage (upper middle Pennsylvanian) through the Kungurian Stage (Permian). These strata contain both fusulinids and conodonts that are correlable to other sections globally (Behnken, 1975; Stevens, 1979; Wardlaw et al., 1998; Mei and Henderson, 2001; Figure 3). In this study, samples were collected from the Ghzelian (upper Pennsylvanian) across the Pennsylvanian-Permian boundary up through to the Artinskian Stage. This interval of time is represented in two formations, the Riepe Spring Limestone and the Rib Hill Formation (Wardlaw et al., 1998). Both of these formations are dominated by a wide range of fine and coarser grained limestone lithologies (for a detailed discussion of the region see 68 Robinson et al., 1961). The Riepe Spring Limestone was interrupted by occasional chert-rich intervals and conglomeratic channelizations. Glacial Events Episodes of the Late Paleozoic Ice Age (LPIA) have been based in part on low latitude cyclic strata in North America and Europe (Veevers and Powell, 1987; Frakes and Francis, 1988; Crowley and Baum, 1991, 1992; Frakes et al., 1992; Gastaldo et al., 1996 Crowell, 1999; Crowell and Peryt, 1995; Hyde et al., 1999, Heckel, 2008). More recently, Southern Hemisphere ice-proximal and glaciogenic deposits been re-evaluated (e.g. Isbell, 2008: Fielding et al., 2008). Isbell et al. (2006) examined evidence for glaciation from the major basins around Gondwana, including the Paraná Basin of Brazil, Paraguay, and Uruguay, the Karoo Basin of South Africa, the Kalahari Basin of Namibia, Botswana and 69 South Africa, the Transantarctic Basin of the central Transantarctic Mountains, the Officer and Canning Basins of Western Australia, and the Gondwana Master Basins of Peninsular India. Three glacial events were defined, including two that were local and alpine in nature in the Carboniferous (Glacial I and II) and a third more extensive episode extending from the upper most Carboniferous or basal Permian (Asselian) through the middle Sakmarian (Permian) (Glacial III). In eastern Australia, eight major glacial events were defined through this same interval (Fielding et al., 2008). Four of the events were identified from the Carboniferous (C1-C4) and four more events were identified from the Permian (P1-P4). The focus of this study is the isotopic proxy of glaciation in the period corresponding to the P1 episode (basal Asselian to middle Sakmarian), and the P2 episode, (late Sakmarian through middle Artinskian). These events were dated using SHRIMP analysis of tuffs that are interbedded with glacial and periglacial deposits (Fielding et al., 2008). Additionally, the glacial episodes are constrained biostratigraphically using palynostratigraphic and brachiopod zones, but these are difficult to correlate with standard marine zonations from sections in Nevada. Methods and Results Methods One of the main goals of this project was to increase stratigraphic resolution of carbon isotope stratigraphy through the lower Permian. This could only be accomplished if the sample medium used is micrite. Brachiopods, while commonly assumed to return the most reliable values in chemostratigraphic 70 investigations (e.g. Mii et al., 1999), limit sampling resolution because analysis can take place only on intervals yielding appropriate specimens. Carbonate powders containing an admixture of select carbonate grains (i.e. crinoids, brachiopods, etc.) and primary marine micrite have been shown repeatedly to faithfully record the original isotopic signature of Paleozoic marine waters (e.g., Saltzman, 2005; Banner and Hansen, 1990). The dependability of micrite as a sample medium has been demonstrated in every other system in the Paleozoic (Cambrian: Ripperdan et al., 1992; Saltzman et al., 1998; 2000; Ordovician: Finney et al., 1999; Kump et al., 1999, Silurian: Cramer et al., in press, Devonian: Joachimski and Buggisch 1993; Wang et al., 1996, and Carboniferous: Saltzman, 2002). A particularly useful demonstration of the comparability of the two 71 methods is shown in the Silurian of Gotland where micrite and brachiopods were processed from the same strata and show nearly identical results (compare results of Munnecke et al., 1997 and Bickert et al., 1997, as well as Cramer et al., in press). The Ninemile Canyon section was collected from below the basal Permian boundary through the top of the Sakmarian stage. The lithologies are largely micritic mud to packstone with occasional chert and rare siliciclastic-rich intervals. Forty carbonate samples were processed for δ13Ccarb through the Asselian and Sakmarian interval with a preference for fine grained carbonate. All samples were processed in by Yohei Matsui in Andrea Grottoli’s Stable Isotope Biogeochemistry Laboratory at The Ohio State University. Each sample was drilled on a clean carbonate surface for approximately 500μg of powder. For each sample, 75-95μg was analyzed for δ18O and δ13Ccarb relative to Vienna Peedee Belemnite Limestone standard (V-PDB). A Kiel device coupled to a Finnigan Delta IV Plus stable isotope ratio mass spectrometer was used for analysis. Samples were acidified under vacuum with 100% ortho-phosphoric acid. The resulting CO2 was cryogenically purified and delivered to the mass spectrometer. Approximately 10% of samples were run in duplicate. The standard deviation of repeated measurements of an internal standard was ±0.03‰ for δ13C and ±0.09‰ for δ18O 72 Results The lowest sample in the Gzhelian measured δ13Ccarb of +3.4 ‰ (VPDB). From this point, there is a decrease to +1.5‰ at 27.5 m above the PennsylvanianPermian boundary. A stepwise increase is observed through the Asselian, reaching an initial peak at 4.4‰ at 117 meters above the base of the Permian, followed by a second peak reaching +4.8‰ in the mid-Sakmarian. Values decline to +1.7‰ just below the Sakmarian-Artinskian boundary (Figure 4). When the δ13Ccarb values produced in study were plotted against δ18O values no covariant trend was observed that would indicate alteration of primary values (Figure 5). Discussion The Asselian through mid-Sakmarian δ13Ccarb excursion is unlike many other positive carbon isotope excursions in the Paleozoic (Buggisch and Joachimski, 2006; Cramer et al., in press) in that the change (+3.3‰) occurs over a relatively long interval of time (~8 Ma). However, as with the shorter duration 73 (< 2 myr) excursions that are common during the Paleozoic (e.g., Brenchley et al., 2003; Cramer and Saltzman, 2005; Saltzman, 2005), this Asselian-Sakmarian excursion is likely related to changes in nutrient cycling, organic matter preservation and burial. The early Permian δ13Ccarb curve is discussed here in the context of the early Permian stratigraphic record of climate change and biotic turnover. Causes of the δ13Ccarb excursion Positive shifts in marine δ13Ccarb such as that observed here are commonly interpreted to reflect increased burial of isotopically light organic carbon (e.g., Kump and Arthur, 1999; Arthur et al., 1987 Berner, 2004; Figure 6). This enhanced organic burial can result from an increase in primary production or in the fraction of organic carbon that is preserved upon reaching the seafloor. Increased preservation of organic carbon can be caused by stagnation of oceanic bottom waters, possibly associated with downwelling of warm, saline bottom waters (Bralower and Thierstein, 1984; Herbert and Sarmiento, 1991; Cramer and Saltzman, 2005). In addition, anoxic bottom waters will promote regeneration of nutrient phosphorus, which may promote primary production (Van Cappellen and Ingall, 1996; Lenton and Watson, 2000). 74 75 Positive δ13Ccarb excursions that relate to anoxic events may be associated with episodes of high sea level and extensive black shale deposition in deep ocean basins (Scholle and Arthur, 1980; Arthur et al., 1987; Pedersen and Calvert, 1990; Cramer and Saltzman, 2005, 2007; Cramer et al., 2006). According to this model, in order to maintain anoxic conditions, climatic warming must be sustained through the entire interval and would likely be preserved lithologically as black shales in the deep basins. This is not what is present through this interval in the major deep cratonic basins (Norwegian Barents Sea-Svalbard- North Greenland area: Stemmerik and Worsley; 2005; Northwest China: Chen et al., 2003; South Africa; Bangert et al., 1999; eastern Australia: Rygel et al., 2008; Western Australia: James et al., 2009). It is possible that significant quantities of organic matter were buried in nearshore siliciclastic environments with high sedimentation rates. However, Permian nearshore siliciclastic deposits remain poorly dated, and difficult to relate to changes in marine carbonate δ13Ccarb. In addition to high organic carbon burial, which is the most plausible scenario, enhanced carbonate weathering during sea level fall may also increase δ13Ccarb (Kump and Arthur, 1999). Enhanced carbonate weathering may also have been promoted by the major mountain building event occurring in the Urals (Chuvashov, 1990). In this scenario, the weathering products of ancient limestones that are isotopically heavy are added to the ocean carbon reservoir, shifting the overall values to higher δ13Ccarb. This mechanism would fit the pattern of a long-term, low amplitude δ13Ccarb event. However, the timing of 76 erosive episodes during the mountain building event is difficult to match with the timing of δ13Ccarb changes. It seems plausible that the Asselian through mid-Sakmarian δ13Ccarb excursion described here has resulted from a combination of both enhanced organic carbon burial and carbonate weathering. In order to change the rate of primary production (Arthur et al., 1987), which is the most likely mechanism for increasing organic carbon burial, a change must occur in the availability of nutrients to the surface waters. Changing the rate of primary production can be done in several ways, all of which are consistent with the timing of the Asselian through mid-Sakmarian δ13Ccarb excursion during one of the largest glaciations of the Late Paleozoic Ice Age (Isbell, 2003; Fielding, 2007). There was likely an increase in the equator-topole thermal gradient, which would have increased ocean ventilation and delivered relatively nutrient-rich bottom waters to the surface in regions of upwelling (Bralower and Thierstein, 1984; Herbert and Sarmiento, 1991). By creating stronger zones of upwelling and stimulating productivity, more carbon could be delivered to the sea floor in the form of organic matter to be added to the lithospheric reservoir. Additionally, in a time of glaciation there is likely to be a stronger atmospheric circulation, delivering more nutrients to the oceans by means of eolian transport (e.g., Falkowski, 1997). Evidence for enhanced atmospheric dust can be seen in massive siliciclastic sequences such as the Earp and Scherrer Formations represent eolian deposited sediment in the marine realm 77 (Soreghan, 1992). Through the Permian there is also evidence that the interior of Pangea becoming increasingly arid (Francis, 1994; Ziegler et al., 1997). These two factors could combine to enhance nutrient delivery and already enhanced primary productivity. Sequence stratigraphic evidence from the Kansas-Oklahoma region and regional sea level curves from western Pangea reveal evidence of sea level fall during the Asselian through mid-Sakmarian δ13Ccarb excursion, and this is consistent with the notion of both enhanced weathering of carbonates and higher organic carbon burial. A highstand is recognized at the base of the Permian and a major sequence boundary occurs in the mid-Sakmarian (Henderson and Mei, 2000; Boardman et al., 2009). Council Grove-Chase Specifically, in the midcontinent region, the Supersequence begins in the upper Ghzelian (Pennsylvanian), indicating a long-term highstand before the beginning of the Permian; it ends in the mid-Sakmarian in a major regression (Mazzullo et al., 2007; Boardman et al., 2009). Additionally, Permian localities around western Pangea such as western Canada, the Phosphoria Basin, and the Sverdrup Basin show a highstand of sea level at the base of the Asselian; it drops to a lowstand in the mid-Sakmarian (Beauchamp et al., 1989; Beauchamp and Henderson, 1994; Ross and Ross, 1995; Henderson and Mei, 2000). This pattern of long term sea-level fall during the Asselian through midSakmarian excursion is reflected in the lithologies at the Ninemile Canyon section in Nevada. The latest Carboniferous Gzhelian interval is cyclic, showing short78 term (likely glacio-eustatic) sea level change. In the Carboniferous-Permian boundary interval, a massive cliff-forming packstone is followed by more cyclothems that give way to grainstones with conglomeratic channelizations by the middle of the Sakmarian. These lithologic changes could be interpreted as a long term decline in sea-level in this region. It is difficult to independently identify eustatic sea level as the ultimate driver of these changes in relative sea level in Nevada, however, because the region experienced tectonic activity that caused basin subsidence (Snyder and Sweet, 2002). Climatic implications Sequestration and burial of organic matter, as shown by the gradual increase in δ13Ccarb values, would have led to a reduction in atmospheric CO2 (Berner, 2005). This in turn would have increased the likelihood of glaciation. Sedimentologic evidence of early Permian glaciation has been identified in this interval by both Isbell et al. (Glacial III 2006) and Fielding et al. (2007). There is no evidence of glaciation in the equatorial region of Nevada during the Permian. Geologic evidence of climate changes are found in the southern hemisphere, including western Australia, South America, and Antarctica (e.g., Isbell, 2003; Isbell et al., 2008a; 2008b; Rygel et al., 2007). For example, based on sedimentologic evidence including tillites, periglacial sediments, and evidence of regional isostatic loading, a glacial interval apparently started in the basal 79 Asselian and ended in the mid-Sakmarian, which is consistent with our interpretation of the δ13Ccarb curve as recording a reduction in atmospheric CO2. Grossman et al. (2008) show elevated δ13Ccarb values (4.6‰) that cross the Pennsylvanian-Permian boundary and drop in the mid-Sakmarian to 3.6‰. These values were derived from Composita brachiopods, which have been shown to be 1‰ higher than other components at the same horizon in the Pennsylvanian but Grossman et al. (2008) proposed that this offset in values does not continue in to the Permian. The δ13Ccarb trends shown by Grossman et al. (2008) indicate an early Permian shift in which samples from the Russian Platform have increasing values similar to the findings from this study. This trend contrasts with their values derived from samples in the U.S. Midcontinent (Grossman et al., 2008). This disagreement in the isotopic trends in different regions could be related to correlation problems. The appearance of the conodont Sw. merrilli has recently come into question as the delineator of the boundary because it seems to have appeared significantly earlier in Bolivia (Henderson, 2009). This diachroneity may account for the poor correlation between the different regions studied for δ13Ccarb. Values for δ13Ccarb reported by Korte et al. (2005) are similar to those reported by Grossman et al. (2007). Korte et al. (2005) showed values for the Asselian and Sakmarian that range between ~+3.0‰ and ~+5.5‰, averaging +4.3‰. However, the Asselian and Sakmarian, which span 14.6 million years (Wardlaw et al., 2008) is one of the most sparsely sampled intervals in this study 80 with only 17 reliable data points (‘good brachiopods’ of Korte et al., 2005) that are used to calculate the running average. While these studies have not identified clear trends within the early Permian, they have shown that the interval is different from other times in the geologic timescale. The early Permian was the first interval of a well forested planet experiencing a glaciation and associated changes in carbon cycling. Proxy evidence for atmospheric CO2 produced from fossil organic matter and pedogenic carbonate nodules (Montañez et al., 2007) shows a trend that declines from the lowest Permian reaching low values in the mid-Asselian and remaining low until the mid-Sakmarian, where values rise rapidly. These data agree with the interpretation that burial of organic matter occurred during the time of the Asselian through mid-Sakmarian δ13Ccarb excursion. Conclusion High resolution sampling reveals a δ13C excursion in the mid-Sakmarian. In this interval, glaciation occurred globally and sea level fell. Atmospheric carbon dioxide was low when glaciation occurred, which can be explained by high organic matter burial and the observed δ13C excursion. It is likely that oceanographic and atmospheric conditions through this long glacial interval increased nutrient delivery to the surface oceans to increase the burial of organic matter. 81 References Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C. 1987. The CenomanianTuronian Oceanic Anoxic Event II: Palaeoceanographic controls on organic matter production and preservation. In: Brook J., and Fleet, A.J, (Eds.), Marine Petroleum Source Rocks. Geological Society of London Special Publications, v. 26, pp. 401-420. Banner, J.L., and Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace element variation during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, v. 54, pp. 3123-3137. Bangert, B., Stollhofen, H., and Lorenz, V., 1999. The geochronology and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences, v. 29, pp. 33-49. Beauchamp, B., Harrison, J.C., and Henderson, C.M., 1989. Upper Paleozoic stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic Archipelago, Part 1: Time frame and tectonic evolution. Current Research, Part G, Geological Survey of Canada, Paper, v. 89-1G, pp. 105-113. Beauchamp, B., and Henderson, C.M., 1994. Great Bear Cape and Trappers Cove Formations, Sverdrup Basin, Canadian Arctic, conodont zonation. Bulletin of Canadian Petroleum Geology, v. 42, pp. 562-597. Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p. Bickert, T., Paetold, J., Samtleben, C., and Munnecke, A., 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta, v. 61, pp. 2717-2730. Boardman, D.R., II, Wardlaw, B.R., and Nestell, M.K., 2009. Stratigraphy and conodont biostratigraphy of the uppermost Carboniferous and lower Permian from the North American Midcontinent. Kansas Geological Survey, Bulletin, v. 255, pp. 1-41. Bralower, T.J., and Thierstien, H.R., 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, v. 12, pp. 614-618. 82 Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., and Nõlvak, J., 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America, Bulletin, v. 115, pp. 89-104. Buggisch, W., and Joachimski, M.M., 2006. Carbon isotope stratigraphy of the Devonian of central and southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 68-88. Chen, Z.Q., and Shi, G.R., 2003. Late Paleozoic depositional history of the Tarim Basin, Northwest China: An integration of biostratigraphic and lithostratigraphic constraints. American Association of Petroleum Geologists, Bulletin, v. 87, pp.1323-1354. Chuvashov, B.I., Dyupina, G.V., Mizens, G.A., and Chernych, V.V., 1990. Keysections of the Upper Carboniferous and Lower Permian of the western slope of the Urals and Preurals. Ural Branch Academic Science of Russia, Sverdlovsk: Uralian Branch of Russian Academy of Sciences, pp.3-367. Cramer, B.D., and Saltzman, M.R. 2005. Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, pp. 333-349. Cramer, B.D., Saltzman, M.R., and Kleffner, M.A., 2006. Spatial and temporal variability in organic carbon burial during global positive carbon isotope excursions: New insight from high resolution δ13Ccarb stratigraphy from the type area of the Niagran (Silurian) Provincial Series. Stratigraphy, v. 2, pp. 327-340. Cramer, B.D., and Saltzman, M.R., 2007. Early Silurian paired δ13Ccarb and δ13Corg analyses from the midcontinent of North America: Implications for Paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 256, pp. 195-203. Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Mӓnnik, P., Martma, T., Jeppsson, L., Kleffner, M.A. Barrick, J.E., Johnson, C.A., Emsbo, P., Bickert, T., Joachimski, M.M., Saltzman, M.R., in press. Testing the limits of Paleozoic chronostratigraphic correlation via highresolution (<500kyr) integrated conodont, graptolite and carbon isotope (δ13Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: Is a unified Phanerozoic timescale achievable? (In press with Geological Society of America Bulletin.) 83 Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea, Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 62-74. Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the climate system. Geological Society of America, Memoir, v. 192, pp. 1106. Crowley, T.J. and Baum, S.K., 1991. Estimating Carboniferous sea-level fluctuations from Gondwana ice extent. Geology, v. 19, p. 975-977. Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, v. 20, pp. 507-510. Dickins, J.M., 1996. Problems of a Late Paleozoic glaciation in Australia and subsequent climate in the Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125, pp. 185-197. Falkowski, P.G., 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, v. 387, pp. 272-275. Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57. Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R. L., Sweet, W.C., Jacobson, S. R., Soufiane, A., Achab, A., and Noble, P.J., 1999. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, v. 27, pp. 215-218. Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp. 547549. Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the Phanerozoic: The history of the Earth’s climate over the past 600 million years. Cambridge University Press, Cambridge, 274 p. 84 Francis, J.E., 1994. Palaeoclimates of Pangea—Geologic evidence. In: Embry, A.F., Beauchamp, B., and Glass, D.J., (Eds.), Pangea Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, v. 17, pp. 265-274. Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W., 1996. Out of the icehouse into the greenhouse: A late Paleozoic analogue for modern global vegetational change. Geological Society of America, Today, v. 10, pp. 17. Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B., Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp. 222-233. Heckel, P., 2008. Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 275-289. Henderson, C.M., and Mei, S., 2000. Preliminary cool water Permian conodont zonation in Northern Pangea: A review. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 36, pp. 16-23. Henderson, C.M., Schmitz, M., Crowley, J., and Davydov, V., 2009. Evolution and Geochronology of Sweetognathus lineage from Bolivia and the Urals of Russia: Biostratigraphic problems and implications for Global Stratotype Section and Point (GSSP) definition. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 53, pp. 20-21. Herbert, T.D., and Sarmiento, J.L., 1991. Ocean nutrient distribution and oxygenation: Limits on the formation of warm saline bottom water over the past 91 m.y. Geology, v. 19, pp. 702-705. Hodgkinson, K.A., 1961. Pemian stratigraphy of northeastern Nevada and northwestern Utah. Brigham Young University Geology Studies, v. 8, pp. 167-196. Hyde, W.T., Crowley, T.J., Tarasov, L., and Paltier, W.R., 1999. The Pangean ice age: Studies with a coupled climate-ice sheet model. Climate Dynamics, v. 15, pp. 619-629. 85 Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega EndMembers in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24. Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 7182. Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70. James, N.P., Frank, T.D., Fielding, C.R., 2009. Carbonate sedimentation in a Permian high-latitude, subpolar depositional realm: Queensland, Australia. Journal of Sedimentary Research, v. 79, pp.125-143. Joachimski, M.M., and Buggisch, W., 1993. Anoxic events in the late Frasnian— Causes of the Frasnian-Fammenian faunal crisis? Geology, v. 21, pp. 675678. Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v, 224, pp. 333-351. Kump, L.R., and Arthur, M.A.,1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198. Lenton, T.M., and Watson, A.J., 2000. Redfield revisited: 1. Regulation of nitrate phosphate and oxygen in the ocean. Global Biogeochemical Cycles, v. 14, pp. 225-248. Mazzullo, S.J., Boardman, D.R., II, Grossman, E.L., and Dimmick-Wells, K., 2007. Oxygen-carbon isotope stratigraphy of Upper Carboniferous to Lower Permian marine deposits in Midcontinent U.S.A. (Kansas and NE 86 Oklahoma): Implications for seawater chemistry and depositional cyclicity. Carbonates and Evaporaites, v. 22, pp. 55-72. Mei, S., and Henderson, C.M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp.237-260. Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America, Bulletin, v. 111, p. 960-973. Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91. Munnecke, A., Westphal, H., Reijmer, J.J.G, and Samtleben, C., 1997. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology, v. 44, pp. 977-990. Pedersen, T.F., and Calvert, S.E., 1990. Anoxia vs. Productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists, Bulletin, v. 74, pp. 454466. Ripperdan, R.L., Magaritz, M., Nicoll, R.S., and Shergold, J.H., 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology, v. 20, pp. 1039-1042. Robinson, G.B., Jr., 1961. Stratigraphy and Leonardian fusilinid paleontology in Central Pequop Mountains, Elko County, Nevada. Brigham Young University, Geology Studies, v. 8, pp. 93-145. Ross, C.A., and Ross, J.R., 1995. Permian sequence stratigraphy. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 98-123. Rygel, M.C., Fielding, C.R., Bann, K.L., Frank, T.D., Birgenheier, L.P., and Tye, S.C., 2008. The Early Permian Wasp Head Formation, Sydney Basin: 87 High-latitude, shallow marine sedimentation following the late Asselianearly Sakmarian glacial event in eastern Australia. Sedimentology, v. 55, pp. 1517-1540. Saltzman, M.R., Runneggar, B., and Lohmann, K.C., 1998. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event. Geological Society of America, Bulletin, v. 110, pp. 285-297. Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A., Chang, W.T., Peng, S., Ergaliev, E.K., and Runnegar, B., 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 162, pp. 211-223. Saltzman, M.R., 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), Western United States: Implications for seawater chemistry and glaciation. Geological Society of America, Bulletin, v. 114, pp. 96-108. Saltzman, M.R., 2005. Phosphorus, nitrogen and the redox evolution of the Paleozoic oceans. Geology, v. 33, pp. 573-576. Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists, Bulletin, v. 64, pp. 67-87. Scotese, C., 2002. PALEOMAP Project. www.scotese.com Stemmerik, L., and Worsley, D., 1995. Permian history of the Barents shelf area. In: Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Sedimentary basins and economic resources, SpringerVerlag, Berlin, v. 2, pp. 81-97. Stevens, C.H., Wagner, D.B., and Sumsion, R.S., 1979. Permian fusilinid biostratigraphy, Central Cordilleran Miogeosyncline. Journal of Paleontology, v. 53, pp. 29-36. Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado. 88 VanCappellen, P., and Ingall, E.D., 1996. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, v. 271, pp. 493-496. Veevers, J.J., Powell, M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487. Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower Carboniferous sequence stratigraphy of South China. Journal of China University of Geosciences, v. 7, pp. 87-94. Wardlaw, B.R., Davydov, V., Mei,S., and Henderson, C., 1998. New Reference Section for the Upper Carboniferous and Lower Permian in northeastern Nevada. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 31, pp. 5-8. Wardlaw, B.R., Davydov, V., and Gradstien, F.M., 2004. The Permian Period. In: Gradstein, F.M., Ogg, F.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, United Kingdom, pp. 249270. Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian, and Proterozoic. Oxford University Press, Oxford, pp. 111-146. 89 Combined References Andersson, P.S., Wasserburg, G.J., and Ingri, J., 1992. The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters, v. 113, pp. 459-472. Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., 1987. The CenomanianTuronian oceanic anoxic event II: Palaeoceanographic controls on organic matter production and preservation. In: Brooks, J., and Fleet, A.J., (Eds.), Marine Petroleum Source Rocks. Geological Society of London Special Publication, v. 26, pp. 401-420. Banner, J.L., and Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace element variation during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, v. 54, pp. 3123-3137. Bangert, B., Stollhofen, H., and Lorenz, V., 1999. The geochronology and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences, v. 29, pp. 33-49. Beauchamp, B., Harrison, J.C., and Henderson, C.M., 1989. Upper Paleozoic stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic Archipelago, Part 1: Time frame and tectonic evolution. Current Research, Part G, Geological Survey of Canada, Paper, v. 89-1G, pp. 105-113. Beauchamp, B., and Henderson, C.M., 1994. Great Bear Cape and Trappers Cove Formations, Sverdrup Basin, Canadian Arctic, conodont zonation. Bulletin of Canadian Petroleum Geology, v. 42, pp. 562-597. Beauchamp, B., and Baud, A., 2002. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 184, pp. 37- 63. Becker, L., and Poreda, R.J., 2001. Fullerene and mass extinction in the geologic record. Meteoritic and Planetary Sciences, v. 36, p. A17. Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harison, T.M., Nicholson, C., and Iasky, R., 2004. Bedout: A possible end-Permian impact crater offshore of northwestern Australia. Science, v. 304, pp. 1469-1477. 90 Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont biostratigraphy in western and southwestern United States. Journal of Paleontology, v. 49, pp. 284-315. Berner, R.A., 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. American Journal of Science, v. 304, pp. 438-453. Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p. Berner, R.A., 2006a. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 over Phanerozoic time. Geochimica et Cosmochimica Acta, v. 70, pp. 5653-5664. Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science, v. 306, pp. 295302. Bickert, T., Paetold, J., Samtleben, C., and Munnecke, A., 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta, v. 61, pp. 2717-2730. Boardman, D.R., II, Wardlaw, B.R., and Nestell, M.K., 2009. Stratigraphy and conodont biostratigraphy of the uppermost Carboniferous and lower Permian from the North American Midcontinent. Kansas Geological Survey, Bulletin, v. 255, pp. 1-41. Bralower, T.J., and Thierstien, H.R., 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, v. 12, pp. 614-618. Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., and Nõlvak, J., 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America, Bulletin, v. 115, pp. 89-104. Buggisch, W., and Joachimski, M.M., 2006. Carbon isotope stratigraphy of the Devonian of central and southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 68-88. Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, v. 10, pp. 516-519. 91 Caroll A., Stephens, N.P., Hendrix, M.S., Glenn, and G.R., 1998. Eolian-derived siltstone in the Upper Permian Phosphoria Formation: Implications for marine upwelling. Geology, v. 26, pp. 1023-1026. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, T.A., 1983. Graphical methods for data analysis. Pacific Grove, CA: Wadsworth and Belmont. Chen, Z.Q., and Shi, G.R., 2003. Late Paleozoic depositional history of the Tarim Basin, Northwest China: An integration of biostratigraphic and lithostratigraphic constraints. American Association of Petroleum Geologists, Bulletin, v. 87, pp.1323-1354. Chuvashov, B.I., Dyupina, G.V., Mizens, G.A., and Chernych, V.V., 1990. Keysections of the Upper Carboniferous and Lower Permian of the western slope of the Urals and Preurals. Ural Branch Academic Science of Russia, Sverdlovsk: Uralian Branch of Russian Academy of Sciences, pp.3-367. Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, v. 74, pp. 829-836. Cleveland, W.S., 1981. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistical Association, v. 74, p. 45. Cleveland W.S., Grosse, E., and Shyu, W.M., 1992. Local regression models. In: Chambers, J.M., and Hastie, T., (Eds.), Statistical Models in South Pacific Grove, CA. Wadsworth and Brooks/Cole, pp. 309-376. Cramer, B.D., and Saltzman, M.R. 2005. Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, pp. 333-349. Cramer, B.D., Saltzman, M.R., and Kleffner, M.A., 2006. Spatial and temporal variability in organic carbon burial during global positive carbon isotope excursions: New insight from high resolution δ13Ccarb stratigraphy from the type area of the Niagran (Silurian) Provincial Series. Stratigraphy, v. 2, pp. 327-340. Cramer, B.D., and Saltzman, M.R., 2007. Early Silurian paired δ13Ccarb and δ13Corg analyses from the midcontinent of North America: Implications for Paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 256, pp. 195-203. 92 Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Mӓnnik, P., Martma, T., Jeppsson, L., Kleffner, M.A. Barrick, J.E., Johnson, C.A., Emsbo, P., Bickert, T., Joachimski, M.M., Saltzman, M.R., in press. Testing the limits of Paleozoic chronostratigraphic correlation via highresolution (<500kyr) integrated conodont, graptolite and carbon isotope (δ13Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: Is a unified Phanerozoic timescale achievable? (In press with Geological Society of America Bulletin.) Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, v. 278, pp. 1345-1372. Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 62-74. Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the climate system. Geological Society of America, Memoir, v. 192, pp. 1106. Crowley, T.J., and Baum, S.K., 1991. Estimating Carboniferous sea-level fluctuations from Gondwana ice extent. Geology, v. 19, pp. 975-977. Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, v. 20, pp. 507-510. Davis, A.C., Bickle, M.J., and Teagle, D.A.H., 2003. Imbalance in the oceanic strontium budget. Earth and Planetary Science Letters, v. 211, pp. 173187. Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., and Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chemical Geology, v. 112, pp. 145-167. DePaolo, D.J., and Ingram, B., 1985. High-resolution stratigraphy with strontium isotopes. Science, v. 227, pp. 938-941. Derry, L.A., Jacobsen, S.B., and Kauffman, A.J., 1992. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, v. 56, pp. 13171329. 93 Dessert, C., Dupré, B. Gaillardet, J., Franҫois, L.M., and Allègre, C.J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, v. 202, pp. 257-273. Dickins, J.M., 1996. Problems of a Late Paleozoic glaciation in Australia and subsequent climate in the Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125, pp. 185-197. Dolenec, M., Ogorelec, B., and Lojen, S., 2003. Upper Carboniferous to lower Triassic carbon isotopic signature in carbonate rocks of the western Tethys (Slovenia). Geologica Carpathica, v. 54, pp. 217-228. Dolenec, T., Orgorelec, B., Dolenec, M., and Lojen, S., 2004. Carbon isotope variability and sedimentology of the upper Permian carbonate rocks and changes across the Permian-Triassic boundary in the Masore section (western Slovenia). Facies, v. 50, pp. 287-299. Falkowski, P.G., 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, v. 387, pp. 272-275. Faure, G., Assereto, R., and Tremba, E.L., 1978. Strontium isotope composition of marine carbonates of Middle Triassic to Early Jurassic age, Lombardic Alps, Italy. Sedimentology, v. 25, pp. 523-538. Faure, G., and Mensing, T.M., 2004. Isotopes: Principles and Application. Wiley, 928 p. Fielding, C.R., Rygel, M.C, Frank, T.D., Birgenheier, L.P., Jones, A.T., and Roberts, J., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern Australia discloses multiple alternating glacial and non-glacial intervals. Geological Society of America, Abstracts with Programs, v. 38, p. 317. Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57. Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R. L., Sweet, W.C., Jacobson, S. R., Soufiane, A., Achab, A., and Noble, P.J., 1999. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, v. 27, pp. 215-218. 94 Frakes, L.A., 1979. Climates through Geologic Time. Elsevier, Amsterdam, 310 p. Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp.547549. Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the Phanerozoic: The history of the Earth’s climate over the past 600 million years. Cambridge University Press, Cambridge, 274 p. Francis, J.E., 1994. Palaeoclimates of Pangea—Geologic evidence. In: Embry, A.F., Beauchamp, B., and Glass, D.J., (Eds.), Pangea Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, v. 17, pp. 265-274. Frank, T.D., Birgenheier, L.P., Fielding, C.R., and Rygel, M.C., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern Australia provides a framework for examining far-field stable isotope records. Geological Society of America, Abstracts with Programs, v. 38, pp. 318. Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W., 1996. Out of the icehouse into the greenhouse: A late Paleozoic analogue for modern global vegetational change. Geological Society of America, Today, v. 10, pp. 17. Gibbs, M.T., Rees, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and Rowley, D.B., 2002. Simulations of Permian climate and comparisons with climate sensitive sediments. Journal of Geology, v. 110, pp. 33-55. Gradstein, F.M., Ogg, J.G., and Smith, A.G., (Eds.), 2004. A geologic time scale 2004. Cambridge University Press, Cambridge, United Kingdom, 589 p. Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B., Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp. 222-233. Hallam, A., and Wignall, P.B., 1999. Mass extinction and sea-level changes. Earth-Science Reviews, v. 48, pp. 217-250. 95 Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic and eustatic controls on sedimentary cycles, Concepts in Sedimentology and Paleontology, v. 4, pp. 65-87. Heckel, P., 2008. Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 275-289. Henderson, C.M., and Mei, S., 2000. Preliminary cool water Permian conodont zonation in Northern Pangea: A review. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 36, pp. 16-23. Henderson, C.M., Schmitz, M., Crowley, J., and Davydov, V., 2009. Evolution and Geochronology of Sweetognathus lineage from Bolivia and the Urals of Russia: Biostratigraphic problems and implications for Global Stratotype Section and Point (GSSP) definition. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 53, pp. 20-21. Herbert, T.D., and Sarmiento, J.L., 1991. Ocean nutrient distribution and oxygenation: Limits on the formation of warm saline bottom water over the past 91 m.y. Geology, v. 19, pp. 702-705. Hodgkinson, K.A., 1961. Pemian stratigraphy of northeastern Nevada and northwestern Utah. Brigham Young University Geology Studies, v. 8, pp. 167-196. Hyde, W.T., Crowley, T.J., Tarasov, L., and Paltier, W.R., 1999. The Pangean ice age: Studies with a coupled climate-ice sheet model. Climate Dynamics, v. 15, pp. 619-629. Hyde, W.T., Grossman, E.L., Crowley, T.J., Pollard, D., and Scotese, C.R., 2006. Siberian glaciation as constraint on Permian-Carboniferous CO2 levels. Geology, v. 34, pp. 421-424. Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega End96 Members in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24. Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 7182. Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70. Isozaki,Y., 1997. Permo-Triassic boundary Superanoxia and stratified superocean: Records from lost deep-sea. Science, v. 276, pp. 235-238. Isozaki, Y., Kawahata, H., and Ota, A., 2006. A unique carbon isotope record across the Guadalupian-Lopingian (middle-upper Permian) boundary in mid-oceanic paleo-atoll carbonates: The high-productivity “Kamura Event” and its collapse in Panthalassa. Global and Planetary Change, v. 55, pp. 21-38. James, N.P., Frank, T.D., Fielding, C.R., 2009. Carbonate sedimentation in a Permian high-latitude, subpolar depositional realm: Queensland, Australia. Journal of Sedimentary Research, v. 79, pp.125-143. Joachimski, M.M., and Buggisch, W., 1993. Anoxic events in the late Frasnian— Causes of the Frasnian-Fammenian faunal crisis? Geology, v. 21, pp. 675678. Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153156. Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K., Ueshima, M., Chen, Z., and Shi, G. R., 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, v. 29, pp. 815-818. Kaiho, K., Chen, Z.Q., Ohashi, T., Arinobu, T., Sawada, K., and Cramer, B.S., 2005. A negative carbon isotope anomaly associated with the earliest 97 Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 172-180. Kani, T., Fukui, M., Isozaki, Y., and Nohda, S., 2008. The Paleozoic minimum of 87 Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A critical turning point in the Late Paleozoic. Journal of Asian Earth Sciences, v. 32, pp. 22-33. Kerr, R.A., 2004. Evidence of a huge, deadly impact found off the Australian coast? Science, v. 304, pp. 941. Kershaw, S., Zhang, T., and Lan, G., 2008. A microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 146, pp. 1-18. Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, AB., Sephton, M.A., 2004. Geochemistry of the end-Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology, v. 32, pp. 1053-1056. Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F., Otto, J.B., and Waite, L.E., 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data. Chemical Geology, Isotope Geoscience Section, v. 58, pp. 55-81. Korte, C., Kozur, H.W., Joachimski, M.M., Strauss, H., Veizer, J., and Schwark, L., 2004. Carbon, sulfer, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Science, v. 93, pp. 565-581. Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, pp. 333-351. Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 89-107. Kovalevich, V.M., Peryt, T.M., and Petrichenko, O.I., 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal of Geology, v. 106, pp. 695-712. 98 Krull, E.S., and Retallack, G.J., 2000. δ13C depth profiles from paleosols across the Permian –Triassic boundary: Evidence for methane release. Geological Society of America Bulletin, v. 112, pp. 1459-1472. Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y., and Li, R., 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 204, pp. 297-315. Kump, L.R., and Arthur, M.A., 1997. Global chemical erosion during the Cenozoic weatherability balances the budgets. In: Ruddiman, W.F., (Ed.), Tectonic uplift and climate change, New York, Plenum Press, pp. 399425. Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198. Kump, L.R., Pavlov, A., Arthur, M.A., 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, v. 33, pp. 397-400. Lenton, T.M., and Watson, A.J., 2000. Redfield revisited: 1. Regulation of nitrate phosphate and oxygen in the ocean. Global Biogeochemical Cycles, v. 14, pp. 225-248. Lowenstein, T.K., Horita, J., Kovalevych, V.M., and Timofeef, M.N., 2005. The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, v. 69, pp. 1701-1719. Magaritz, M., Krishnamurty, R.V., Holser, W.T., 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian-Triassic boundary. American Journal of Science, v. 292, p. 727-739. Martin, E.E., and MacDougall, J.D., 1995. Sr and Nd isotopes at the Permian/Triassic Boundary: A record of climate change. Chemical Geology, v. 125, pp. 73-99. Mazzullo, S.J., Boardman, D.R., II, Grossman, E.L., and Dimmick-Wells, K., 2007. Oxygen-carbon isotope stratigraphy of Upper Carboniferous to Lower Permian marine deposits in Midcontinent U.S.A. (Kansas and NE Oklahoma): Implications for seawater chemistry and depositional cyclicity. Carbonates and Evaporaites, v. 22, pp. 55-72. 99 McArthur, J.M, Howarth, R.J., and Bailey, T.R., 2001. Strontium isotope stratigraphy, LOWESS Version 3: Best fit to the barine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, v. 109, pp. 155-170. McArthur, J.M., and Howarth, R.J., 2004. Stronitum isotope stratigraphy. In: Gradstein, J.G., Ogg, J.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, pp. 96-125. Mei, S., and Henderson, C. M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp.237–260. Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America, Bulletin, v. 111, p. 960-973. Mii, H.S., Grossman, E.L., Yancey, T.E., Chuvashov, B., Egorov, A., 2001. Isotopic records of brachiopod shells from the Russian Platform— evidence for the onset of mid-Carboniferous Glaciation. Chemical Geology, v. 175, pp. 133-147. Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., Bosserman, P.J., 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, v. 24, pp. 917-920. Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91. Morante, R., 1996. Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology, v. 11, pp. 289-310. Munnecke, A., Westphal, H., Reijmer, J.J.G, and Samtleben, C., 1997. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology, v. 44, pp. 977-990. 100 Musashi, M. Isozaki, Y., Koike, T., and Kreulen, R., 2001. Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the PermoTriassic boundary: evidence for 13C-depleted superocean. Earth and Planetary Science Letters, v. 191, pp. 9-20. Palmer, M.R., and Edmond, J.M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, v. 92, pp. 11-26. Parrish, J.T., and Peterson, F., 1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States – A comparison. Sedimentary Geology, v. 56, pp. 261-282. Parrish, J.T., 1993. Climate of the supercontinent Pangea. Journal of Geology, v. 101, pp. 215-233. Paytan, A, Kastner, M., Martin, E.E., Macdougall, J.D., and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, v. 366, pp. 445-449. Pedersen, T.F., and Calvert, S.E., 1990. Anoxia vs. Productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists, Bulletin, v. 74, pp. 454466. Peterman, Z.E., Hedge, C.E., and Tourtelot, H.A., 1970. Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochimica et Cosmochimica Acta, v. 34, pp. 105-120. Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986. Textural, elemental and isotopic variations among constituents in Middle Devonian limestones, North America. Journal of Sedimentary Petrology, v. 56, pp. 715-727. Renne, P.R, and Basu, A.R., 1991. Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary. Science, v. 253, pp. 176-179. Riccardi, A., Kump, L.R., Arthur, M.A., and D’Hondt, S., 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 248, pp. 73-81. Ripperdan, R.L., Magaritz, M., Nicoll, R.S., and Shergold, J.H., 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology, v. 20, pp. 1039-1042. 101 Robinson, G.B., Jr., 1961. Stratigraphy and Leonardian fusilinid paleontology in Central Pequop Mountains, Elko County, Nevada. Brigham Young University, Geology Studies, v. 8, pp. 93-145. Ross, C.A., and Ross, J.R., 1995. Permian sequence stratigraphy. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 98-123. Royer, D.L., Berner, R.A., Montañez, Tabor, N.J., and Beerling, D.J., 2004. CO2 as a primary driver of Phanerozoic climate. Geological Society of America, Today, v. 14, pp. 4-10. Rygel, M.C., Fielding, C.R., Bann, K.L., Frank, T.D., Birgenheier, L.P., and Tye, S.C., 2008. The Early Permian Wasp Head Formation, Sydney Basin: High-latitude, shallow marine sedimentation following the late Asselianearly Sakmarian glacial event in eastern Australia. Sedimentology, v. 55, pp. 1517-1540. Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P., 2008. The magnitude of late Paleozoic glacio-eustatic fluctuations: A synthesis. Journal of Sedimentary Research, v. 78, pp. 500-511. Saltzman, M.R., Runneggar, B., and Lohmann, K.C., 1998. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event. Geological Society of America, Bulletin, v. 110, pp. 285-297. Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A., Chang, W.T., Peng, S., Ergaliev, E.K., and Runnegar, B., 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 162, pp. 211-223. Saltzman, M.R., 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), Western United States: Implications for seawater chemistry and glaciation. Geological Society of America, Bulletin, v. 114, pp. 96-108. Saltzman, M.R., 2005. Phosphorus, nitrogen and the redox evolution of the Paleozoic oceans. Geology, v. 33, pp. 573-576. 102 Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists, Bulletin, v. 64, pp. 67-87. Schwab, V., and Spangenberg, J.E., 2004. Organic geochemistry across the Permian-Triassic transition at the Idrijca Valley, western Slovenia. Applied Geochemistry, v. 19, p. 55-72. Scotese, C., 2002. PALEOMAP Project. www.scotese.com Scotese, C.R., and McKerrow, W.S., 1990. Revised world maps and introduction. In: McKerrow, W.S. and Scotese, C.R., (Eds.), Paleozoic Paleogeography and Biogeography. Geological Society of London, Memoirs, v. 12, pp. 121. Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139. Shields, G.A., Carden, G.A., Veizer, J., Meidla, T., Rong, J., and Li, R., 2003. Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, v. 67, pp. 2005-2025. Stallard, R.F., 1995. Relating chemical and physical erosion. In: Brantley, S.L. (Ed.), Reviews in Mineralogy, v. 31, pp. 543-564. Stemmerik, L., and Worsley, D., 1995. Permian history of the Barents shelf area. In: Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Sedimentary basins and economic resources, SpringerVerlag, Berlin, v. 2, pp. 81-97. Stephens, N.P., and Caroll, A.R., 1999. Salinity stratification in the Permian Phosphoria sea: A proposed paleoceanographic model. Geology, v. 27, pp. 899-902. Stevens, C.H., Wagner, D.B., and Sumsion, R.S., 1979. Permian fusilinid biostratigraphy, Central Cordilleran Miogeosyncline. Journal of Paleontology, v. 53, pp. 29-36. Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North 103 America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado. Tabor, N.J., and Montañez, I.P., 2002. Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: Insights from pedogenic mineral δ18O compositions. Geology, v. 30, pp. 1127-1130. Tabor, N.J., and Montañez, I.P., 2004. Morphology and distribution of fossil soils in the Permo Pennsylvanian Wichita and Bowie Groups, north-central Texas, USA: Implications for western equatorial Pangean paleoclimate during icehouse- greenhouse transition. Sedimentology, v. 51, pp. 851884. Tabor, N.J., and Montañez, I.P., 2005. Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 127- 146. Thisted, R.A., 1988. Elements of Statistical Computing. Chapmand and Hall, New York, 427 p. Tierney, K.E., and others. in prep. High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate. Tierney, K.E., and others. in prep. An early Permian (Asselian-Sakmarian) carbon isotope excursion from Nevada. Tramp, K.L., Elmore, R.D., and Soreghan, G.S., 2004. Paleoclimatic inferences from paleopedology and magnetism of the Permian Maroon Formation loessite, Colorado, USA. Geological Society of America, Bulletin, v. 116, pp. 671-686. VanCappellen, P., and Ingall, E.D., 1996. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, v. 271, pp. 493-496. Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487. 104 Veevers, J.J., Conaghan, P.J., Powell, C., Cowan, E.J., McDonnell, K.L., and Shaw, S.E., 1994. Eastern Australia. In: Veevers, J.J. and Powell, C., (Eds.), Permian-Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland. Geological Society of America, Memoir, v. 184, pp. 11-171. Veizer, J., and Compston W., 1974. 87Sr/86Sr in Precabrian carbonates as an index of crustal evolution. Geochimica et Cosmochimica Acta, v. 40, pp. 905915. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, v. 161, pp. 59-88. Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower Carboniferous sequence stratigraphy of South China. Journal of China University of Geosciences, v. 7, pp. 87-94. Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth and Planetary Science Letters, v. 220, pp. 57-67. Wanless, H.R., and Shepard, F.P., 1936. Sea level and climatic changes related to late Paleozoic cycles. Geological Society of America Bulletin, v. 47, pp. 1177-1206. Wardlaw, B.R., Davydov, V., Mei, S., and Henderson, C., 1998. New reference sections for the Upper Carboniferous and Lower Permian in Northeast Nevada. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 31, pp. 5-8. Wardlaw, B.R., Davydov, V., and Gradstien, F.M., 2004. The Permian Period. In: Gradstein, F.M., Ogg, F.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, United Kingdom, pp. 249270. Wignall, P.B., and Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, v. 272, pp. 1155-1158. Wignall, P.B., Morante, R., and Newton, R., 1998. The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine, v. 135, pp. 47-62. 105 Wignall, P.B., Bedrine, S. Bond, D.P.G., Wang, W., Lai, X.L., Ali, J.R., and Jiang, H.S., 2009. Facies analysis and sea-level change at the Guadalupian-Lopingian global stratotype (Laibin, south China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society of London, v. 166, pp. 655-666. Wignall, P.B., Sun, Y., Bond, D.P.G., Izon, G., Newton, R.J., Védrine, S., Widdowson, M., Ali, J.R., Lai, X., Jiang, H., Cope, H., and Bottrell, S.H., 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, v. 324, pp. 1179-1182. Wolbach, W.S., Roegge, D.R., and Gilmour, I., 1994. The Permian-Triassic of the Gartnerkofel-1Core (Carnic Alps, Austria): Organic carbon isotope variation. Conference on New Developments Regarding the K/T Event and Other Catastrophes in Earth History, Lunar and Planetary Institute, Houston, pp. 133-134. Zachos, J.C., Opdyke, B.N., Quinn, T.M., Jones, C.E., Halliday, A.N., 1999. Early Cenozoic glaciation, Antarctic weathering and seawater 87Sr/86Sr: Is there a link? Chemical Geology, v. 161, pp. 165-180. Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian, and Proterozoic. Oxford University Press, Oxford, pp. 111-146. Ziegler, A.M., Rees, P.M., and Naugolnykh, S.V., 2002. The Early Permian floras of Prince Edward Island, Canada: Differentiating global from local effects of climate change. Canadian Journal of Earth Sciences, v. 39, pp. 223-238. 106 Appendix A: Data Tables 107 Table 1 Nine Mile Canyon Section, Nevada, USA Permian Composite Section 1 Starting #: 5466027 (2nd Roll Starting #: 5153159) 108 Ticket # age Meter Sr ppm 5466027 5466028 5466029 5466030 5466031 5466032 5466033 5466034 5466035 5466036 302.000 301.901 301.859 301.848 301.833 301.818 301.803 301.787 301.772 301.757 301.749 301.734 301.719 301.704 301.689 301.673 301.666 301.651 301.635 301.620 301.605 301.590 301.575 301.567 301.552 625 631.5 634.25 635 636 637 638 639 640 641 641.5 642.5 643.5 644.5 645.5 646.5 647 648 649 650 651 652 653 653.5 654.5 226.629 5466037 5466038 5466039 5466040 5466041 5466042 5466043 5466044 5466045 5466046 5466047 5466048 5466049 5466050 5466051 87 86 Sr/ Sr 0.708254 unc δ Ccarb 13 δ O 18 Stage Series 0.000008 0.006 -13.710 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Notes continued Table 1 continued 109 5466052 5466053 5466054 301.537 301.522 301.506 655.5 656.5 657.5 Ghzelian Ghzelian Ghzelian Penn Penn Penn 5466055 5466056 5466057 5466058 5466059 5466060 5466061 5466062 301.491 301.476 301.468 301.453 301.438 301.423 301.408 301.392 658.5 659.5 660 661 662 663 664 665 634.459 0.708128 0.000007 2.355 -7.470 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn Penn 5466063 5466064 5466065 5466066 5466067 5466068 301.377 301.362 301.354 301.339 301.324 301.309 666 667 667.5 668.5 669.5 670.5 391.781 0.708181 0.000009 2.757 -5.542 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn 5466069 5466070 5466071 5466072 5466073 5466074 5466075 301.294 301.278 301.263 301.256 301.241 301.225 301.210 671.5 672.5 673.5 674 675 676 677 352.092 0.708102 0.000009 1.876 -9.154 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn 5466076 5466077 5466078 301.195 301.180 301.165 678 679 680 258.624 0.708364 0.000007 1.107 -8.457 Ghzelian Ghzelian Ghzelian Penn Penn Penn continued Table 1 continued 110 5466079 5466080 5466081 5466082 5466083 5466084 5466085 5466086 5466087 301.157 301.142 301.127 301.111 301.096 301.081 301.066 301.058 301.043 680.5 681.5 682.5 683.5 684.5 685.5 686.5 687 688 5466088 5466089 5466090 5466091 5466092 5466093 301.028 301.013 301.005 300.997 300.937 300.884 689 690 690.5 691 695 698.5 255.73 5466094 5466095 5466096 5466097 5466098 5466099 5466100 5466101 5466102 5466103 5466104 5466105 300.830 300.808 300.785 300.762 300.739 300.716 300.694 300.671 300.648 300.625 300.603 300.580 702 703.5 705 706.5 708 709.5 711 712.5 714 715.5 717 718.5 202.923 0.708227 0.708408 0.000008 0.000009 2.201 0.736 -5.263 -7.475 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn Penn Penn Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn 10 cm below conglomerate parallel to conglomerate lens 1.5 m thick erosional surface? continued Table 1 continued 111 5466106 300.557 720 Ghzelian Penn 5466107 5466108 5466109 5466110 5466111 5466112 5466113 5466114 5466115 5466116 5466117 300.534 300.511 300.489 300.466 300.443 300.420 300.397 300.375 300.352 300.329 300.306 721.5 723 724.5 726 727.5 729 730.5 732 733.5 735 736.5 533.33 0.708459 0.000007 2.259 -12.433 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn Penn C7 5466118 5466119 5466120 5466121 5466122 5466123 5466124 5466125 5466126 300.284 300.261 300.238 300.215 300.192 300.170 300.147 300.124 300.101 738 739.5 741 742.5 744 745.5 747 748.5 750 313.686 0.708319 0.000008 3.416 -9.998 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn Penn Penn C8 5466127 5466128 5466129 5466130 5466131 5466132 5466133 300.078 300.056 300.033 300.010 299.987 299.965 299.942 751.5 753 754.5 756 757.5 759 760.5 276.46 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn 0.708179 0.000012 3.326 -5.892 covered above for 16 m C9 continued Table 1 continued 112 5466134 5466135 299.919 299.896 762 763.5 5466136 5466137 5466151 5466152 5466153 5466154 5466155 5466156 5466157 299.873 299.851 299.266 299.243 299.220 299.197 299.175 299.152 299.129 765 766.5 805 806.5 808 809.5 811 812.5 814 280.439 0.708135 0.00001 2.829 5466158 5466159 5466160 5466162 299.114 299.106 299.008 299.004 815 815.5 822 823.5 285.144 0.708194 0.000011 3.415 5153159 5153160 5153161 5153162 5153163 5153164 5153165 5153166 5153167 5153168 5153169 299.000 298.968 298.936 298.904 298.872 298.841 298.809 298.777 298.745 298.713 298.681 825 825.5 826 826.5 827 827.5 828 828.5 829 829.5 830 214.87 0.708099 0.000011 2.397 5153170 298.649 830.5 336.24 0.708137 0.000007 1.989 Ghzelian Ghzelian Penn Penn -6.202 Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn Penn Penn Penn Penn Penn -4.789 Ghzelian Ghzelian Ghzelian Ghzelian Penn Penn Penn Penn -4.689 Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian -4.905 Asselian Cisuralian C10 6.5 m covered CARB-PERMIAN BOUNDARY first appearance S. isolatus continued Table 1 continued 113 5153171 5153172 5153173 5153174 5153175 5153176 5153177 5153178 5153179 298.617 298.586 298.554 298.522 298.490 298.458 298.426 298.394 298.362 831 831.5 832 832.5 833 833.5 834 834.5 835 Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153180 5153181 5153182 298.330 298.299 298.267 835.5 836 836.5 418.115 0.708112 0.000011 2.910 -5.705 Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian 5153183 5153184 5153185 5153186 5153187 5153188 5153189 5153190 5153191 298.235 298.203 298.171 298.139 298.107 298.075 298.043 298.012 297.980 837 837.5 838 838.5 839 839.5 840 840.5 841 187.046 0.708185 0.000012 2.006 -6.259 Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153192 5153193 5153194 5153195 5153196 5153197 5153198 297.948 297.916 297.884 297.852 297.820 297.788 297.757 841.5 842 842.5 843 843.5 844 844.5 191.084 0.708282 0.000011 1.529 -5.949 Asselian Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian continued Table 1 continued 114 5153199 5153200 5153201 5153202 297.725 297.693 297.661 297.629 845 845.5 846 846.5 Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian 5153203 5153204 5153205 5153206 5153207 5153208 297.597 297.565 297.533 297.501 297.470 297.438 847 847.5 848 848.5 849 849.5 547.093 0.708129 0.000007 3.105 -6.912 Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153209 5153210 5153211 5153212 5153213 5153214 5153215 5153216 5153217 5153218 5153219 297.406 297.374 297.342 297.310 297.278 297.246 297.214 297.183 297.151 297.119 297.087 850 850.5 851 851.5 852 852.5 853 853.5 854 854.5 855 398.745 0.708189 0.00001 3.041 -6.969 Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153220 5153221 5153222 5153223 5153224 5153225 297.055 297.023 296.991 296.959 296.896 296.832 855.5 856 856.5 857 858 859 172.198 0.708168 0.000012 1.831 -3.843 Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian continued Table 1 continued 115 5153226 5153227 5153228 5153229 5153230 5153231 5153232 5153233 296.800 296.768 296.704 296.449 296.417 296.386 296.322 296.130 859.5 860 861 865 865.5 866 867 870 1.908 -6.437 Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153234 5153235 5153236 5153237 5153238 5153239 5153240 5153241 295.875 295.780 295.684 295.493 295.429 295.365 295.301 295.270 874 875.5 877 880 881 882 883 883.5 132.999 0.708195 0.000011 2.586 -4.623 Asselian Asselian Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153242 5153243 5153244 5153245 5153246 5153247 295.238 295.206 295.110 295.046 294.983 294.951 884 884.5 886 887 888 888.5 135.403 0.70805 0.000009 3.545 -5.156 Asselian Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153248 5153249 5153250 5153251 5153252 294.919 294.903 294.887 294.855 294.823 889 889.25 889.5 890.0 890.5 215.345 0.7079 0.000009 3.493 -4.277 Asselian Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 889 continued Table 1 continued 116 5153253 5153254 5153255 5153256 294.791 294.728 294.696 294.664 891.0 892.0 892.5 893.0 5153257 5153258 5153259 5153260 5153261 5153262 5153263 5153264 5153265 294.632 294.600 294.568 294.600 294.572 294.543 294.486 294.429 294.401 893.5 894.0 894.5 895.0 895.5 896.0 897.0 898.0 898.5 94.72 5153266 5153267 5153268 5153269 5153270 5153271 5153272 5153273 5153274 294.372 294.344 294.315 294.258 294.230 294.201 294.030 293.973 293.945 899.0 899.5 900.0 901.0 901.5 902.0 905.0 906.0 906.5 87.66 0.708353 0.000012 2.032 5153275 5153276 5153277 5153278 5153279 293.916 293.888 293.859 293.831 293.802 907.0 907.5 908.0 908.5 909.0 196.761 0.707939 0.000008 3.499 0.708246 0.000000 2.448 Asselian Asselian Asselian Asselian Cisuralian Cisuralian Cisuralian Cisuralian Asselian Asselian Asselian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian -2.763 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian -2.181 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian -5.447 first appearance S. merrilli continued Table 1 continued 117 5153280 5153281 5153282 5153283 5153284 5153285 5153286 5153287 5153288 5153289 5153290 293.660 293.631 293.603 293.574 293.546 293.517 293.489 293.175 293.118 293.061 293.004 911.5 912.0 912.5 913.0 913.5 914.0 914.5 920.0 921.0 922.0 923.0 164.531 0.707891 0.000007 3.415 -9.949 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153291 5153292 5153293 5153294 5153295 5153296 5153297 5153298 5153299 292.947 292.919 292.834 292.777 292.748 292.720 292.691 292.663 292.634 924.0 924.5 926.0 927.0 927.5 928.0 928.5 929.0 929.5 159.364 0.707883 0.000009 3.217 -5.919 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153300 5153301 5153302 5153303 5153304 5153305 5153306 5153307 292.606 292.560 292.514 292.469 292.423 292.378 292.332 292.286 930.0 930.8 931.6 932.4 933.2 934.0 934.8 935.6 90.66 0.708278 0.000017 4.075 -3.810 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian continued Table 1 continued 118 5153308 292.241 936.4 5153309 5153310 5153311 5153312 5153313 5153314 5153315 5153316 5153317 292.207 292.178 292.150 292.121 292.093 292.064 292.036 292.007 291.979 937.0 937.5 938.0 938.5 939.0 939.5 940.0 940.5 941.0 85.93 5153318 5153319 5153320 5153321 5153322 5153323 5153324 5153325 5153326 5153327 291.922 291.893 291.865 291.836 291.808 291.751 291.694 291.637 291.580 291.523 942.0 942.5 943.0 943.5 944.0 945.0 946.0 947.0 948.0 949.0 5153328 5153329 5153330 5153331 5153332 5153333 5153334 291.494 291.437 291.352 291.323 291.266 291.209 291.181 949.5 950.5 952.0 952.5 953.5 954.5 955.0 Sakmarian Cisuralian -5.250 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 4.350 -2.009 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 3.480 -4.957 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 0.707906 0.000002 3.815 76.79 0.708191 0.000000 141.121 0.707913 0.000013 continued Table 1 continued 119 5153335 5153336 5153337 291.153 291.124 291.096 955.5 956.0 956.5 5153338 291.039 957.5 5153339 5153340 5153341 5153342 5153343 5153344 5153345 5153346 5153347 291.010 290.782 290.668 290.640 290.611 290.583 290.326 290.298 290.241 958.0 962.0 964.0 964.5 965.0 965.5 970.0 970.5 971.5 5153348 5153349 5153350 290.127 290.041 289.984 973.5 975.0 976.0 138.93 0.70784 5153351 5153352 5153353 289.956 289.927 289.870 976.5 977.0 978.0 225.069 5153354 5153355 5153356 5153357 5153358 5153359 289.842 289.813 289.756 289.642 289.585 289.528 978.5 979.0 980.0 982.0 983.0 984.0 5153360 5153361 289.500 289.472 984.5 985.0 149.804 0.707861 0.000024 Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian 3.489 -5.037 Sakmarian Cisuralian 3.589 -5.228 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 0.000007 4.325 -5.179 Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian 0.707782 0.000006 4.380 -5.333 Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian 176.949 0.707825 0.000008 4.398 -5.219 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 225.342 0.707795 0.000008 4.839 -4.696 Sakmarian Sakmarian Cisuralian Cisuralian continued Table 1 continued 120 5153362 5153363 5153364 5153365 5153366 5153367 289.457 289.443 289.429 289.415 289.400 289.386 985.3 985.5 985.8 986.0 986.3 986.5 5153368 5153369 5153370 289.358 289.187 289.016 987.0 990.0 993.0 218.458 0.707843 0.000003 4.077 5153371 5153372 5153373 5153374 5153375 5153376 5153377 5153378 288.788 288.759 288.731 288.679 288.674 288.617 288.560 288.503 997.0 997.5 998.0 998.9 999.0 1000.0 1001.0 1002.0 172.159 0.7078 0 5153379 288.446 1003.0 271.693 0.707807 0.00002 5153380 5153381 5153382 5153383 5153384 288.389 288.360 288.303 288.275 288.218 1004.0 1004.5 1005.5 1006.0 1007.0 5153385 5153386 5153387 5153388 288.132 288.104 287.904 287.876 1008.5 1009.0 1012.5 1013.0 223.125 0.70784 0.000017 286.466 0.70784 0.000003 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian -5.588 Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian 2.901 -6.036 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 2.737 -6.158 Sakmarian Cisuralian 2.364 -4.941 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 2.777 -5.144 Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian continued Table 1 continued 121 5153389 5153390 5153391 5153392 5153393 5153394 5153395 287.819 287.762 287.705 287.648 287.591 287.534 287.477 1014.0 1015.0 1016.0 1017.0 1018.0 1019.0 1020.0 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153396 5153397 5153398 5153399 5153400 5153401 5153402 5153403 5153404 287.306 287.221 287.164 287.107 287.050 286.993 286.936 286.879 286.822 1023.0 1024.5 1025.5 1026.5 1027.5 1028.5 1029.5 1030.5 1031.5 95.03 0.708492 0.000006 2.221 -4.510 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5153405 5153406 5153407 5153408 286.508 286.480 286.451 286.423 1037.0 1037.5 1038.0 1038.5 92.79 0.708141 0.000009 2.272 -5.869 Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian 5153409 5153410 5153411 5153412 5153413 5153414 5153415 5153416 286.394 286.366 286.337 286.280 286.252 286.223 286.195 286.166 1039.0 1039.5 1040.0 1041.0 1041.5 1042.0 1042.5 1043.0 197.58 0.707839 0.000000 2.308 -4.863 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian continued Table 1 continued 122 5153417 5153418 286.109 286.081 1044.0 1044.5 Sakmarian Sakmarian Cisuralian Cisuralian 5153419 5153420 5153421 5153422 5153423 5153424 5153425 5153426 5153427 5153428 286.053 286.024 285.996 285.939 285.882 285.825 285.768 285.682 285.625 285.597 1045.0 1045.5 1046.0 1047.0 1048.0 1049.0 1050.0 1051.5 1052.5 1053.0 144.34 0.707807 0.000003 2.370 -5.664 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5466169 5466170 5466171 5466172 5466173 5466174 5466175 285.540 285.483 285.426 285.369 285.312 285.255 285.198 1054.0 1055.0 1056.0 1057.0 1058.0 1059.0 1060.0 148.13 0.708042 0.000005 1.735 -3.689 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5466176 5466177 5466178 5466179 5466180 5466181 5466182 5466183 285.169 285.141 285.084 285.027 284.827 284.799 284.742 284.685 1060.5 1061.0 1062.0 1063.0 1066.5 1067.0 1068.0 1069.0 1.876 -3.912 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian continued Table 1 continued 123 5466184 5466185 5466186 5466187 5466188 284.628 284.571 284.514 284.457 284.400 1070.0 1071.0 1072.0 1073.0 1074.0 136.87 0.707746 0.000006 1.864 -5.165 Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5466189 5466190 5466191 5466192 5466193 284.400 1075.0 1076.0 1077.0 1078.0 1079.0 107.52 0.707776 0.000045 1.893 -4.570 Artinskian Artinskian Artinskian Artinskian Artinskian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 2.066 -4.611 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian Cisuralian 5466194 5466195 5466196 5466197 5466198 5466199 5466200 5466201 5466202 5466203 1080.0 1081.0 1082.0 1083.0 1085.0 1086.0 1087.0 1088.0 1089.0 1090.0 2162.8 0.707725 0.000004 Chalaroschwagerina continued Table 2 Rockland Ridge Section, Nevada, USA Permian Composite Section 2 nd Starting #: 5153434 (2 Roll Starting #: 5466204) 124 Ticket # 5153434 5153435 5153436 5153437 5153438 5153439 5153440 5153441 5153442 5153443 5153444 5153445 5153446 5153447 5153448 5153449 5153450 5153451 5153452 5153453 5153454 5153455 5153456 5153457 5153458 5153459 age 284.4 Meter 1235 1236.5 1241 1243 1244 1246 1249 1250 1253 1254 1255 1256 1257 1258 1259 1260 1262 1263 1264.5 1266 1268 1269.5 1270 1271 1275 1282 Sr ppm 153.91 41.50 151.93 87Sr/86Sr carbonate 2.328 oxygen -5.671 0.707907 0.708932 0.708425 1.493 -6.079 2.340 -6.746 1.388 -6.410 1.420 -5.038 0.893 -5.926 Stage Upper Sak Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Sakmarian Artinskian Notes 00TAS021 00TAS022 Paint 46 00TAS031 W97-55F 00TAS033 00TAS034 00TAS041 00TAS042 continued Chalaroschwagerina Table 2 continued 125 5153460 5153461 5153462 5153463 5153464 5153465 5153466 5153467 5153468 5153469 5153470 5153471 5153472 5153473 5153474 5153475 5153476 5153477 5153478 5153479 5153480 5153481 5153482 5153483 5153484 5153485 5153486 5153487 5153488 5153489 284.3893 284.3786 284.3678 284.3571 284.3357 284.3143 284.2928 284.2499 284.2178 284.1428 284.0677 284.0034 283.8962 283.7569 283.7354 283.7247 283.7086 283.6926 283.6711 283.6497 283.6283 283.6068 283.5907 283.5747 283.5211 283.5104 283.4889 283.4675 283.446 283.4032 1283 1284 1285 1286 1288 1290 1292 1296 1299 1306 1313 1319 1329 1342 1344 1345 1346.5 1348 1350 1352 1354 1356 1357.5 1359 1364 1365 1367 1369 1371 1375 0.489 -7.270 0.324 -8.353 1.389 -3.083 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian 00TAS043 00TAS062 00TAS063 00TAS071 W97222 continued Table 2 continued 126 5153490 5153491 5153492 5153493 5153494 5153495 5153496 5153497 5153498 5153499 5153500 5153501 5153502 5153503 5153504 5153505 5153506 5153507 5153508 5153509 5153510 5153511 5153512 5153513 5153514 5153515 5153516 5153517 5153518 5153519 283.3924 283.371 283.3496 283.3174 283.3067 283.2745 283.2531 283.221 283.1995 283.1781 283.1566 283.1352 283.1138 283.0923 283.0066 282.9208 282.8351 282.7708 282.7493 282.7065 282.6636 282.6314 282.6153 282.5993 282.5778 282.5564 282.535 282.5135 282.4921 282.4599 1376 1378 1380 1383 1384 1387 1389 1392 1394 1396 1398 1400 1402 1404 1412 1420 1428 1434 1436 1440 1444 1447 1448.5 1450 1452 1454 1456 1458 1460 1463 0.707646 -7.039 262.66 0.707668 1.929 -3.856 281.43 0.707625 2.062 -4.338 158.33 0.707698 1.584 -8.585 1.277 -7.462 353.20 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian W97258 BEDDED CHERT W97360 00TAS081 00TAS082 continued Table 2 continued 127 5153520 5153521 5153522 5153523 5153524 5153525 5153526 5153527 5153528 5153529 5153530 5153531 5153532 5153533 5153534 5466204 5466205 5466206 5466207 5466208 5466209 5466210 282.4171 282.4063 282.3903 282.3742 282.3527 282.3313 282.3099 282.2777 282.2456 282.2241 282.1705 282.1491 282.1169 282.1009 282.0848 282.0526 281.9883 281.9669 281.9454 281.924 281.9026 281.8811 1467 1468 1469.5 1471 1473 1475 1477 1480 1483 1485 1490 1492 1495 1496.5 1498 1501 1507 1509 1511 1513 1515 1517 5466211 5466212 5466213 5466214 5466215 5466216 281.8597 281.8382 281.8168 281.8061 281.7954 281.7847 1519 1521 1523 1524 1525 1526 1.931 -5.020 377.555 0.707605 2.236 -4.396 261.80 0.707645 2.186 -4.700 1.503 -7.012 2.079 198.03 -4.038 0.707614 0.998 -6.264 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian W97420 00TAS083 00TAS092 CHERT W97457, PAINT 55, 1523 00TAS103, 1529 continued Table 2 continued 128 5466217 5466218 5466219 5466220 5466221 5466222 5466223 5466224 5466225 5466226 5466227 5466228 5466229 5466230 5466231 5466232 5466233 5466234 5466235 5466236 5466237 5466238 5466239 5466240 5466241 5466242 5466243 5466244 5466245 281.7793 281.6935 281.6828 281.6721 281.6614 281.6507 281.64 281.6292 281.6185 281.6078 281.5971 281.5864 281.5756 281.5649 281.5542 281.5435 281.5328 281.522 281.5113 281.5006 281.4899 281.4685 281.4577 281.447 281.2058 281.2005 281.1951 281.1898 281.1844 1526.5 1534.5 1535.5 1536.5 1537.5 1538.5 1539.5 1540.5 1541.5 1542.5 1543.5 1544.5 1545.5 1546.5 1547.5 1548.5 1549.5 1550.5 1551.5 1552.5 1553.5 1555.5 1556.5 1557.5 1580 1580.5 1581 1581.5 1582 1.040 -9.109 1.966 -8.477 1.711 -5.748 2.200 -2.367 2.109 -5.427 2.194 -4.897 1.753 -5.351 1.442 -5.327 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian 00TAS104, 1529.5 00TAS105, 1554 00TAS111, PAINT 56 C33 continued Table 2 continued 129 5466246 5466247 5466248 5466249 5466250 5466251 5466252 5466253 5466254 5466255 5466256 5466257 5466258 5466259 5466260 5466261 5466262 5466263 5466264 5466265 5466266 5466267 5466268 5466269 5466270 5466271 5466272 5153540 5153541 281.179 281.1737 281.1683 281.163 281.1576 281.1523 281.1469 281.1415 281.1362 281.1308 281.1094 280.627 280.5842 280.5413 280.4984 280.4555 280.4287 280.4019 280.3484 280.2948 280.2412 280.209 280.1876 280.1661 280.0911 280.0697 280.0482 280.0268 280.0054 1582.5 1583 1583.5 1584 1584.5 1585 1585.5 1586 1586.5 1587 1589 1634 1638 1642 1646 1650 1652.5 1655 1660 1665 1670 1673 1675 1677 1684 1686 1688 1690 1692 2.061 -5.748 2.571 -4.825 2.452 -4.656 2.323 -5.864 2.269 -7.972 3.298 -6.824 3.08 -9.38 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian 00TAS122 W97842 00TAS124 GASTROPODS? 00TAS131 W97952 00TAS132 C35, 1655 continued Table 2 continued 130 5153542 5153544 5153545 5153546 5153547 5153548 5153549 5153550 5153551 5153552 5153553 5153554 5153555 5153556 5153557 5153558 5153559 5153560 5153560 5153561 5153562 5153563 5153564 5153565 5153566 5153567 5153568 5153569 5153570 5153571 279.9732 279.9518 279.9303 279.8982 279.8767 279.8446 279.8124 279.7588 279.7374 279.716 279.6945 279.6731 279.6516 279.6302 279.5873 279.5659 279.5337 279.5123 279.5016 279.4801 279.4587 279.4373 279.4051 279.3837 279.3622 279.3515 279.3086 279.2658 279.239 279.1693 1695 1697 1699 1702 1704 1707 1710 1715 1717 1719 1721 1723 1725 1727 1731 1733 1736 1738 1739 1741 1743 1745 1748 1750 1752 1753 1757 1761 1763.5 1770 3.66 -5.29 3.58 -5.94 3.11 -9.59 2.09 -12.23 2.87 -6.06 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian TAS144 Paint 62 W97-1122 continued Table 2 continued 131 5153572 5153573 5153574 5153575 5153576 5153577 5153578 5153579 5153580 5153581 5153582 5153583 5153584 5153585 5153586 5153587 5153588 5153589 5153590 5153591 5153592 5153593 5153594 5153595 5153596 5153597 5153598 5153599 5153600 5153601 279.1371 279.105 279.0836 279.03 278.9871 278.9442 278.9067 278.8853 278.8424 278.821 278.7942 278.7406 278.6977 278.6762 278.6334 278.6119 278.5905 278.5369 278.478 278.4672 278.4565 278.4244 278.4083 278.3922 278.3708 278.3279 278.2957 278.2689 278.2261 278.1939 1773 1776 1778 1783 1787 1791 1794.5 1796.5 1800.5 1802.5 1805 1810 1814 1816 1820 1822 1824 1829 1834.5 1835.5 1836.5 1839.5 1841 1842.5 1844.5 1848.5 1851.5 1854 1858 1861 4.17 2.35 -6.23 -7.25 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian TAS162 p 63 just across erosional boundary p 64 TAS 171 continued Table 2 continued 132 5153602 5153603 5153604 5153605 5153606 5153607 5153608 5153609 5153610 5153611 5153612 5153613 5153614 5153615 5153616 5153617 5153618 5153619 5153620 5153621 5153622 5153623 5153624 5153625 5153626 5153627 5153628 5153629 5153630 5153631 278.1618 278.1242 278.1028 278.0814 278.0599 278.0385 278.0171 277.9956 277.9795 277.9581 277.9152 277.9045 277.8616 277.8295 277.7437 277.7116 277.6794 277.6473 277.6205 277.5883 277.5669 277.5562 277.5347 277.4972 277.465 277.4436 277.4222 277.4061 277.39 277.3739 1864 1867.5 1869.5 1871.5 1873.5 1875.5 1877.5 1879.5 1881 1883 1887 1888 1892 1895 1903 1906 1909 1912 1914.5 1917.5 1919.5 1920.5 1922.5 1926 1929 1931 1933 1934.5 1936 1937.5 2.11 2.49 2.97 -7.03 -11.24 -4.72 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian TAS 172 TAS 173 thin silty bed above TAS 174 W97-1400 TAS 181 p 67 W97-1483 continued Table 2 continued 133 5153632 5153633 5153634 5153635 5466273 5466274 5466275 5466276 5466277 5466278 5466279 5466280 5466281 5466282 5466283 5466284 5466285 5466286 5466287 5466288 5466289 5466290 5466291 5466292 5466293 5466294 5466295 5466296 5466297 5466298 277.3471 277.3257 277.3096 277.2935 277.2775 277.2453 277.2185 277.1971 277.181 277.1649 277.1488 277.1328 277.1167 277.1006 277.0899 277.0738 277.0577 277.0417 277.0256 277.0149 277.0041 276.9881 276.972 276.9559 276.9398 276.9238 276.897 276.8326 276.8058 276.7898 1940 1942 1943.5 1945 1946.5 1949.5 1952 1954 1955.5 1957 1958.5 1960 1961.5 1963 1964 1965.5 1967 1968.5 1970 1971 1972 1973.5 1975 1976.5 1978 1979.5 1982 1988 1990.5 1992 2.66 -8.62 3.06 -6.57 3.09 -5.55 2.74 -7.82 2.00 -7.76 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian TAS 191 top of limestone bluff TAS 193 TAS 194 RED TAS 196 p 68 TAS 203 TAS 204 TAS 205 W97-1582 continued Table 2 continued 134 5466299 5466300 5466301 5466302 5466303 5466304 5466305 5466306 5466307 5466308 5466309 5466310 5466311 5466312 5466313 5466314 5466315 5466316 5466317 5466318 5466319 5466320 5466321 5466322 5466323 5466324 5466325 5466326 5466327 5466328 276.7737 276.763 276.7523 276.8058 276.7308 276.7255 276.704 276.6826 276.6611 276.6397 276.6183 276.5968 276.5754 276.5218 276.5004 276.4789 276.4575 276.4414 276.4253 276.4093 276.3932 276.3557 276.3396 276.3235 276.3074 276.2914 276.2753 276.2538 276.2324 276.211 1993.5 1994.5 1995.5 1990.5 1997.5 1998 2000 2002 2004 2006 2008 2010 2012 2017 2019 2021 2023 2024.5 2026 2027.5 2029 2032.5 2034 2035.5 2037 2038.5 2040 2042 2044 2046 2.52 -7.79 3.32 -4.49 3.24 -9.83 3.80 -4.93 3.40 -6.89 3.37 -4.85 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian W97-1590 p 69 TAS 212 conodont C41 W97-1610 TAS 213 P70 TAS 221 TAS 223 W97-1715 continued Table 2 continued 135 5466329 5466330 5466331 5466332 5466333 5466334 5466335 5466336 5466337 5466338 5466339 5466340 5466341 5466342 5466343 5466344 5466345 5466346 5466347 5466348 5466349 5466350 5466351 5466352 5466353 5466354 5466355 5466356 5466357 5466358 276.1895 276.1681 276.1467 276.1252 276.1038 276.0931 276.0823 276.0716 276.0448 276.018 275.9912 275.9644 275.9376 275.9108 275.884 275.8572 275.8305 275.8197 275.7822 275.7608 275.734 275.7072 275.6804 275.6536 275.6268 275.6 2048 2050 2052 2054 2056 2057 2058 2059 2061.5 2064 2066.5 2069 2071.5 2074 2076.5 2079 2081.5 2082.5 2086 2088 2090.5 2093 2095.5 2098 2100.5 2103 2109 2111.5 2114 2114.5 2.79 -8.34 3.33 -4.54 3.20 -4.56 3.92 -4.95 4.04 -6.59 Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Artinskian Kungurian Kungurian Kungurian Kungurian P 72 W97-1805 base of the Kungurian P. crassitectoria Conodont C43 TAS 233 continued Table 2 continued 136 5466359 5466360 5466361 5466362 5466363 5466364 5466365 5466366 5466367 5466368 5466369 5466370 5466371 5466372 5466373 5466374 5466375 5466376 2116 2117 2118 2118.5 2120 2121 2122.5 2123 2124 2125.5 2126.5 2127 2128.5 2129.5 2130 2131 2131.5 2132 2.65 -10.35 2.87 -4.98 2.53 -6.79 Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian Kungurian conodont C-45 continued -+ Table 3 Tieqaio Section, Laibin, China Permian Composite Section 1 Starting #: 1241591 (2nd Roll Starting #: 1242429) Ticket # age Meter "H" # 1591 -0.30 - 1592 -0.18 - 1593 -0.05 1594 Sr ppm 87 86 13 18 δ Ccarb δ O 137 Fuslinid Zone Formation Stage 1.82 -14.07 Pseudoschwagerina-Pamirina Maping Artinskian(?) - 1.55 -11.74 Pseudoschwagerina-Pamirina Maping Artinskian(?) Pseudoschwagerina-Pamirina Maping 0.10 H1 1.74 Artinskian(?) -10.18 Staffella, Pseudofusulina, S. tschernyschewi Chihsia 1595 0.25 H1 Artinskian 2.89 -7.38 Staffella, Pseudofusulina, S. tschernyschewi Chihsia 1596 0.40 Artinskian H1 3.03 -4.90 Staffella, Pseudofusulina, S. tschernyschewi Chihsia 1597 Artinskian 0.70 H1 2.83 -7.13 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1598 1.00 H1 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1599 1.25 H1 2.63 -11.94 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1600 1.50 H1 3.01 -4.83 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1601 1.70 H1 2.96 -5.69 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1602 2.00 H1 1.90 -10.06 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 409.62 374.40 Sr/ Sr 0.707668 0.707585 Conodont Zone 1603 2.25 H1 2.50 -7.64 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1604 2.50 H1 2.77 -5.42 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1605 2.75 H1 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1606 3.00 H1 2.51 -5.63 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1607 3.25 H1 2.29 -5.88 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1608 3.50 H1 2.39 -5.75 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1609 3.75 H1 2.26 -5.94 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1610 4.00 H1 2.00 -5.65 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1611 4.35 H2 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1612 4.85 H2 2.78 -7.77 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1613 5.25 H2 2.69 -8.45 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1614 5.50 H2 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1615 5.75 H2 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 156.87 10.84 0.707569 0.707713 3.05 -4.89 continued Table 3 continued 1616 6.00 H3 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1617 6.20 H3 140.31 0.707651 2.42 -5.13 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1618 6.40 H3 2.62 -5.37 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 2.77 -4.57 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 2.87 -3.22 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 2.47 -5.03 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian -4.65 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1619 6.75 H4 1620 7.30 H4 1621 7.55 H4 1622 8.00 H5 1623 8.30 H5 1624 8.55 H5 1625 8.72 H5 1626 8.93 H5 1627 9.43 H5 2.10 168.81 0.707607 2.56 262.50 -5.16 0.707585 138 1628 9.63 H6 2.84 -4.86 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1629 10.00 H6 2.41 -4.71 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1630 10.43 H6 2.37 -5.49 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1631 10.72 H6 2.27 -5.15 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1632 11.25 H6 2.84 -5.42 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1633 11.70 H6 3.06 -5.89 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1634 12.00 H7 2.97 -6.52 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1635 12.66 H7 3.28 -6.18 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1636 13.00 H8 3.12 -6.05 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1637 13.50 H8 3.46 -6.17 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1638 14.00 H8 3.27 -5.91 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1639 14.50 H8 2.81 -5.92 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1640 14.91 H8 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1641 15.50 H8 2.68 -4.63 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1642 15.95 H8 2.87 -5.22 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1643 16.54 H8 2.95 -5.78 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 242.35 0.707508 continued Table 3 continued 1644 17.00 H8 2.57 -5.73 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1645 17.50 H8 3.05 -5.51 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1646 18.00 H8 2.67 -5.17 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1647 18.45 H8 2.77 -5.45 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1648 19.00 H8 2.90 -5.42 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1649 19.50 H8 3.11 -5.17 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1650 19.80 H9 3.26 -4.37 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1651 20.80 H9 2.08 -5.67 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 139 1652 21.30 H9 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1653 21.60 H9 4.86 -6.25 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1654 22.10 3.29 -5.39 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1655 22.75 H9 H11 (no10) 3.33 -7.91 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1656 23.05 H11 2.95 -6.20 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 23.68 H11 3.40 -5.68 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1657 1657+ 40 cm shale 420.48 0.707588 H12 1658 24.30 H13 1.47 -6.55 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1659 25.00 H13 3.20 -4.86 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1660 25.85 H13 2.64 -5.38 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1660+ 40 cm shale H14 1661 26.45 H15 2.96 1662 26.85 H15 1663 27.46 H15 2.65 -7.39 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1664 27.93 H15 2.72 -5.59 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1665 28.10 H16 2.88 -4.88 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1666 28.75 H16 2.01 -6.99 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1667 29.15 H16 2.15 -6.05 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1668 29.60 H16 2.49 -5.03 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 687.13 -5.10 0.707554 continued Table 3 continued 1669 1670 275.600 29.85 H16 462.55 0.707464 39.00 H18 602.22 0.707421 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian Kungurian 1671 275.594 39.50 H18 2.63 -4.91 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia 1672 275.587 40.10 H18 2.18 -4.15 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1673 275.579 40.75 H18 2.63 -4.14 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 140 1674 275.572 41.35 H18 2.70 -4.06 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1675 275.563 42.05 H19 2.54 -4.18 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1676 275.555 42.75 H19 2.58 -4.06 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1677 275.549 43.25 H19 2.43 -4.87 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1678 275.541 43.85 H19 2.96 -4.08 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1679 275.537 44.25 H19 2.62 -4.04 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1680 275.524 45.25 H19 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1681 275.488 48.25 H19 3.08 -3.98 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1682 275.467 50.00 H20 2.82 -4.04 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 1683 275.453 51.15 H21 1.83 -4.98 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1684 275.443 52.00 H21 2.32 -3.51 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1685 275.419 54.00 H21 2.98 -4.32 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1686 275.397 55.80 H22 2.33 -4.35 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1687 275.371 57.90 H22 3.27 -4.28 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1688 275.364 58.50 H22 3.29 -3.79 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1689 275.346 60.00 H23 3.52 -3.57 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1690 275.326 61.65 H23 3.83 -3.00 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1691 275.307 63.25 H24 3.45 -2.49 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1692 275.283 65.25 H24 3.07 -4.73 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1693 275.263 66.85 H24 2.73 -5.46 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1.70 -6.19 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1694 275.237 69.00 H25 1695 275.220 70.40 H25 1696 275.205 71.70 H25 1055.00 1175.00 0.707412 0.707402 1.99 -3.95 continued Table 3 continued 1697 275.179 73.80 H26 2.64 -3.60 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1698 275.148 76.40 H26 2.85 -4.22 Wentzellophyllum - Misellina claudiae Chihsia Kungurian Kungurian 141 1699 275.121 78.60 H27 3.18 -3.54 Wentzellophyllum - Misellina claudiae Chihsia 1700 275.104 80.00 H27 2.22 -4.88 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1701 275.081 81.90 H28 2.48 -4.31 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1702 275.066 83.20 H28 2.44 -4.78 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1703 275.046 84.80 H29 3.20 -3.50 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1704 275.027 86.40 H29 2.58 -5.21 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1705 275.003 88.40 H30 2.98 -4.41 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1706 274.980 90.30 H31 3.26 -8.06 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1707 274.960 91.90 H31 Wentzellophyllum - Misellina claudiae Chihsia Kungurian Wentzellophyllum - Misellina claudiae Chihsia Kungurian Wentzellophyllum - Misellina claudiae Chihsia Kungurian Wentzellophyllum - Misellina claudiae Chihsia Kungurian Kungurian 1708 274.935 94.00 H32 1709 274.907 96.30 H33 3.53 1710 274.883 98.30 H33 1711 274.858 100.40 H34 3.21 -6.99 Wentzellophyllum - Misellina claudiae Chihsia 1712 274.845 101.40 H35 3.23 -5.00 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1713 274.820 103.50 H36 3.93 -5.85 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1714 274.797 105.40 H37 3.50 -4.26 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1715 274.778 107.00 H37 3.41 -6.59 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1716 274.749 109.40 H38 2.68 -8.87 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1717 274.732 110.80 H39 2.13 -5.08 Wentzellophyllum - Misellina claudiae Chihsia Kungurian Kungurian 772.70 -4.73 0.707371 1718 274.710 112.60 H39 2.35 -8.83 Wentzellophyllum - Misellina claudiae Chihsia 1719 274.686 114.60 H40 2.32 -5.12 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1720 274.660 116.70 H40 2.82 -4.89 Wentzellophyllum - Misellina claudiae Chihsia Kungurian 1721 274.635 118.80 H41 2.99 -6.51 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1722 274.608 121.00 H41 3.10 -4.15 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1723 274.587 122.80 H41 3.27 -4.23 Nankingella orbicularis - Yangchienia Chihsia Kungurian continued Table 3 continued 142 1724 274.566 124.50 H42 3.20 -4.76 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1725 274.558 125.20 H43 3.15 -4.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1726 274.544 126.30 H44 3.28 -5.24 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1727 274.524 128.00 H44 3.12 -4.51 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1728 274.498 130.10 H45 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1729 274.479 131.70 H45 3.20 -7.98 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1730 274.455 133.70 H45 3.07 -5.38 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1731 274.433 135.50 H45 3.51 -4.85 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1732 274.414 137.10 H46 3.39 -4.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1733 274.388 139.20 H47 3.40 -5.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1734 274.367 141.00 H47 3.73 -5.09 Nankingella orbicularis - Yangchienia Chihsia Kungurian 3.98 -6.65 Nankingella orbicularis - Yangchienia Chihsia Kungurian Nankingella orbicularis - Yangchienia Chihsia Kungurian Chihsia Kungurian 553.20 0.707391 1735 274.345 142.80 H48 1736 274.329 144.10 H49 1737 274.305 146.10 H50 4.02 -4.26 Nankingella orbicularis - Yangchienia 1738 274.284 147.80 H50 3.75 -5.84 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1739 274.258 150.00 H50 3.54 -8.27 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1740 274.234 152.00 H50 3.22 -6.11 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1741 274.209 154.00 H51 3.25 -5.30 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1742 274.189 155.70 H52 3.35 -5.86 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1743 274.167 157.50 H52 3.09 -5.18 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1744 274.142 159.60 H52 3.32 -5.02 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1745 274.116 161.70 H52 2.39 -5.05 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1746 274.089 164.00 H52 Nankingella orbicularis - Yangchienia Chihsia Kungurian Kungurian 646.40 0.707339 1747 274.067 165.80 H52 2.85 -4.34 Nankingella orbicularis - Yangchienia Chihsia 1748 274.040 168.00 H53 1.63 -5.98 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1749 274.021 169.60 H53 2.55 -7.66 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1750 274.000 171.30 H53 2.44 -5.59 Nankingella orbicularis - Yangchienia Chihsia Kungurian continued Table 3 continued 1751 273.977 173.20 H54 2.90 -5.40 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1752 273.947 175.70 H54 3.00 -6.36 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1753 273.928 177.30 H54 2.38 -6.15 Nankingella orbicularis - Yangchienia Chihsia Kungurian 143 1754 273.908 178.90 H55 2.44 -6.37 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1755 273.891 180.30 H56 3.12 -4.63 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1756 273.877 181.50 H56 2.66 -5.77 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1757 273.862 182.70 H57 2.68 -6.50 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1758 273.844 184.20 H57 1.29 -7.05 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1759 273.830 185.40 H58 2.97 -7.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1760 273.816 186.50 H58 3.33 -7.29 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1761 273.792 188.50 H58 2.83 -7.83 Nankingella orbicularis - Yangchienia Chihsia Kungurian Kungurian 1762 273.780 189.50 H58 2.78 -7.49 Nankingella orbicularis - Yangchienia Chihsia 1763 273.752 191.80 H60 2.79 -7.04 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1764 273.734 193.30 H60 2.91 -5.75 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1765 273.715 194.90 H60 2.72 -7.30 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1766 273.697 196.40 H60 2.90 -6.38 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1767 273.687 197.20 H60 2.24 -6.73 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1768 273.668 198.80 H60 2.66 -6.41 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1769 273.647 200.50 H61 3.61 -7.45 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1770 273.627 202.20 H62 3.26 -5.48 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1771 273.618 202.90 H62 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1772 273.606 203.90 H62 3.19 -4.42 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1773 273.590 205.20 H62 2.98 -5.54 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1774 273.571 206.80 H62 2.73 -5.73 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1775 273.555 208.10 H63 3.25 -6.92 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1776 273.537 209.60 H63 2.80 -5.73 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1777 273.520 211.00 H63 3.25 -4.77 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1778 273.506 212.20 H63 2.76 -7.77 Nankingella orbicularis - Yangchienia Chihsia Kungurian 1346.00 0.707269 continued Table 3 continued 144 1779 273.486 213.80 H64 3.69 -4.76 Schwagerina chihsiaensis Chihsia Kungurian 1780 273.467 215.40 H64 3.00 -7.35 Schwagerina chihsiaensis Chihsia Kungurian 1781 273.444 217.30 H64 3.55 -4.78 Schwagerina chihsiaensis Chihsia Kungurian 1782 273.433 218.20 H64 2.48 -6.70 Schwagerina chihsiaensis Chihsia Kungurian 1783 273.417 219.50 H65 3.24 -5.49 Schwagerina chihsiaensis Chihsia Kungurian 1784 273.384 222.30 H65 2.79 -5.18 Schwagerina chihsiaensis Chihsia Kungurian 1785 273.368 223.60 H65 2.74 -6.11 Schwagerina chihsiaensis Chihsia Kungurian 1786 273.345 225.50 H65 3.37 -4.38 Schwagerina chihsiaensis Chihsia Kungurian 1787 273.326 227.10 H66 3.13 -5.52 Schwagerina chihsiaensis Chihsia Kungurian 1788 273.306 228.70 H66 3.52 -5.97 Schwagerina chihsiaensis Chihsia Kungurian 1789 273.282 230.70 H66 2.87 -5.11 Schwagerina chihsiaensis Chihsia Kungurian 1790 273.264 232.20 H66 Schwagerina chihsiaensis Chihsia Kungurian 1791 273.244 233.80 H66 Schwagerina chihsiaensis Chihsia Kungurian 1792 273.228 235.20 H66 3.58 -4.96 Schwagerina chihsiaensis Chihsia Kungurian 1793 273.203 237.20 H67 3.74 -5.36 Schwagerina chihsiaensis Chihsia Kungurian 1794 273.178 239.30 H67 4.00 -4.38 Schwagerina chihsiaensis Chihsia Kungurian 1795 273.156 241.10 H67 3.33 -6.81 Schwagerina chihsiaensis Chihsia Kungurian 1796 273.134 242.90 H67 2.92 -4.97 Schwagerina chihsiaensis Chihsia Kungurian 1797 273.110 244.90 H68 2.52 -7.05 Schwagerina chihsiaensis Chihsia Kungurian 1798 273.080 247.40 H69 2.75 -4.98 Schwagerina chihsiaensis Chihsia Kungurian 1799 273.041 250.60 2.87 -3.84 Schwagerina chihsiaensis Chihsia Kungurian 1800 273.026 251.90 H69 H71 (N70) 3.36 -4.29 Schwagerina chihsiaensis Chihsia Kungurian 1801 272.997 254.30 H71 1.06 -7.38 Schwagerina chihsiaensis Chihsia Kungurian 1802 272.975 256.10 H71 2.72 -6.42 Schwagerina chihsiaensis Chihsia Kungurian 1803 272.945 258.60 H71 3.01 -4.72 Schwagerina chihsiaensis Chihsia Kungurian 1804 272.923 260.40 H71 2.11 -5.62 Schwagerina chihsiaensis Chihsia Kungurian 1805 272.899 262.40 H72 2.21 -7.17 Schwagerina chihsiaensis Chihsia Kungurian 1384.00 0.707256 continued Table 3 continued 145 1806 272.874 264.40 H72 3.21 -6.21 Schwagerina chihsiaensis Chihsia Kungurian 1807 272.855 266.00 H73 2.84 -6.23 Schwagerina chihsiaensis Chihsia Kungurian 1808 272.829 268.20 H74 3.56 -4.90 Schwagerina chihsiaensis Chihsia Kungurian 1809 272.806 270.10 H74 Schwagerina chihsiaensis Chihsia Kungurian 1810 272.781 272.10 H74 3.08 -6.05 Schwagerina chihsiaensis Chihsia Kungurian 1811 272.762 273.70 H75 1.61 -8.80 Schwagerina chihsiaensis Chihsia Kungurian 1812 272.740 275.50 H89(Skip) 3.18 -8.99 Schwagerina chihsiaensis Chihsia Kungurian 1813 272.720 277.20 H89 3.59 -4.88 Schwagerina chihsiaensis Chihsia Kungurian 1814 272.687 279.90 H89 3.34 -6.02 Schwagerina chihsiaensis Chihsia Kungurian 1815 272.665 281.70 H89 2.97 -5.35 Schwagerina chihsiaensis Chihsia Kungurian 1816 272.636 284.10 H89 3.86 -4.70 Schwagerina chihsiaensis Chihsia Kungurian Kungurian 2027.00 0.707204 1817 272.604 286.80 H90 3.67 -5.37 Schwagerina chihsiaensis Chihsia 1818 272.577 289.00 H90 2.60 -7.71 Schwagerina chihsiaensis Chihsia Kungurian 1819 272.577 289.00 H90 3.64 -8.62 Schwagerina chihsiaensis Chihsia Kungurian 1820 272.553 291.00 H90 3.63 -7.44 Schwagerina chihsiaensis Chihsia Kungurian 1821 272.529 293.00 H90 2.88 -6.22 Schwagerina chihsiaensis Chihsia Kungurian 1822 272.504 295.00 H90 3.86 -5.61 Schwagerina chihsiaensis Chihsia Kungurian 1823 272.480 297.00 H90 4.24 -7.91 Schwagerina chihsiaensis Chihsia Kungurian 1824 272.456 299.00 H90 2.78 -8.42 Schwagerina chihsiaensis Chihsia Kungurian 1825 272.438 300.50 H90 3.63 -4.81 Schwagerina chihsiaensis Chihsia Kungurian 1826 272.408 303.00 H90 Schwagerina chihsiaensis Chihsia Kungurian 1827 272.384 305.00 H90 2.92 -6.40 Schwagerina chihsiaensis Chihsia Kungurian 1828 272.359 307.00 H90 4.52 -3.85 Schwagerina chihsiaensis Chihsia Kungurian 1829 272.342 308.40 H90 4.19 -5.40 Schwagerina chihsiaensis Chihsia Kungurian 1830 272.318 310.40 H90 2.79 -6.65 Schwagerina chihsiaensis Chihsia Kungurian 1831 272.299 312.00 H90 3.51 -4.95 Schwagerina chihsiaensis Chihsia Kungurian 1832 272.275 314.00 H90 3.59 -5.06 Schwagerina chihsiaensis Chihsia Kungurian 1833 272.244 316.50 H90 3.68 -5.36 Schwagerina chihsiaensis Chihsia Kungurian 595.46 0.707270 continued Table 3 continued 1834 272.220 318.50 H90 3.33 -7.75 Schwagerina chihsiaensis Chihsia Kungurian 1835 272.190 321.00 H90 3.47 -8.28 Schwagerina chihsiaensis Chihsia Kungurian 1836 272.166 323.00 H90 3.29 -5.98 Schwagerina chihsiaensis Chihsia Kungurian 1837 272.142 325.00 H90 3.64 -6.69 Schwagerina chihsiaensis Chihsia Kungurian 1838 272.118 327.00 H90 3.27 -5.96 Schwagerina chihsiaensis Chihsia Kungurian 1839 272.093 329.00 H90 4.12 -4.76 Schwagerina chihsiaensis Chihsia Kungurian 1840 272.069 331.00 H90 3.43 -6.36 Schwagerina chihsiaensis Chihsia Kungurian 1841 272.045 333.00 H90 3.87 -4.58 Schwagerina chihsiaensis Chihsia Kungurian 1842 272.021 335.00 H90 Schwagerina chihsiaensis Chihsia Kungurian Kungurian 755.72 0.707190 146 1843 271.997 337.00 H90 3.20 -4.62 Schwagerina chihsiaensis Chihsia 1844 271.972 339.00 H90 4.19 -3.87 Schwagerina chihsiaensis Chihsia Kungurian 1845 271.948 341.00 H90 3.76 -4.25 Schwagerina chihsiaensis Chihsia Kungurian 1846 271.926 342.80 H91 2.88 -5.85 Schwagerina chihsiaensis Chihsia Kungurian 1847 271.902 344.80 H91 3.11 -5.55 Schwagerina chihsiaensis Chihsia Kungurian 1848 271.878 346.80 H91 1.74 -7.45 Schwagerina chihsiaensis Chihsia Kungurian 1849 271.854 348.80 H92 3.71 -4.04 Schwagerina chihsiaensis Chihsia Kungurian 1850 271.842 349.80 H92 3.25 -3.40 Schwagerina chihsiaensis Chihsia Kungurian 1851 271.818 351.80 H93 2.86 -5.71 Schwagerina chihsiaensis Chihsia Kungurian 1852 271.793 353.80 H93 3.22 -6.74 Schwagerina chihsiaensis Chihsia Kungurian 1853 271.778 355.10 H94 3.27 -8.61 Schwagerina chihsiaensis Chihsia Kungurian 1854 271.757 356.80 H94 Schwagerina chihsiaensis Chihsia Kungurian 1855 271.739 358.30 H94 3.21 -4.44 Schwagerina chihsiaensis Chihsia Kungurian 1856 271.710 360.70 H94 2.09 -7.50 Schwagerina chihsiaensis Chihsia Kungurian 1857 271.686 362.70 H95 2.68 -4.52 Schwagerina chihsiaensis Chihsia Kungurian 1042.86 0.707224 1858 271.663 364.60 H95 3.59 -3.31 Schwagerina chihsiaensis Chihsia Kungurian 1859 271.640 366.50 H96 3.45 -3.86 Schwagerina chihsiaensis Chihsia Kungurian 1860 271.616 368.50 H97 3.32 -6.53 Schwagerina chihsiaensis Chihsia Kungurian 1861 271.593 370.40 H97 1.45 -8.44 Schwagerina chihsiaensis Chihsia Kungurian continued Table 3 continued 1862 271.573 372.00 H98 3.40 -4.82 Schwagerina chihsiaensis Chihsia Kungurian 1863 271.549 374.00 H98 4.01 -4.24 Schwagerina chihsiaensis Chihsia Kungurian Kungurian 147 1864 271.535 375.20 H99 3.88 -5.19 Schwagerina chihsiaensis Chihsia 1865 271.511 377.20 H99 3.30 -4.74 Schwagerina chihsiaensis Chihsia Kungurian 1866 271.484 379.40 H99 2.58 -4.98 Schwagerina chihsiaensis Chihsia Kungurian 1867 271.462 381.20 H99 2.93 -4.99 Schwagerina chihsiaensis Chihsia Kungurian 1868 271.433 383.60 H99 3.30 -4.39 Chihsia Kungurian 1869 271.400 386.30 H100 3.63 -3.63 S. subasymmetricus Maokou Kungurian 1870 271.375 388.40 H100 3.83 -3.61 S. subasymmetricus Maokou Kungurian 1871 271.352 390.30 H100 3.50 -6.36 S. subasymmetricus Maokou Kungurian 1872 271.338 391.50 H100 3.83 -3.96 S. subasymmetricus Maokou Kungurian 1873 271.329 392.20 H101 4.38 -3.62 S. subasymmetricus Maokou Kungurian 1874 271.317 393.20 H101 Maokou Kungurian 1875 271.301 394.50 H101 3.96 -4.02 S. subasymmetricus Maokou Kungurian 1876 271.288 395.60 H102 4.37 -3.71 S. subasymmetricus Maokou Kungurian 1877 271.278 396.40 H102 5.29 -4.88 S. subasymmetricus Maokou Kungurian 1878 271.271 397.00 H102 4.73 -4.93 S. subasymmetricus Maokou Kungurian 1879 271.415 385.10 H100 2.52 -4.60 S. subasymmetricus Maokou Kungurian 1880 271.259 398.00 H102 5.40 -4.50 S. subasymmetricus Maokou Kungurian 1881 271.242 399.40 H102 4.62 -5.80 S. subasymmetricus Maokou Kungurian 1882 271.230 400.40 H102 5.08 -4.59 S. subasymmetricus Maokou Kungurian 1883 271.219 401.30 H102 4.90 -4.16 S. subasymmetricus Maokou Kungurian 1884 271.205 402.50 H103 5.05 -4.74 S. subasymmetricus Schwagerina chihsiaensis Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Kungurian 1885 271.193 403.50 H103 4.40 -4.88 S. subasymmetricus Neomisellina, Neoschwagerina, Minojapanella Maokou Kungurian 543.73 0.707156 S. subasymmetricus continued Table 3 continued pulchra 148 1886 271.180 404.50 H103 4.12 -5.11 S. subasymmetricus 1887 271.165 405.80 H103 4.14 -4.36 S. subasymmetricus 1888 271.151 406.90 H103 4.41 -3.46 S. subasymmetricus 1889 271.134 408.30 H104 4.99 -3.78 S. subasymmetricus 1890 271.122 409.30 H104 4.77 -4.49 S. subasymmetricus 1891 271.110 410.30 H104 4.28 -4.98 S. subasymmetricus 1892 271.096 411.50 H105 5.96 -4.19 S. subasymmetricus 1893 271.085 412.40 H105 4.36 -5.08 S. subasymmetricus 1894 271.073 413.40 H105 1895 271.056 414.80 H105 4.76 -4.51 S. subasymmetricus 1896 271.041 416.00 H106 4.79 -3.99 S. subasymmetricus 1897 271.029 417.00 H106 5.39 -3.61 S. subasymmetricus 1898 271.015 418.20 H106 4.05 -3.75 S. subasymmetricus 1899 271.000 419.40 H106 3.83 -5.99 S. subasymmetricus 1900 270.991 420.20 H106 4.27 -4.96 S. subasymmetricus 1901 270.977 421.30 H106 4.98 -3.50 S. subasymmetricus 1902 270.965 422.30 H106 3.38 -5.34 S. subasymmetricus 1903 270.953 423.30 H107 4.68 -4.79 S. subasymmetricus 1904 270.941 424.30 H107 3.14 -7.19 S. subasymmetricus 1905 270.929 425.30 H107 1906 270.917 426.30 H107 590.35 591.00 0.707133 S. subasymmetricus 0.707122 S. subasymmetricus 3.78 -5.17 S. subasymmetricus Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian continued Table 3 continued 149 1907 270.904 427.40 H107 4.30 -4.66 S. subasymmetricus 1908 270.888 428.70 H108 4.00 -3.80 S. subasymmetricus 1909 270.878 429.50 H108 4.37 -4.85 S. subasymmetricus 1910 270.864 430.70 H108 3.35 -4.76 S. subasymmetricus 1911 270.852 431.70 H109 3.04 -5.69 S. subasymmetricus 1912 270.837 432.90 H109 4.43 -4.27 S. subasymmetricus 1913 270.825 433.90 H109 1914 270.812 435.00 H109 4.27 -5.26 S. subasymmetricus 1915 270.796 436.30 H109 4.78 -3.77 S. subasymmetricus 1916 270.781 437.50 H109 2.52 -5.27 S. subasymmetricus 1917 270.770 438.40 H110 3.08 -6.63 S. subasymmetricus 1918 270.760 439.30 H110 3.29 -4.49 S. subasymmetricus 1919 270.749 440.20 H110 1.93 -4.20 S. subasymmetricus 1920 270.735 441.30 H110 1.76 -5.46 S. subasymmetricus 1921 270.726 442.10 H110 3.88 -3.70 S. subasymmetricus 1922 270.714 443.10 H111 3.52 -4.28 S. subasymmetricus 1923 270.702 444.10 H111 4.28 -4.64 S. subasymmetricus 1924 270.693 444.80 H111 4.27 -3.43 S. subasymmetricus 1925 270.681 445.80 H111 3.25 -4.87 S. subasymmetricus 1926 270.668 446.90 H111 1927 270.657 447.80 H111 3.01 -4.68 S. subasymmetricus 1928 270.645 448.80 H111 2.85 -4.26 S. subasymmetricus 846.87 1253.31 0.707146 S. subasymmetricus 0.707001 S. subasymmetricus Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian continued Table 3 continued 150 1929 270.636 449.50 H111 2.97 -4.07 S. subasymmetricus 1930 270.629 450.10 H111 2.07 -4.07 S. subasymmetricus 1931 270.622 450.70 H111 2.21 -3.70 S. subasymmetricus 1932 270.610 451.70 H111 2.47 -4.02 S. subasymmetricus 1933 270.600 452.50 H111 2.35 -4.36 S. subasymmetricus 1934 270.600 470.00 H112 1935 270.543 472.00 H112 1936 270.486 474.00 H112 J. nankingensis 1937 270.429 476.00 H112 J. nankingensis 1938 270.343 479.00 H112 J. nankingensis 1939 270.286 481.00 H112 J. nankingensis 1940 270.229 483.00 H112 1941 270.171 485.00 H112 J. nankingensis 1942 270.114 487.00 H112 J. nankingensis 1943 270.057 489.00 H112 J. nankingensis 1944 270.000 491.00 H112 J. nankingensis 1945 269.943 493.00 H112 J. nankingensis 1946 269.886 495.00 H112 J. nankingensis 1947 269.457 510.00 H113 1948 269.426 511.10 H113 1949 269.391 512.30 H113 0.14 -9.21 J. nankingensis 1950 269.369 513.10 H113 4.27 -3.27 J. nankingensis J. nankingensis x J. nankingensis 0.99 2.41 238.31 -12.82 -5.78 0.707713 J. nankingensis J. nankingensis J. nankingensis Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Kungurian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian continued Table 3 continued 151 1951 269.323 514.70 H113 4.09 -3.98 J. nankingensis 1952 269.300 515.50 H113 3.88 -4.33 J. nankingensis 1953 269.269 516.60 H113 1.03 -7.46 J. nankingensis 1954 269.223 518.20 H113 3.75 -5.10 J. nankingensis 1955 269.189 519.40 H113 2.63 -7.78 J. nankingensis 1956 269.160 520.40 H113 1.71 -8.53 J. nankingensis 1957 269.137 521.20 H113 4.10 -6.42 J. nankingensis 1958 269.089 522.90 H113 3.74 -3.61 J. nankingensis 1959 269.057 524.00 H113 4.17 -4.23 J. nankingensis 1960 269.031 524.90 H113 1961 268.954 527.60 H113 4.28 -5.40 J. nankingensis 1962 268.926 528.60 H113 4.36 -5.00 J. nankingensis 1963 268.897 529.60 H113 3.27 -6.79 J. nankingensis 1964 268.874 530.40 H113 3.40 -5.62 J. nankingensis 1965 268.826 532.10 H113 4.01 -7.41 J. nankingensis 1966 268.797 533.10 H113 0.35 -9.57 J. nankingensis 1967 268.771 534.00 H113 1.59 -7.34 J. nankingensis 1968 268.740 535.10 H113 2.56 -6.55 J. nankingensis 1969 268.720 535.80 H113 4.28 -5.82 J. nankingensis 1970 268.706 536.30 H113 1971 268.691 536.80 H114 4.60 -3.41 J. nankingensis 1972 268.677 537.30 H114 4.16 -5.24 J. nankingensis 402.40 0.707191 J. nankingensis J. nankingensis Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian continued Table 3 continued 152 1973 268.663 537.80 H114 4.28 -5.53 J. nankingensis 1974 268.649 538.30 H114 4.09 -5.60 J. nankingensis 1975 268.629 539.00 H114 4.26 -5.31 J. nankingensis 1976 268.614 539.50 H114 4.26 -5.34 J. nankingensis 1977 268.600 540.00 H114 4.04 -5.90 J. nankingensis 1978 268.586 540.50 H114 4.11 -5.73 J. nankingensis 1979 268.571 541.00 H114 1980 268.557 541.50 H114 3.40 -5.91 J. nankingensis 1981 268.543 542.00 H114 2.96 -6.08 J. nankingensis 1982 268.529 542.50 H114 3.52 -6.45 J. nankingensis 1983 268.514 543.00 H114 3.73 -6.49 J. nankingensis 1984 268.500 543.50 H114 4.30 -5.79 J. nankingensis 1985 268.486 544.00 H114 4.09 -6.04 J. nankingensis 1986 268.471 544.50 H114 4.16 -6.30 J. nankingensis 1987 268.457 545.00 H114 1988 268.443 545.50 H114 4.30 -5.52 J. nankingensis 1989 268.429 546.00 H114 4.36 -5.96 J. nankingensis 1990 268.414 546.50 H114 2.95 -6.32 J. nankingensis 1991 268.400 547.00 H114 4.61 -6.06 J. nankingensis 1992 268.386 547.50 H114 0.97 -7.06 J. nankingensis 1993 268.371 548.00 H114 4.36 -5.85 J. nankingensis 1994 268.357 548.50 H114 4.15 -6.22 J. nankingensis 900.65 995.92 0.707043 J. nankingensis 0.707056 J. nankingensis Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian continued Table 3 continued 153 1995 268.343 549.00 H114 0.47 -7.87 J. nankingensis 1996 268.329 549.50 H114 4.08 -6.37 J. nankingensis 1997 268.314 550.00 H114 1998 268.300 550.50 H114 4.14 -5.51 J. nankingensis 1999 268.286 551.00 H114 3.99 -6.11 J. nankingensis 2000 268.271 551.50 H114 2.79 -7.48 J. nankingensis 2001 268.257 552.00 H114 0.12 -8.02 J. nankingensis 2002 268.243 552.50 H114 2.93 -6.14 J. nankingensis 2003 268.229 553.00 H114 2.93 -6.86 J. nankingensis 2004 268.214 553.50 H114 3.62 -6.47 J. nankingensis 2005 268.200 554.00 H114 3.19 -5.79 J. nankingensis 2006 268.186 554.50 H114 4.28 -5.25 J. nankingensis 2007 268.171 555.00 H114 2008 268.157 555.50 H114 2.69 -6.22 J. nankingensis 2429 268.143 556.00 H114 4.33 -5.34 J. nankingensis 2430 268.129 556.50 H114 4.34 -5.54 J. nankingensis 2431 268.114 557.00 H114 4.72 -5.02 J. nankingensis 2432 268.100 557.50 H114 4.58 -5.51 J. nankingensis 2433 268.086 558.00 H114 3.86 -5.34 J. nankingensis 2434 268.071 558.50 H114 3.38 -5.79 J. nankingensis 2435 268.057 559.00 H114 3.31 -5.60 J. nankingensis 2436 268.043 559.50 H114 4.09 -5.14 J. nankingensis 886.52 0.707054 J. nankingensis J. nankingensis Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian Maokou Roadian continued Table 3 continued 154 2437 268.029 560.00 H114 2438 268.014 560.50 H114 2439 268.006 560.80 H114 4.27 -5.35 J. nankingensis 2440 268.000 561.40 H115 4.71 -6.17 J. aserrata 2441 267.929 562.60 H115 3.78 -7.66 J. aserrata 2442 267.870 563.60 H115 2443 267.792 564.90 H115 4.19 -4.96 J. aserrata 2444 267.704 566.40 H115 3.05 -5.08 J. aserrata 2445 267.638 567.50 H115 3.45 -5.66 J. aserrata 2446 267.579 568.50 H115 2447 267.520 569.50 H115 2.08 -8.33 J. aserrata 2448 267.460 570.50 H115 1.12 -6.99 J. aserrata 2449 267.360 572.20 H115 4.12 -4.23 J. aserrata 2450 267.271 573.70 H115 0.93 -6.70 J. aserrata 2451 267.045 577.50 H115 2452 266.998 578.30 H115 4.40 -3.52 J. aserrata 2453 266.909 579.80 H115 4.16 -4.00 J. aserrata 2454 266.790 581.80 H115 2455 266.666 583.90 H115 1.75 -6.47 J. aserrata 2456 266.535 586.10 H115 2.48 -6.62 J. aserrata 2457 266.446 587.60 H115 2458 266.328 589.60 H115 3.54 728.62 500.13 382.30 700.90 513.21 302.91 -5.82 0.707067 J. nankingensis J. nankingensis 0.707146 J. aserrata 0.707059 J. aserrata 0.707165 J. aserrata 0.707058 J. aserrata 0.707121 J. aserrata 0.77 -7.25 J. aserrata Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Roadian Maokou Roadian Maokou Roadian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian continued Table 3 continued 155 2459 266.209 591.60 H115 1.04 -6.24 J. aserrata 2460 266.061 594.10 H115 0.00 -8.32 J. aserrata 2461 265.919 596.50 H115 183.20 0.707135 3.33 -5.82 J. aserrata 2462 265.800 598.50 H115 209.33 0.707087 2463 265.800 600.50 H116 2464 265.729 601.90 H116 2465 265.627 603.90 H116 3.01 -5.68 J. posterrata 2466 265.484 606.70 H116 0.55 -7.03 J. posterrata 2467 265.383 608.70 H116 -0.11 -8.45 J. posterrata 2468 265.316 610.00 H116 -0.43 -7.88 J. posterrata 2469 265.215 612.00 H116 0.47 -8.68 J. posterrata 2470 265.113 614.00 H116 2471 265.001 616.20 H116 2.99 -5.45 J. posterrata 2472 264.909 618.00 H116 1.84 -8.83 J. posterrata 2473 264.808 620.00 H116 0.89 -9.14 J. posterrata 2474 264.706 622.00 H116 2.42 -10.70 J. posterrata 2475 264.599 624.10 H116 2.25 -5.58 J. posterrata 2476 264.497 626.10 H116 2477 264.400 628.00 H116 2478 264.299 630.00 H116 2479 264.212 631.70 H116 3.01 -4.70 J. posterrata 2480 264.110 633.70 H116 3.76 -4.87 J. posterrata J. aserrata -1.20 175.95 137.52 -8.14 0.706954 J. posterrata J. posterrata 0.707104 J. posterrata J. posterrata 1.85 141.80 -6.98 0.707143 J. posterrata J. posterrata Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Wordian Maokou Wordian Maokou Wordian Maokou Wordian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian continued Table 3 continued 156 2481 264.019 635.50 H116 2.87 -6.33 2482 263.917 637.50 H116 2.97 -7.07 2483 263.805 639.70 H116 2.00 -6.54 2484 263.703 641.70 H116 0.47 -7.68 2485 264.059 634.70 H116 1.85 -7.90 2486 263.505 645.60 H116 2487 263.403 647.60 H116 2.99 -9.18 2488 263.240 650.80 H116 1.85 -8.04 2489 263.143 652.70 H116 1.75 -10.85 2490 263.057 654.40 H116 2.27 -7.20 2491 262.955 656.40 H116 2.32 -5.62 2492 262.879 657.90 H116 3.11 -4.99 2493 262.787 659.70 H116 2494 262.634 662.70 H117 3.93 -3.60 2495 262.538 664.60 H117 1.89 -8.24 2496 262.421 666.90 H117 2.12 -6.53 2497 262.329 668.70 H117 1.96 -6.66 2498 262.227 670.70 H117 2.08 -8.89 2499 262.166 671.90 H117 2.80 -5.52 2500 262.080 673.60 H117 4.00 -5.02 2501 262.003 675.10 H117 2.63 -5.74 2502 261.927 676.60 H117 187.62 208.04 165.92 0.707186 0.707097 0.707257 J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian continued Table 3 continued 157 2503 261.861 677.90 H117 -1.02 -9.11 2504 261.825 678.60 H117 -1.25 -8.78 2505 261.759 679.90 H117 -2.84 -9.80 2506 261.637 682.30 H117 -2.55 -9.17 2507 261.571 683.60 H117 2.47 -10.44 2508 261.474 685.50 H117 2.51 -6.30 J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis J. shannoni/J. altudaensis 2509 261.418 686.60 H117 0.47 -7.62 J. prexuanhanensis 2510 261.357 687.80 H117 -0.09 -7.93 J. prexuanhanensis 2511 261.286 689.20 H117 1.64 -7.03 J. prexuanhanensis 2512 261.235 690.20 H118 2513 261.174 691.40 H118 0.55 -7.08 J. prexuanhanensis 2514 261.133 692.20 H118 2.38 -7.43 J. prexuanhanensis 2515 261.087 693.10 H118 0.27 -7.24 J. prexuanhanensis 2516 261.067 693.50 H118 3.04 -2.57 J. prexuanhanensis 2517 261.046 693.90 H118 2518 261.036 694.10 H118 2.34 -6.14 J. prexuanhanensis 2519 261.001 694.80 H118 2.34 -7.05 J. prexuanhanensis 2520 260.985 695.10 H118 2.46 -6.33 J. xuanhanensis 2521 260.970 695.40 H118 2.71 -5.40 J. xuanhanensis 2522 260.939 696.00 H118 2.81 -6.92 J. xuanhanensis 2523 260.919 696.40 H118 3.30 -6.46 J. xuanhanensis 2524 260.904 696.70 H118 0.13 -8.19 J. xuanhanensis 187.51 0.707193 J. prexuanhanensis J. prexuanhanensis Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian continued Table 3 continued 158 2525 260.884 697.10 H118 -1.39 -8.87 J. xuanhanensis 2526 260.863 697.50 H119 -0.22 -11.31 J. xuanhanensis 2527 260.843 697.90 H119 2528 260.822 698.30 H119 1.13 -8.22 J. xuanhanensis 2529 260.802 698.70 H119 -1.21 -9.81 J. xuanhanensis 2530 260.787 699.00 H119 0.32 -9.81 J. xuanhanensis 2531 260.772 699.30 H119 3.20 -8.15 J. xuanhanensis 2532 260.751 699.70 H119 2.19 -11.26 J. xuanhanensis(?) 2533 260.736 700.00 H119 2534 260.716 700.40 H119 2.70 -9.39 J. xuanhanensis(?) 2535 260.695 700.80 H119 0.40 -8.44 J. xuanhanensis(?) 2536 260.680 701.10 H119 -0.86 -8.29 J. granti 2537 260.660 701.50 H119 -1.55 -8.70 J. granti 2538 260.644 701.80 H119 0.22 -7.99 J. granti 2539 260.629 702.10 H119 0.73 -8.19 J. granti 2540 260.614 702.40 H119 -1.00 -8.78 J. granti 2541 260.598 702.70 H119 -1.30 -8.51 J. granti 2542 260.583 703.00 H119 1.98 -7.57 J. granti 2543 260.568 703.30 H119 2544 260.553 703.60 H119 1.01 -8.89 J. granti 2545 260.537 703.90 H119 -0.90 -8.25 J. granti 2546 260.522 704.20 H119 0.87 -7.67 J. granti J. xuanhanensis 1151.98 229.20 0.707486 J. xuanhanensis(?) 0.707090 J. granti Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian continued Table 3 continued 159 2547 260.507 704.50 H119 2.02 -8.21 J. granti 2548 260.487 704.90 H119 3.68 -4.97 J. granti 2549 260.471 705.20 H119 2550 260.464 705.35 H119 0.54 -8.93 J. granti 2551 260.459 705.45 H119 2.51 -7.92 J. granti 2552 260.451 705.60 H119 2.13 -6.69 J. granti 2553 260.443 705.75 H119 1.72 -7.51 J. granti 2554 260.438 705.85 H119 1.61 -7.63 J. granti 2555 260.431 706.00 H119 2556 260.425 706.10 H119 2557 260.410 706.40 H119 182.57 0.707216 J. granti 2558 260.400 706.90 H119 159.20 0.707034 C. postbitteri 2559 260.397 707.00 H119 2.98 -4.01 C. postbitteri 2560 260.392 707.20 H119 2.70 -6.21 C. postbitteri 2561 260.385 707.50 H119 2562 260.374 707.90 H119 2563 260.367 708.20 H119 1.15 -10.31 C. postbitteri Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra Neomisellina, Neoschwagerina, Minojapanella pulchra 2564 260.359 708.50 H120 -3.17 -9.53 C. dukouensis Codonofusiella - Liangshanophyllum 2565 260.349 708.90 H120 -1.91 -8.83 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2566 260.341 709.20 H120 -1.26 -8.94 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 0.41 -11.71 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2567 260.331 709.60 H120 2568 260.320 710.00 H120 2569 260.315 710.20 H120 145.92 214.08 0.707137 J. granti 0.707115 J. granti 2.01 -7.36 J. granti C. postbitteri 109.46 293.46 0.707006 C. postbitteri 0.707321 -0.19 -11.51 Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Capitanian Maokou Wuchiapingian Maokou Wuchiapingian Maokou Wuchiapingian Maokou Wuchiapingian Maokou Wuchiapingian Maokou Wuchiapingian Wujiaping Wuchiapingian continued Table 3 continued 2570 260.307 710.50 H120 -2.26 -9.70 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2571 260.295 711.00 H120 2.03 -8.09 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2572 260.287 711.30 H120 -2.90 -9.40 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2573 260.277 711.70 H120 -1.86 -9.82 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2574 260.264 712.20 H120 -1.20 -9.32 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2575 260.259 712.40 H120 1.14 -9.22 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2576 260.251 712.70 H120 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2577 260.243 713.00 H120 1.69 -7.95 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2578 260.235 713.30 H120 -2.95 -8.95 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 395.24 0.707039 160 2579 260.225 713.70 H120 0.08 -8.33 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2580 260.220 713.90 H120 0.32 -8.67 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2581 260.215 714.10 H120 0.14 -7.92 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2582 260.210 714.30 H120 0.42 -8.62 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2583 260.199 714.70 H120 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian -10.33 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 1.74 -7.57 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian H122 1.48 -7.51 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 731.80 H122 2.50 -6.91 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 733.00 H122 2.96 -12.53 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 259.703 734.00 H122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2592 259.683 734.80 H122 -0.16 -9.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2593 259.649 736.10 H122 4.14 -4.63 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2594 259.624 737.10 H122 1.21 -8.32 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2584 259.891 726.70 H122 2585 259.863 727.80 H122 455.33 2586 259.842 728.60 H122 -2.13 2587 259.809 729.90 H122 2588 259.786 730.80 2589 259.760 2590 259.729 2591 304.69 0.707070 C. leveni(?) 0.707227 2595 259.588 738.50 H122 2.06 -7.70 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2596 259.562 739.50 H122 4.33 -6.25 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2597 259.531 740.70 H122 4.11 -5.79 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian continued Table 3 continued 2598 259.498 742.00 H122 2599 259.456 743.60 H122 3.52 2600 259.431 744.60 H122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian -6.30 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2601 259.410 745.40 H122 2602 259.377 746.70 H122 1.21 -7.37 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2.70 -6.24 Codonofusiella - Liangshanophyllum Wujiaping 2603 259.343 748.00 H122 -1.54 Wuchiapingian -8.68 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2604 259.310 749.30 H122 2605 259.276 750.60 H122 2.50 -8.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 1.34 -7.99 Codonofusiella - Liangshanophyllum Wujiaping 2606 259.248 751.70 H122 Wuchiapingian 2.53 -4.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 3.63 202.38 -5.71 161 2607 259.212 753.10 H122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2608 259.189 754.00 H122 0.73 -8.73 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2609 259.156 755.30 H122 2.35 -7.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2610 259.120 756.70 H122 2.68 -7.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2611 259.078 758.30 H122 -0.38 -10.01 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2612 259.053 759.30 H122 2.65 -7.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2613 259.017 760.70 H122 2.25 -9.55 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2614 258.983 762.00 H122 2.47 -8.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2615 258.952 763.20 H122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2616 258.922 764.40 H122 4.68 -7.81 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2617 258.906 765.00 H122 1.12 -7.00 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2618 258.896 765.40 H122 2.15 -8.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2619 258.888 765.70 H123 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2620 258.875 766.20 H123 4.90 -6.22 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2621 258.862 766.70 H123 4.01 -7.28 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2622 258.837 767.70 H123 3.10 -7.28 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2623 258.816 768.50 H123 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2624 258.798 769.20 H123 3.61 -7.74 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2625 258.793 769.40 H123 4.48 -6.34 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 154.12 0.707218 0.707197 continued Table 3 continued 162 2626 258.790 769.50 H123 -0.26 -8.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2627 258.772 770.20 H123 1.88 -10.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2628 258.747 771.20 H123 3.76 -7.36 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2629 258.721 772.20 H123 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2630 258.708 772.70 H123 1.59 -7.80 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2631 258.677 773.90 H123 2.10 -8.23 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2632 258.662 774.50 H123 3.63 -7.43 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2633 258.659 774.60 H123 4.72 -7.05 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2634 258.647 775.10 H123 5.21 -6.20 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2635 258.636 775.50 H123 4.72 -5.22 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2636 258.629 775.80 H124 4.93 -9.20 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2637 258.613 776.40 H124 0.80 -7.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2638 258.598 777.00 H124 3.87 -7.75 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2639 258.582 777.60 H124 3.62 -8.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2640 258.575 777.90 H124 4.30 -6.69 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2641 258.593 777.20 H124 6.29 -7.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2642 258.510 780.40 H125 5.78 -8.07 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2643 258.495 781.00 H125 6.31 -7.57 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2644 258.482 781.50 H125 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2645 258.469 782.00 H125 5.09 -6.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2646 258.456 782.50 H125 4.92 -6.24 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2647 258.443 783.00 H125 4.85 -7.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2648 258.431 783.50 H125 5.14 -6.56 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2649 258.418 784.00 H125 5.00 -6.67 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2650 258.405 784.50 H125 5.04 -6.56 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2651 258.392 785.00 H125 5.29 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2652 258.379 785.50 H125 4.96 -6.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2653 258.366 786.00 H125 5.07 -5.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 163.38 0.707156 continued Table 3 continued 163 2654 258.353 786.50 H125 5.13 -6.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2655 258.341 787.00 H125 -0.25 -9.04 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2656 258.328 787.50 H125 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2657 258.315 788.00 H125 4.72 -6.33 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2658 258.302 788.50 H125 4.84 -6.44 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2659 258.289 789.00 H125 5.18 -7.23 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2660 258.276 789.50 H125 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2661 258.263 790.00 H126 3.45 -7.60 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2662 258.240 790.90 H126 5.28 -9.09 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2663 258.199 792.50 H126 -1.30 -8.85 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2664 258.184 793.10 H126 2.46 -7.85 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2665 258.166 793.80 H126 3.23 -9.08 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2666 258.150 794.40 H127 4.32 -6.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 4.56 -6.54 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 202.74 0.707178 2667 258.130 795.20 H127 2668 258.107 796.10 H127 2669 258.081 797.10 H127 4.87 -7.08 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2670 258.065 797.70 H127 5.01 -6.73 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2671 258.047 798.40 H127 2.90 -4.00 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2672 258.022 799.40 H127 4.89 -7.80 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2673 257.996 800.40 H127 4.94 -6.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2674 257.970 801.40 H127 4.88 -6.81 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2675 257.945 802.40 H128 2.61 -6.58 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2676 257.916 803.50 H128 2.88 -8.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2677 257.873 805.20 H128 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2678 257.844 806.30 H128 323.58 0.707355 3.75 -9.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2679 257.803 807.90 H128 4.81 -7.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2680 257.775 809.00 H129 4.95 -7.30 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2681 257.747 810.10 H129 5.08 -7.46 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian continued Table 3 continued 2682 257.718 811.20 H129 5.05 -6.83 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2683 257.690 812.30 H129 5.10 -7.41 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2684 257.664 813.30 H129 4.58 -7.41 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2685 257.639 814.30 H129 0.27 -8.13 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2686 257.618 815.10 H129 5.01 -7.21 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2687 257.592 816.10 H129 5.08 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2688 257.569 817.00 H129 3.84 -7.93 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2689 257.544 818.00 H129 5.27 -7.13 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2690 257.518 819.00 H129 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 234.29 0.707122 164 2691 257.497 819.80 H130 -0.46 -8.05 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2692 257.474 820.70 H131 4.76 -6.48 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2693 257.448 821.70 H131 5.17 -6.51 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2694 257.420 822.80 H131 5.07 -6.29 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2695 257.384 824.20 H131 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2696 257.361 825.10 H132 5.16 -6.62 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2697 257.335 826.10 H132 5.24 -7.02 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2698 257.302 827.40 H132 5.11 -6.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2699 257.266 828.80 H133 5.14 -6.63 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2700 257.227 830.30 H133 5.25 -7.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2701 257.189 831.80 H133 5.09 -7.05 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2702 257.145 833.50 H133 5.04 -6.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2703 257.099 835.30 H133 5.22 -6.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2704 257.060 836.80 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2705 257.014 838.60 H133 4.95 -7.16 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2706 256.968 840.40 H133 3.28 -9.06 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2707 256.916 842.40 H133 4.12 -7.34 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2708 256.865 844.40 H133 4.59 -6.67 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2709 256.813 846.40 H133 4.20 -7.98 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian continued Table 3 continued 2710 256.767 848.20 H133 2711 256.721 850.00 H133 4.93 2712 256.669 852.00 H133 4.68 2713 256.618 854.00 H133 2714 256.566 856.00 H133 2715 256.515 858.00 2716 256.464 2717 256.412 2718 256.361 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian -6.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 3.82 -7.78 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 4.33 -7.20 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian H133 4.46 -6.60 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 860.00 H133 4.80 -6.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 862.00 H133 4.19 -7.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 864.00 H133 5.05 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 165 2719 256.309 866.00 H133 4.85 -6.57 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2720 256.258 868.00 H133 3.26 -7.40 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2721 256.207 870.00 H133 5.81 -7.61 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2722 256.155 872.00 H133 4.33 -7.13 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2723 256.104 874.00 H133 3.98 -7.30 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2724 256.052 876.00 H133 4.41 -7.25 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2725 256.001 878.00 H133 4.49 -6.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2726 255.949 880.00 H133 4.74 -7.37 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2727 255.898 882.00 H133 4.61 -7.35 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2728 255.847 884.00 H133 4.67 -7.32 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2729 255.795 886.00 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2730 255.744 888.00 H133 4.07 -7.33 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2731 255.692 890.00 H133 4.36 -6.50 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2732 255.654 891.50 H133 4.79 -7.11 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2733 255.615 893.00 H133 3.20 -6.92 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2734 255.577 894.50 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2735 255.538 896.00 H133 2736 255.499 897.50 H133 2737 255.461 899.00 H133 284.29 0.707148 4.49 4.11 -6.80 -7.10 continued Table 3 continued 2738 255.422 900.50 H133 2.86 -7.01 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2739 255.384 902.00 H133 4.42 -6.63 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2740 255.345 903.50 H133 3.64 -7.28 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2741 255.307 905.00 H133 4.61 -6.83 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2742 255.268 906.50 H133 4.07 -6.46 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2743 255.230 908.00 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2744 255.191 909.50 H133 3.98 -7.26 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2745 255.152 911.00 H133 4.24 -6.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2746 255.114 912.50 H133 3.71 -6.77 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 303.64 0.707085 166 2747 255.075 914.00 H133 2.41 -7.77 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2748 255.050 915.00 H133 3.13 -7.43 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2749 255.024 916.00 H133 2.86 -7.09 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2750 254.998 917.00 H133 4.49 -6.71 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2751 254.972 918.00 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2752 254.962 918.40 H133 3.55 -7.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2753 254.954 918.70 H133 0.84 -8.47 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2754 254.942 919.20 H134 3.08 -7.45 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2755 254.921 920.00 H134 4.08 -7.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2756 254.895 921.00 H134 2.67 -8.01 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2757 254.870 922.00 H134 2.71 -8.79 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2758 254.844 923.00 H134 0.93 -7.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2759 254.818 924.00 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2760 254.792 925.00 H134 2.28 -6.09 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2761 254.767 926.00 H134 2.26 -8.21 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2762 254.741 927.00 H134 3.41 -9.06 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2763 254.708 928.30 H134 4.16 -9.16 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2764 254.630 931.30 H134 3.06 -14.39 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2765 254.574 933.50 H134 2.89 -11.03 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 285.67 0.707137 continued Table 3 continued 2766 254.543 934.70 H134 2.98 -10.70 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2767 254.530 935.20 H134 3.17 -9.64 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2768 254.502 936.30 H134 4.57 -7.70 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2769 254.466 937.70 H134 2.29 -7.92 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2770 254.445 938.50 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2771 254.422 939.40 H134 3.37 -12.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2772 254.396 940.40 H134 2.68 -10.06 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2773 254.386 940.80 H134 0.14 -11.86 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2774 254.360 941.80 H134 3.95 -7.55 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 167 2775 254.325 943.20 H134 4.38 -5.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2776 254.296 944.30 H134 2.80 -6.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2777 254.273 945.20 H134 4.65 -5.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2778 254.250 946.10 H134 -0.43 -9.58 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2779 254.235 946.70 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2780 254.227 947.00 H134 3.12 -10.51 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2781 254.206 947.80 H134 3.84 -8.92 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2782 254.183 948.70 H134 4.57 -6.75 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2783 254.168 949.30 H134 3.31 -8.03 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2784 254.145 950.20 H134 4.27 -7.40 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2785 254.127 950.90 H134 3.18 -7.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2786 254.103 951.80 H134 2.95 -8.44 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2787 254.080 952.70 H134 3.18 -8.36 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2788 254.060 953.50 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2789 254.047 954.00 H134 4.80 -6.36 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2790 254.026 954.80 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 417.31 445.58 0.707063 0.707089 2791 254.001 955.80 H134 3.41 -7.72 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2792 253.975 956.80 H134 4.92 -6.04 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2793 253.952 957.70 H134 4.51 -5.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian continued Table 3 continued 2794 253.929 958.60 H134 4.67 -6.31 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2795 253.911 959.30 H134 4.51 -7.80 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2796 253.890 960.10 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2797 253.869 960.90 H134 4.41 -6.85 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2798 253.846 961.80 H134 4.21 -6.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2799 253.800 963.60 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian H135 Palaeofusulina - Colaniella Dalong Wuchiapingian(?) 2800 1013.60 H136 Palaeofusulina - Colaniella Dalong Wuchiapingian(?) 2801 1014.60 H136 2.45 -7.49 Palaeofusulina - Colaniella Dalong Wuchiapingian(?) 2802 1015.60 H136 2.35 -6.70 Palaeofusulina - Colaniella Dalong Wuchiapingian(?) 2803 1016.60 H136 2.14 -6.74 Palaeofusulina - Colaniella Dalong Wuchiapingian(?) 2804 1017.60 H136 Palaeofusulina - Colaniella Dalong Wuchiapingian(?) 2799+ 50m covered 168 continued
© Copyright 2025 Paperzz