Carbon and strontium isotope stratigraphy of the Permian: a

Carbon and strontium isotope stratigraphy of the Permian from Nevada and China:
Implications from an icehouse to greenhouse transition
Dissertation
Presented in Partial Fulfillment of the Requirements for the Degree Doctor of
Philosophy in the Graduate School of The Ohio State University
By
Kate E. Tierney, M.S.
Graduate Program in the School of Earth Sciences
The Ohio State University
2010
Dissertation Committee:
Matthew R. Saltzman, Advisor
William I. Ausich
Loren Babcock
Stig M. Bergström
Ola Ahlqvist
Copyright by
Kate Elizabeth Tierney
2010
Abstract
The Permian is one of the most important intervals of earth history to help us
understand the way our climate system works. It is an analog to modern climate
because during this interval climate transitioned from an icehouse state (when
glaciers existed extending to middle latitudes), to a greenhouse state (when there
were no glaciers). This climatic amelioration occurred under conditions very
similar to those that exist in modern times, including atmospheric CO2 levels and
the presence of plants thriving in the terrestrial system. This analog to the modern
system allows us to investigate the mechanisms that cause global warming.
Scientist have learned that the distribution of carbon between the oceans,
atmosphere and lithosphere plays a large role in determining climate and changes
in this distribution can be studied by chemical proxies preserved in the rock
record. There are two main ways to change the distribution of carbon between
these reservoirs.
Organic carbon can be buried or silicate minerals in the
terrestrial realm can be weathered. These two mechanisms account for the long
term changes in carbon concentrations in the atmosphere, particularly important
to climate. In order to study these changes, this study investigates chemical
proxies that reflect the operation of these mechanisms.
ii
Marine limestones preserve the two proxies that we use to investigate changes
to carbon, δ13Ccarb and 87Sr/86Sr. δ13Ccarb primarily records changes to the amount
of organic carbon that is being buried (added to the lithospheric reservoir).
87
Sr/86Sr records the weathering of silicate weathering.
By examining these
proxies, a better understanding of what was happening to the carbon system
during this pivotal interval.
Three lithologic sections have been examined and samples collected for
analysis, two sections in Nevada and one in Southern China. These sections are
long ranging in time and thick, implying that they are a detailed record of the
ocean-atmosphere system through the Permian System. Analysis from samples
collected at these localities give a detailed record of changes, previously
unreported in the literature. This dissertation describes these records and begins to
interpret their climatic interpretations.
iii
Dedication
To my son, Norman
iv
Acknowledgments
My thanks go to Matt Saltzman, my long-time adviser. Also, Brad Cramer, your
patience is the stuff of legend, and you can have your couch back now. The
faculty of our school, thank you for you time and sincere interest in my stream of
questions. And my peers and friends in the Orton Sauna, I’ll clean up my station
now.
v
Vita
June 1991 …………………………………….…Roosevelt High School, Seattle WA
March, 2002………………..….B.A. Geological Sciences, The Ohio State University
March, 2002………………...……..….B.A. Anthropology, The Ohio State University
March, 2005……………………M.S. Geological Sciences, The Ohio State University
2009-present..................... Graduate Teaching Associate, The Ohio State University
2009 .......................................Summer Quarter Lecturer, The Ohio State University
2008-2009 .........................Graduate Teaching Associate, The Ohio State University
2007-2008 ..............................................National Science Foundation GK-12 Fellow
2002-2007 ........................Graduate Teaching Associate at The Ohio State University
2005............................................... Appalachian Basin Industrial Association Fellow
2003-2006................. Summer Quarter Lecturer at The Ohio State University, Marion
2000-2007 ................Undergraduate Teaching Associate at The Ohio State University
2000-2001 .........Undergraduate Research Assistant at the Microscopic and Analytical
Research Center, Department of Geological Sciences at The Ohio
State University
Major interest: Geological Sciences
vi
Table of Contents
Abstract…………………………………...………………………………..…..……...ii
Dedication……………………………………………………………….……..……..iv
Acknowledgments……………………………………………………….……..……...v
Vita……………………………………………………………………..…..….……...vi
List of Tables……………………………………………………………..………....viii
List of Figures…………………………………………………………………...…....ix
Chapter 1: Introduction……………………………………………………..................1
Chapter 2: Permian 87Sr/86Sr from carbonates of the Pequop Mountains, Nevada,
USA and Tieqaio section, Laibin, Guangxi Province, P. R. China: a high
resolution record sheds light on climatic event timing, sea level change, and
flux variation through an interval of systemic reorganization.........................11
Chapter 3: High-resolution carbon isotope composite curve for the Permian System:
Implications for organic carbon burial and global climate..............................39
Chapter 4: An early Permian (Asselian-Sakmarian) carbon isotope excursion from
Nevada.............................................................................................................65
Combined References..…………………………....…………………………………90
Appendix A................................................................................................................107
vii
List of Tables
Table 1. data from Nine Mile Canyon, Nevada, USA...............................................108
Table 2. data from Rockland Ridge, Nevada, USA...................................................124
Table 3. data from Tieqiao, Guanxi Province, China................................................137
viii
List of Figures
Introduction
Figure 1.1 Model of CO2 through the Phanerozoic.......................................................1
Figure 2.1 Phanerozoic 87Sr/86Sr curve (Veizer, 1999)................................................12
Figure 2.2 Paleogeographic map in the early Permian showing localities..................14
Figure 2.3 Locality map showing the Pequop Mountians, Nevada.............................15
Figure 2.4 Locality map showing Tieqiao Section, Guangxi, China...........................16
Figure 2.5 Stratigraphy and δ13Ccarb and 87Sr/86Sr data in Nevada..............................18
Figure 2.6 Stratigraphy and δ13Ccarb and 87Sr/86Sr data in China.................................19
Figure 2.7 Permian Tectonic events and 87Sr/86Sr data...............................................21
Figure 2.8 87Sr/86Sr data changes in slope...................................................................23
Figure 2.9 87Sr/86Sr plotted against Sr ppm from Nevada...........................................25
Figure 2.10 87Sr/86Sr plotted against Sr ppm from China...........................................26
Figure 2.11 87Sr/86Sr plotted with data from Korte et al., 2006..................................28
Figure 3.1 Paleogeographic map in the early Permian showing localities..................41
Figure 3.2 Locality map showing the Pequop Mountians, Nevada.............................42
Figure 3.3 Locality map showing Tieqiao Section, Guangxi, China...........................43
Figure 3.4 Permian timescale with regional conodont zonation..................................45
Figure 3.5 Cross plot of δ13Ccarb and δ18O data from Nevada and China....................48
ix
Figure 3.6 Permian δ13Ccarb data plotted in stratigraphic order against time...............50
Figure 3.7 δ13Ccarb data from Pequop Mountains plotted against stratigraphy............53
Figure 3.8 δ13Ccarb data from Tieqiao plotted against stratigraphy..............................55
Figure 3.9 Korte et al., 2005 δ13Ccarb data plotted again time and composite δ13Ccarb
data (this study) plotted against time...........................................................................58
Figure 4.1 Paleogeographic map in the early Permian showing localities..................66
Figure 4.2 Locality map showing the Pequop Mountians, Nevada.............................67
Figure 4.3 Asselian-Artinskian timescale with regional conodont zonations..............69
Figure 4.4 δ13Ccarb data from Asselian-Sakmarian of Nevada with lithologic
column, defined glacial intervals, regional sea-level curves and pCO2 curve............71
Figure 4.5 δ13Ccarb plotted against δ18O data from Nine Mile Canyon........................73
Figure 4.6 Model of potential causes of δ13Ccarb excursions........................................75
x
Chapter 1
Introduction
Global climate change is one of the greatest challenges of modern science.
In order to constrain models that seek to predict the path of future climate
changes, it is necessary to fully document and interpret ancient analogs. The
interval of geologic time that
is considered to be most
similar
to
the
modern
(Pleistocene) ice age is the
early Permian Period (~300270 million years ago). Both
the early Permian and recent
times share similarities in
low
atmospheric
carbon
dioxide (CO2) levels, low
sea-level,
and
widespread
glaciation (Crowell, 1995;
Kovalevich
et
al.,
1998;
Berner, 2004; Lowenstein et
1
al., 2005). Atmospheric CO2 levels ~ 300 million years ago decreased to near
modern levels before rising again later in the Permian (Figure 1, Royer et al.,
2004; Berner, 2005). Glaciers existed in the southern hemisphere continent of
Gondwana, which was later assembled into part of the supercontinent, Pangea,
and extended to the mid-latitudes (e.g., Isbell et al., 2003). Glacial conditions
continued through the early Permian, although the timing of deglaciation based on
physical evidence remains controversial (Veevers and Powell, 1987; Veevers et
al., 1994; Isbell et al., 2003; Fielding et al., 2006; Frank et al., 2006). My
dissertation documents geochemical proxy evidence for the global carbon cycling
during the Permian icehouse to greenhouse (ice free) transition. This evidence
helps constrain the timing and cause(s) of deglaciation.
Processes
There are two geologic processes that remove CO2 from the oceanatmosphere system and store it in rock reservoirs (lithosphere): 1) burial of
photosynthetically produced organic carbon; and 2) burial of inorganic carbon as
limestone during silicate weathering (Berner, 2004). If a decrease in organic
carbon burial played a role in the Permian icehouse-greenhouse transition, this
would be recorded in changes in the carbon isotopic composition of seawater
(δ13Ccarb). Similarly, a change in the rate of weathering of silicate rocks should
have left a record in the strontium isotopic composition (87Sr/86Sr) of seawater.
2
Carbon Isotopes
Time periods of globally elevated δ13Ccarb values are commonly associated
with episodes of enhanced Corg burial (Arthur et al., 1987; Derry et al., 1992;
Berner, 2006). The net effect of organic carbon burial should be the drawdown of
atmospheric pCO2 (Kump and Arthur, 1999). Previously published work on
δ13Ccarb values shows consistently elevated δ13Ccarb values preserved in Permian
carbonates. This indicates large amounts of organic carbon burial and generally
reduced pCO2. However, fluctuations may indicate relative decreases in organic
carbon burial that contributed to rising pCO2 that has been associated with
deglacial transitions (e.g., Montañez et al., 2007). By coupling theδ
with trends in
87
13
Ccarb record
Sr/86Sr that can be used to infer transient changes (steady-state
perturbations) in rates of silicate weathering, the documented curves will be used
in box models of the geochemical carbon cycle to examine potential factors that
could change pCO2 during the icehouse greenhouse climate transition.
Furthermore, it is critical that these trends be compared with geologic indicators
of climate change such as palynology and sedimentology (e.g., Ziegler et al.,
2002).
Strontium Isotopes
The Permian seawater
87
Sr/86Sr shift to less radiogenic values has been
interpreted by Martin and Macdougall (1995) to reflect increased aridity in the
Pangean super-continental interior, which is thought to have occurred at some
early stage of the Permian based on sedimentologic, palynologic, and pedogenic
3
evidence (e.g., Tabor and Montañez, 2002; 2004; Ziegler et al., 2002; Tramp et
al., 2004; Montañez et al., 2007). The reduction in net precipitation could have
decreased silicate weathering, thereby acting to increase atmospheric pCO2,
triggering the end of the Permo-Carboniferous glaciation (cf. Berner, 2006).
Although recent advances have been made in the stratigraphic resolution
of both the evidence for increased aridity in the Permian and the temporal extent
of glaciation (e.g., Tabor and Montañez, 2002; Isbell et al. 2003; Jones and
Fielding, 2004), additional work is needed to resolve cause-and-effect
relationships (Montañez et al., 2007). If the 87Sr/86Sr decrease in the Permian can
be interpreted to reflect changes in the hydrologic cycle (Martin and Macdougall,
1995), the most significant changes occurred in the late early to middle Permian,
however, a growing amount of literature indicates that a major atmospheric
reorganization over the Pangean interior (Parrish and Peterson, 1988; Parrish,
1993; Gibbs et al., 2002) was already well-established by the late Pennsylvanianearly Permian (Tabor and Montañez, 2002; 2004; 2005; Tramp et al., 2004;
Montañez et al., 2007). Similarly, there is increasing evidence that the youngest
global advance of glaciers during the Late Paleozoic Ice Age (glacial stage III of
Isbell et al., 2003) has an upper stratigraphic limit of the Artinskian (early
Permian; Isbell et al., 2003; Jones and Fielding, 2004; Montañez et al., 2007),
which is substantially earlier than previous interpretations depicting a more
protracted glaciation ending in the middle to late Permian (Veevers and Powell,
1987; Crowell, 1995). These stratigraphic uncertainties may account for the
4
discrepancies among numerical climate models for the early-middle Permian
(e.g., Hyde et al., 2006).
An hypothesis for global deglaciation in the Permian may involve
increased aridity and a transient reduction in silicate weathering that produced a
steady-state perturbation towards higher pCO2; this scenario predicts that the
icehouse-greenhouse transition have a close chronostratigraphic link with the
onset of the decline in 87Sr/86Sr values (Martin and Macdougall, 1995). However,
the need to address multiple working hypotheses for linkages among the carbon
cycle, climate, and
87
Sr/86Sr is critical. Although a decrease in continental
weathering could produce a reduced flux of radiogenic Sr entering the global
ocean and account for the
87
Sr/86Sr drop seen in the Permian, there are other
possible interpretations of these data that I will explore by comparing my
biostratigraphically-calibrated Sr isotope curve to geologic evidence of tectonic
events in various regions. For example, the Sr flux may have remained essentially
constant, while a reduction in the
87
Sr/86Sr ratio of the dominant source rocks
being weathered (volcanic versus non-volcanic terrestrial silicates) could account
for the observed trend. Alternatively, an increase in hydrothermally derived Sr to
the global ocean from mid-ocean ridges would have a similar effect (Faure and
Mensing, 2004).
The need to address multiple working hypotheses for linkages among the
carbon cycle, climate, and
87
Sr/86Sr is further underscored by the fact that the
turnaround towards increasing
87
Sr/86Sr values later in the Permian is not
5
apparently accompanied by a return to glacial conditions. Therefore this rise in
87
Sr/86Sr has not been linked to enhanced silicate weathering that reduced pCO2.
In this instance, a more plausible scenario involves a lowering of the ratio of
volcanic to non-volcanic weathering (e.g., Berner, 2006b). Because the onset of
declining 87Sr/86Sr values is poorly constrained by comparison to the later parts of
the Permian record that include the turnaround to more radiogenic values, the
proposed investigation to more precisely define the timing of this older inflection
point will allow for more detailed comparisons between the two events.
Part I
This chapter covers the 87Sr/86Sr data produced from three sections in two
localities, the Pequop Mountains in Nevada and the Tieqiao Section in Laibin,
China. These data give insight into the timing of the change in silicate weathering
and related CO2 drawdown.
Part II
This chapter shows the composite δ13Ccarb data from Nevada and China from
the Ghzelian (upper Pennsylvanian) through the lower Changhsingian (uppermost
Permian).
This curve is high resolution and biostratigraphically constrained.
Here I outline the changes that happen to the carbon cycle through this volatile
interval in earth’s climate history.
Part III
6
This chapter examines in detail the lower Permian interval in detail. This
interval is the peak of the LPIA, however is poorly constrained in time and the
cause of this extreme climate event is not well defined.
References
Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., 1987. The CenomanianTuronian oceanic anoxic event II: Palaeoceanographic controls on organic
matter production and preservation. In: Brooks, J., and Fleet, A.J., (Eds.),
Marine Petroleum Source Rocks. Geological Society of London Special
Publication, v. 26, pp. 401-420.
Berner, R.A., 2004. A model for calcium, magnesium and sulfate in seawater over
Phanerozoic time. American Journal of Science, v. 304, pp. 438-453.
Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford
University Press, New York, 150 p.
Berner, R.A., 2006a. GEOCARBSULF: A combined model for Phanerozoic
atmospheric O2 and CO2 over Phanerozoic time. Geochimica et
Cosmochimica Acta, v. 70, pp. 5653-5664.
Berner, R.A., 2006b. Inclusion of the weathering of volcanic rocks in the
GEOCARBSULF model. American Journal of Science, v. 306, pp. 295302.
Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian
period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.),
Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy.
Springer-Verlag, Berlin, v. 1, pp. 62-74.
Derry, L.A., Jacobsen, S.B., and Kauffman, A.J., 1992. Sedimentary cycling and
environmental change in the late Proterozoic: Evidence from stable and
radiogenic isotopes. Geochimica et Cosmochimica Acta, v. 56, pp. 13171329.
Faure, G., and Mensing, T.M., 2004. Isotopes: Principles and Application. Wiley,
928 p.
Fielding, C.R., Rygel, M.C, Frank, T.D., Birgenheier, L.P., Jones, A.T., and
Roberts, J., 2006. Near-field stratigraphic record of the late Paleozoic
Gondwanan Ice Age from eastern Australia discloses multiple alternating
7
glacial and non-glacial intervals. Geological Society of America, Abstracts
with Programs, v. 38, p. 317.
Frank, T.D., Birgenheier, L.P., Fielding, C.R., and Rygel, M.C., 2006. Near-field
stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern
Australia provides a framework for examining far-field stable isotope
records. Geological Society of America, Abstracts with Programs, v. 38,
pp. 318.
Gibbs, M.T., Rees, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and
Rowley, D.B., 2002. Simulations of Permian climate and comparisons
with climate sensitive sediments. Journal of Geology, v. 110, pp. 33-55.
Hyde, W.T., Grossman, E.L., Crowley, T.J., Pollard, D., and Scotese, C.R., 2006.
Siberian glaciation as constraint on Permian-Carboniferous CO2 levels.
Geology, v. 34, pp. 421-424.
Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late
Paleozoic glaciation in Gondwana: Was glaciation responsible for the
development of Northern Hemisphere cyclothems? In: Chan, M.A. and
Archer, A.A., (Eds.), Extreme Depositional Environments: Mega EndMembers in Geologic Time. Geological Society of America, Special
Paper, v. 370, pp. 5-24.
Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late
Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153156.
Kovalevich, V.M., Peryt, T.M., and Petrichenko, O.I., 1998. Secular variation in
seawater chemistry during the Phanerozoic as indicated by brine
inclusions in halite. Journal of Geology, v. 106, pp. 695-712.
Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions:
Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198.
Lowenstein, T.K., Horita, J., Kovalevych, V.M., and Timofeef, M.N., 2005. The
major-ion composition of Permian seawater. Geochimica et
Cosmochimica Acta, v. 69, pp. 1701-1719.
Martin, E.E., and MacDougall, J.D., 1995. Sr and Nd isotopes at the
Permian/Triassic Boundary: A record of climate change. Chemical
Geology, v. 125, pp. 73-99.
8
Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D.,
Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic
deglaciation. Science, v. 315, pp. 87-91.
Parrish, J.T., and Peterson, F., 1988. Wind directions predicted from global
circulation models and wind directions determined from eolian sandstones
of the western United States – A comparison. Sedimentary Geology, v. 56,
pp. 261-282.
Parrish, J.T., 1993. Climate of the supercontinent Pangea. Journal of Geology, v.
101, pp. 215-233.
Royer, D.L., Berner, R.A., Montañez, Tabor, N.J., and Beerling, D.J., 2004. CO2
as a primary driver of Phanerozoic climate. Geological Society of
America, Today, v. 14, pp. 4-10.
Tabor, N.J., and Montañez, I.P., 2002. Shifts in late Paleozoic atmospheric
circulation over western equatorial Pangea: Insights from pedogenic
mineral δ18O compositions. Geology, v. 30, pp. 1127-1130.
Tabor, N.J., and Montañez, I.P., 2004. Morphology and distribution of fossil soils
in the Permo Pennsylvanian Wichita and Bowie Groups, north-central
Texas, USA: Implications for western equatorial Pangean paleoclimate
during icehouse- greenhouse transition. Sedimentology, v. 51, pp. 851884.
Tabor, N.J., and Montañez, I.P., 2005. Oxygen and hydrogen isotope
compositions of Permian pedogenic phyllosilicates: Development of
modern surface domain arrays and implications for paleotemperature
reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, v.
223, pp. 127- 146.
Tramp, K.L., Elmore, R.D., and Soreghan, G.S., 2004. Paleoclimatic inferences
from paleopedology and magnetism of the Permian Maroon Formation
loessite, Colorado, USA. Geological Society of America, Bulletin, v. 116,
pp. 671-686.
Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in
Gondwanaland reflected in transgressive-regressive depositional
sequences in Euramerica. Geological Society of America, Bulletin, v. 98,
pp. 475-487.
Veevers, J.J., Conaghan, P.J., Powell, C., Cowan, E.J., McDonnell, K.L., and
Shaw, S.E., 1994. Eastern Australia. In: Veevers, J.J. and Powell, C.,
9
(Eds.), Permian-Triassic Pangean Basins and Foldbelts along the
Panthalassan Margin of Gondwanaland. Geological Society of America,
Memoir, v. 184, pp. 11-171.
Ziegler, A.M., Rees, P.M., and Naugolnykh, S.V., 2002. The Early Permian floras
of Prince Edward Island, Canada: Differentiating global from local effects
of climate change. Canadian Journal of Earth Sciences, v. 39, pp. 223-238.
10
Chapter 2
Permian 87Sr/86Sr from carbonates of the Pequop Mountains, Nevada, USA and
Tieqaio section, Laibin, Guangxi Province, China: Implications for climate, sea
level change, and chronostratigraphy
Abstract
One of the largest drops in the Phanerozoic
87
Sr/86Sr curve occurred during the
Permian. A new curve has been developed spanning this interval, including more
than 100 new data points, from thick carbonate-rich sections in two localities.
Most of the Cisuralian was collected from two sections in the Pequop Mountains,
Nevada. The upper Cisuralian, Guadalupian, and a large part of the Lopingian
were collected in southern China at the Tieqiao section. These sections have been
collected in conjunction with new conodonts and fusulinid studies of these
sections. Through this nearly 49 million years of Earth history, there is a first
order trend that descends from high values near 0.7084 in the base of the Permian
to low values below 0.7070 in the Wordian (mid-Guadalupian). This first order
curve can be subdivided into eight legs, each defined by an inflection point in the
curve. If they represent primary seawater values and are not an artifact of local
sedimentation rates, these changes in the slope indicate geologic events that
reflect global changes in the balance of the fluxes that determine the sea-water
11
87
Sr/86Sr ratio. Continental Sr fluxes could be affected by variation in climate or
sea level, a switch in the dominant rock that was being weathered, or a variation
in spreading rates at mid-ocean ridges.
Introduction
The Permian is known to be a time of systemic reorganization of the Earth
system, including multiple large extinction events, a long-term change in climate
state and major chemical events that have been preserved in the rock record
(Isbell et al., 2003; Isbell et al., 2006; Korte et al., 2006; Fielding et al., 2008;
Wignall et al., 2009; Tierney et al., in prep. a, in prep. b). The Permian climate
12
transition from an ice covered to an ice free world is the most complete deep-time
analogy that exists for modern climate change because it is the only other time
that such an icehouse to greenhouse transition occurred on a fully vegetated planet
(Montañez et al., 2007). Examining the 87Sr/86Sr curve may provide a proxy for
atmospheric carbon dioxide (by way of changes in silicate weathering) (Berner,
2006) as well as a tool for stratigraphic correlation through a pivotal interval in
Earth history.
Phanerozoic seawater
87
Sr/86Sr variation has been investigated by
numerous groups (Peterman et al., 1970; Veizer and Compston, 1974; Faure et al.,
1978; Burke et al., 1982, Veizer et al., 1999). Studies of specific time intervals
have also been published (e.g., Korte et al., 2005), providing detailed information
on particular events in the
87
Sr/86Sr record and offering explanations for what
geologic events were driving the trends. The riverine input of Sr to seawater is
several times larger than the hydrothermal flux at mid-ocean ridges, which
provides mantle-derived strontium (Davis et al., 2003; Kump and Arthur, 1997).
The continental flux has several factors that contribute to the
87
Sr/86Sr value
(Palmer and Edmond, 1989), including the lithology of the rocks being weathered
(basalt has less radiogenic Sr compared to granite) and the rates of physical and
chemical weathering (Shields et al., 2003; Dessert et al., 2003). Tectonic uplift
increases exposure of weatherable material and together with climate controls
chemical weathering rates and solute transport (Stallard, 1995).
13
Published strontium isotope studies on the Permian have thus far focused
on measurements from low-Mg biogenic calcite, particularly brachiopods (e.g.,
Korte et al., 2006) as well as conodont apatite (Martin and Macdougall, 1995) .
These fossils were screened to avoid diagenetic alteration and overprinting of the
87
Sr/86Sr value. This study uses non-biogenic carbonate from limestones in order
to overcome the stratigraphic limitations of using fossils as the sample medium
and will allow a meter-by-meter evaluation of stratigraphic relationships between
87
Sr/86Sr values and all other stratigraphic indicators. With existing screened
biogenic calcite measurements as a baseline for comparison (e.g., Korte et al.
2006), the stratigraphic intervals not previously covered by biogenic samples can
be measured on samples taken from the matrix of carbonate rocks, allowing a
continuity of high-resolution analysis that has previously not been achieved.
14
Geologic Setting
During the Permian most tectonic plates were assembled into the
supercontinent Pangea (Scotese, 1998; Figure 2). Samples were collected from
two localities on opposite sides of the supercontinent. The sections encompassing
the latest Pennsylvanian Gzhelian Stage through the lowest Kungurian Stage
(Permian) come from the Pequop Mountains in Nevada, USA, which is on the
Laurentian Plate and was located on the western margin of the continent during
this time (Wardlaw et al.,
1998; Snyder and Sweet,
2002). This region was a
shallow epeiric sea with
open access to the oceans.
Sediment accumulated in
dropdown basins resulting
in thick sections (almost a
kilometer each) in close
proximity to each other
containing
continuous
faunal successions (Sweet
and Snyder, 2002; Figure
3).
The
second
15
locality, encompassing the upper Artinskian through Changhsingian stages
(Permian), is the Tieqaio section, Laibin, Guangxi Province, China. This section
was located on the eastern margin of the supercontinent in the Jiangnan Basin on
the South China block, between the Cathaysian and Yangtze cratons (Wang et al.,
2004). This section also had open communication with the ocean and since it was
continuously subsiding, accumulated a thick sediment wedge (Shen et al., 2007;
Figure 4).
Globally, at the base of the Kungurian Stage conodont faunas show
regional endemicity at the species level, and at the base of the Guadalupian Series
16
conodonts show endemicity at the genus level (Behnken, 1975; Mei and
Henderson, 2001). The endemic nature of conodonts and other fauna during this
interval indicates that the ocean was not mixing as completely as at other times.
Understanding why these biologic differences occurred probably relates to
climate change, and in particular, changes in glacial extent and volume and and
their resulting effects on circulation in the oceans and atmosphere.
Previous work
The evolution of atmospheric carbon dioxide and long term climate
change has been linked to plate tectonics (e.g., Berner, 2004). Glaciation in the
Permian was originally thought to have occurred as a single massive episode that
ended during the Sakmarian (e.g., Veevers and Powell, 1987). Much early work
on Permian glacial history was based on low-latitude cyclothems, which have
been interpreted to reflect changes in glacial volume in the southern hemisphere
(Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979; Veevers and Powell,
1987; Heckel, 1994). Work on glacially proximal localities in regions such as
Antarctica and Australia has advanced our understanding of the timing of
southern hemisphere glaciations (Isbell, 2008) and provides evidence for discrete
post-Sakmarian episodes in which ice sheets returned (Fielding et al., 2008).
Climate
17
Estimation of the extent and timing of glaciation in the late Paleozoic has
been an ongoing discussion that was initially focused primarily on low latitude
cyclothemic deposits (Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979;
Veevers and Powell, 1987; Heckel, 1994) but has been reformed in recent years (
18
e.g., Jones and Fielding, 2004; Montañez et al., 2007; Fielding et al., 2008).
Fielding et al. (2008) redefined the Late Paleozoic Ice Age (LPIA) to include 4
discrete episodes of southern hemisphere continental glaciation within the
Permian, rather than a single episode (Glacial III) as proposed by Isbell et al.
(2003). The first two of these episodes (P1 lower Asselian, 299 Ma to middle
Sakmarian, 291 Ma and P2 upper Sakmarian, 287 Ma – mid-Artinskian, 280 Ma)
19
are considered major continental glaciations with large lateral extent. The second
two of these glacial episodes are considered relatively small (P3 upper Kungurian,
273 Ma – upper Roadian, 268 Ma and P4 Wordian, 267 Ma – lowest most
Wuchiapingian, 260 Ma), possibly not even of continental scale, as there is no
evidence of bedrock displacement along coastlines in periglacial environments.
Biostratigraphic evidence that distinguishes these episodes is largely terrestrial,
making it difficult to fit these events into the marine biostratigraphic framework
that is used to correlate Paleozoic strata (Figure 5 and 6).
Other climate indicators, such as widespread coals (indicating high
humidity) in the early Permian yield to redbeds and evaporites (indicating
increasing aridity) around the middle of the Artinskian. These arid conditions
persisted until the latest Lopingian.
Increased continental aridity causing
decreased delivery of radiogenic strontium to the oceans has been thought to play
a major role in the overall decline in strontium isotope values that occurs through
the Permian (Figure 7).
Strontium Isotope Stratigraphy
The Phanerozoic marine
87
Sr/86Sr curve first published by Peterman
(1970) and later refined (Burke et al., 1982; Koepnick et al., 1985; Denison et al.,
1994; Veizer et al., 1999; McArthur et al., 2001; Gradstein et al., 2004) does not
provide a detailed enough biostratigraphic framework within which to relate
trends in the curve to global climatic events. Two groups have produced 87Sr/86Sr
20
curves through the Permian that are tied to biostratigraphic zones (Martin and
Macdougall, 1995; Korte et al., 2006). These papers better define
the timing of the previously recognized trend towards less radiogenic values that
started near the base of the Permian and continued until the Guadalupian before
returning to higher values across the Permian-Triassic boundary. These papers
use meticulously screened low-Mg calcite from brachiopods and conodonts to
21
create global composites. These studies are the foundation upon which this work
is based, but because the samples were collected from such disparate localities,
correlation is at times questionable.
The approach taken in my work is to
minimize stratigraphic uncertainty by measuring strontium isotopes in continuous
measured sections for which good biostratigraphic control is generally available.
Methods
For this study, rock samples were collected in tandem with conodont
samples allowing correlation in the relationship between
87
Sr/86Sr values,
stratigraphic, order and conodont biostratigraphy. Rock samples were first cut
using a water-based diamond-bladed saw to produce thin-section billets, then
cleaned using ultrapure water (deionized, 18 MΩ) in an ultrasonic bath to remove
excess sediment.
Fine-grained micritic components were preferentially
microdrilled for analysis.
Powders were analyzed for
87
Sr/86Sr and Sr
concentration ([Sr]) in the Radiogenic Isotope Laboratory (RIL) at The Ohio State
University using Sr purification and mass spectrometry procedures described in
detail by Foland and Allen (1991).
Sr was extracted from powders using
ultrapure reagents; powder aliquots of ~25 mg were pretreated with 1M
ammonium acetate (pH 8) and then leached in 4% acetic acid (Montañez et al.,
1996). The leachate solution was separated from residue and then spiked with an
84
Sr tracer. Samples were purified for Sr using a cation exchange resin and a 2N
HCl based ion-exchange. Purified Sr was then loaded with HCl on a Re double22
filament configuration.
Isotopic compositions were measured using dynamic
multicollection with a MAT-261A thermal ionization mass spectrometer. The
RIL laboratory value for the SRM 987 standard is (87Sr/86Sr) = 0.710242 ±
0.000010 (one-sigma external reproducibility).
For the
87
Sr/86Sr values the
associated uncertainties given are for two-sigma mean internal reproducibilities,
typically based upon 100 measured ratios.
The
87
Sr/86Sr reported ratios are
normalized for instrumental fractionation using a normal Sr ratio of
86
Sr/88Sr=0.119400.
A critical issue in analyzing trends in
87
Sr/86Sr is the potential for
secondary influences to alter the primary seawater values. In general, in samples
23
that are diagenetically altered or in which non-marine strontium is present in Rb
or Sr-rich siliciclastic phases (e.g., clays), the
radiogenic values.
87
Sr/86Sr is shifted to more
Thus a line drawn along the least radiogenic values is
considered the most dependable. We attempted to minimize leaching of Sr from
non-carbonate phases by pretreatment with 1M ammonium acetate as described
above (after Montañez et al., 1996). In order to address diagenesis in this study,
the [Sr] of the analyzed rock was plotted against the
87
Sr/86Sr isotopic ratio.
When the rock is diagenetically altered, Sr concentrations are in most cases
reduced (Montañez et al., 1996). However, since initial ocean [Sr] can differ, as
well as the original mineralogy (calcite vs. aragonite), there is no set standard for
rejecting 87Sr/86Sr values based on Sr concentrations and evaluation must be made
on a case-by-case basis. Based upon the range of [Sr] in samples from the
Permian samples, a threshold of 100 ppm was used to exclude data points from
the plotted
87
Sr/86Sr curve. Most samples had Sr concentrations well above this
threshold, ranging to well above 1000 ppm in some parts of the section and
averaging ~ 500 ppm in others.
Results
While 87Sr/86Sr values peak in the upper Gzhelian at 0.7085, a line through
the least radiogenic values changes little (~ 0.7081 to 0.7082) from the late
Ghzelian into the early Asselian. This interval is the first leg of the
curve.
87
Sr/86Sr
A substantial drop from the upper-most Asselian to just below the
24
Sakmarian, defines leg 2 of the curve. This sharp drop constitutes a change of
0.002 in approximately a million years. Leg 3 encompasses approximately the
same change in the strontium ratios as leg 2, but spread out over approximately 10
million years. The least radiogenic values achieved at Ninemile Canyon are
0.7077. At Rockland Ridge values continue the overall downward trend and
define leg 4 of the curve.
The base of the Tieqaio section shows quickly descending 87Sr/86Sr values
from 0.7077 to just above 0.7074 within the first ~30 meters. At the base of the
Kungurian values have fallen to define leg 5. Leg 6 is defined by a gentler slope,
though values are still declining. Values shift from just above 0.7074 down to
0.7070 in the Roadian. In the next 5 million years values descend only very
25
slightly to just below 0.7070.
This slight decrease constitutes leg 7 of the
87
Sr/86Sr curve. The low of just below 0.7070 defines the base of leg 8, which
then begins the upward trend to just above 0.7070 in the lowest most
Changhsingian. This slight increase precedes the major increase that occurs at the
Permian-Triassic boundary.
Discussion
The high resolution, stratigraphically ordered 87Sr/86Sr values produced in
this study through the Permian have at least two potential uses. First and most
simply, these values can be used as a stratigraphic tool for correlation. This usage
26
is based on the fact that dissolved Sr has a very long residence time of millions of
years in the oceans but is well mixed in the oceans and thus consistent globally at
any single time horizon (DePaolo and Ingram, 1985; Andersson et al., 1992;
Paytan et al., 1993). Sr isotope stratigraphy is particularly useful in an interval
like the Cisuralian and lower Guadalupian where the rate of change in the curve is
marked.
A LOWESS curve (LOcally Weighted Scatterplot Smoother of Cleveland,
1979,1981; Chambers et al., 1983; Thisted, 1988; Cleveland et al.,1992) has been
fitted to the Phanerozoic
87
Sr/86Sr curve creating a two-sided 95% confidence
interval (CI) from which the age of any individual sample can be estimated. This
95% CI is very narrow in intervals with many chronostratigraphic tie points and a
high density of data (for the time period from 0-7 Ma the half-width is
±0.000003), but diminishes back in time intervals with less data (McArthur and
Howarth, 2004). For most of the Paleozoic, precision aims at ±0.000015, but the
Permian CI exceeds this half-width because of a paucity of data.
Figure 10 shows a comparison of the data from this study with the results
of Korte et al. (2006). The new dataset can be used as a correlation tool (e.g.,,
Korte sample ru 25 from the Usolka section in the Ural Mountains has an 87Sr/86Sr
value of 0.707964 for the Asselian Streptognathodus constrictus conodont Zone;
range for entire zone is 0.707964-0.708005, n = 4. In Nevada, the samples that
record this approximate value begin at Similarly, the overlying St. barskovi Zone
has a range of values between 0.707897 and 0.708058 in Korte et al. (2006). The
27
base of the Sakmarian is at the base of the Sw. merrilli Zone, which has values
that range from 0.707643 up to 0.707830 in Korte et al. (2006). In the Ninemile
Canyon section, the base of the Sakmarian is constrained by this same conodont
zone at approximately 900 meters in the section where similar Sr values occur
(0.707939). The Sakmarian-Artinskian boundary is 0.707776 in the Ninemile
Canyon section, which is biostratigraphically constrained (Sweetognathus whitei
Zone). This can be compared with positions from samples in the dataset of Korte
et al. (2006), where the lowest Artinskian value in sample sb12 from Tempelet
Svalbard is 0.707702, but is not yet assigned to a conodont zone. This difference
of 0.000074 is significant, and may reflect that the boundary can be defined using
28
fusulinids or conodont identification.
In Korte et al. (2006), no Kungurian
samples are constrained by biostratigraphy, and therefore cannot be compared
with the Chinese dataset. In the Tieqiao Section, basal Kungurian data shows
values of 0.707421. This compares favorably with the 0.707470 value in sample
sbNor3 from Akselova West Svalbard, which provides generally good agreement
with a difference of 0.000049. Basal Guadalupian samples in China have values
of ~0.7071, consistent with samples in Korte et al. (2006) from the type section in
the Guadalupe Mountains. In the lowest Capitanian Korte et al. (2006), show a
value of 0.706854 in sample GM 8 from Road cut 46.5 miles from Carlsbad. The
stratigraphically lowest Capitanian sample is also the lowest value in the Tieqiao
dataset, giving a value of 0.706954, a difference of 0.0001. Although this is a
substantially different value, also it is the same as the second lowest value in the
Korte et al. (2006) dataset. Additional work is therefore needed to verify the
magnitude of this difference and determine its origin.
Kani et al. (2008) examine the
87
Sr/86Sr values from a mid-Panthalasssic
paleoatoll. At this locality the Permian minimum value was defined (0.706914±
0.000012) in the fusulinid Yabeina Zone with a second minimum in a
biostratigraphically barren interval between the Lepidolina and CodonofusiellaReichelina Zone. At Tieqiao, minimum values of 0.706954 occur in the bed
H116 in the middle of the Capitanian (Yabeina Zone; Shen et al., 2007). In the
partly
time-equivalent
Neoschwagerina
Zone
above
this,
values
are
approximately 0.707216 and then drop to 0.707006 before the Codonofusiella
29
Zone. This is likely the second minimum. It has been suggested that this is a low
stand in sea level in the Tieqiao section during this interval (Wignall et al., 2009).
This may account for a partial truncation of the second minimum. The second
minimum occurs just before the Guadalupian-Lopingian Boundary, with a rapid
increase to values of 0.707230 at the boundary in Japan and China.
Sr isotope data can also be used is as a proxy indicator of changes in
atmospheric CO2 and potentially indicate a driving mechanism for long-term
climate change. This connection is based on the silicate weathering mechanism
of removing CO2 from the atmosphere and depositing it as carbonate in the
oceans (Berner, 2005).
The Sr drop through much of the Permian is consistent with progressively
less continental weathering of radiogenic (granitic) silicates. This decreasing rate
of silicate weathering may reflect the large scale tectonic-scale events that were
diminishing in the early half of the Permian, including the waning of the
Hercynian and Uralian orogenies that had peaked in the Late Pennsylvanian (e.g.,
Scotese and McKerrow, 1990, Zeigler, 1989). Another factor that may relate to
decreased silicate weathering is the increasing aridification of the Pangean
continental interior (e.g. Stephenson and Osterloff, 2002, Tabor et al., 2008).
Other factors contributing to the Sr decline through much of the early to middle
Permian may have included the initiation of the opening of the Neotethys Ocean
(Stampfli, 2000; Stampfli et al., 2001) and the cessation of basaltic magmatism in
30
the Paleotethys (Béchennec, 1988; Blendinger, 1988; Béchennec et al., 1993;
Pillevuit et al., 1997).
The Permian Sr curve shows the previously well-defined descent, but by
looking at the inflection points defined in our high-resolution curve, it becomes
possible to link these to shorter term glacial events that should have affected
delivery of strontium to the oceans. The most prominent and likely shorter-term
climate events to affect delivery of strontium to the oceans are the episodic glacial
events that extend through much of the Cisuralian and Guadalupian. As
glaciations occur, they enhance silicate weathering, potentially affecting Sr
delivery to the oceans. For example, in the Cenozoic, Zachos et al. (1999) point
to the exhumation and erosion of the Antarctic Shield as having created smaller
scale features on the overall increase in
87
Sr/86Sr values. However, because we
cannot say with much confidence precisely when the glacial events happened
biostratigraphically, declaring a coincidence or causal relationship here represents
an untested hypothesis only.
At the base of the Permian boundary, the onset of a marked decrease in
87
Sr/86Sr values of more than 0.0003 may correspond to the initiation of the P1
episode of glaciation (299-291 Ma) of Fielding et al. (2008). Another inflection
point occurs in the mid-Sakmarian, smaller in magnitude but longer lasting than
the previous one. This inflection point may correspond to the onset of the P2
episode (287-280 Ma), estimated to be the largest of the Late Paleozoic Ice Age
events.
The next inflection in the curve is in the upper Artinskian (a drop of
31
0.0002 in just less than 30 meters of rock). This relatively extreme variation may
be in part an artifact of sediment condensation. The samples could actually be
older than published reports suggest. This is a possibility, as the lithologies are
more fissile and thinner bedded than any of the subsequent sections. A flooding
event following deglaciation could produce sediment starvation at the end of the
P2 glacial.
Conclusion
The overall decrease in Permian strontium isotope values is attributed to a
combination of tectonic-scale factors.
Deglaciation of the massive southern
hemisphere glaciers has also been called upon to have contributed to the
downward trend that persists through the Permian (Korte, 2006).
New
understanding of Permian glacial volume and duration, however, changes the way
glaciation plays into the shape of the curve. This study fills in the blanks in the
strontium record of the Permian, reduces stratigraphic uncertainty in regard
biostratigraphic correlation and most importantly, may constrain the timing of
climatic events within the Permian. This high resolution record shows evidence
of changes in strontium fluxes which may be directly caused by the fluctuations in
the glacial state.
32
References
Andersson, P.S., Wasserburg, G.J., and Ingri, J., 1992. The sources and transport
of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science
Letters, v. 113, pp. 459-472.
Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont
biostratigraphy in western and southwestern United States. Journal of
Paleontology, v. 49, pp. 284-315.
Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford
University Press, New York, 150 p.
Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the
GEOCARBSULF model. American Journal of Science, v. 306, pp. 295302.
Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F.,
and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout
Phanerozoic time. Geology, v. 10, pp. 516-519.
Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, T.A., 1983. Graphical
methods for data analysis. Pacific Grove, CA: Wadsworth and Belmont.
Cleveland, W.S., 1979. Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, v. 74, pp.
829-836.
Cleveland, W.S., 1981. LOWESS: A program for smoothing scatterplots by
robust locally weighted regression. The American Statistical Association,
v. 74, p. 45.
Cleveland W.S., Grosse, E., and Shyu, W.M., 1992. Local regression models. In:
Chambers, J.M., and Hastie, T., (Eds.), Statistical Models in South Pacific
Grove, CA. Wadsworth and Brooks/Cole, pp. 309-376.
Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning,
and climate change. American Journal of Science, v. 278, pp. 1345-1372.
Davis, A.C., Bickle, M.J., and Teagle, D.A.H., 2003. Imbalance in the oceanic
strontium budget. Earth and Planetary Science Letters, v. 211, pp. 173187.
33
Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., and Fletcher,
A., 1994. Construction of the Mississippian, Pennsylvanian and Permian
seawater 87Sr/86Sr curve. Chemical Geology, v. 112, pp. 145-167.
DePaolo, D.J., and Ingram, B., 1985. High-resolution stratigraphy with strontium
isotopes. Science, v. 227, pp. 938-941.
Dessert, C., Dupré, B. Gaillardet, J., Franҫois, L.M., and Allègre, C.J., 2003.
Basalt weathering laws and the impact of basalt weathering on the global
carbon cycle. Chemical Geology, v. 202, pp. 257-273.
Faure, G., Assereto, R., and Tremba, E.L., 1978. Strontium isotope composition
of marine carbonates of Middle Triassic to Early Jurassic age, Lombardic
Alps, Italy. Sedimentology, v. 25, pp. 523-538.
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and
Roberts, J., 2008. Stratigraphic record and facies associations of the late
Paleozoic ice age in eastern Australia (New South Wales and
Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.),
Resolving the Late Paleozoic Ice Age in Time and Space. Geological
Society of America, Special Paper, v. 441, pp. 41-57.
Frakes, L.A., 1979. Climates through Geologic Time. Elsevier, Amsterdam, 310
p.
Gradstein, F.M., Ogg, J.G., and Smith, A.G., (Eds.), 2004. A geologic time scale
2004. Cambridge University Press, Cambridge, United Kingdom, 589 p.
Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine
Pennsylvanian cyclothems in North America and consideration of possible
tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic
and eustatic controls on sedimentary cycles, Concepts in Sedimentology
and Paleontology, v. 4, pp. 65-87.
Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late
Paleozoic glaciation in Gondwana: Was glaciation responsible for the
development of Northern Hemisphere cyclothems? In: Chan, M.A., and
Archer, A.A., (Eds.), Extreme Depositional Environments: Mega EndMembers in Geologic Time. Geological Society of America, Special
Paper, v. 370, pp. 5-24.
Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic
deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R.,
Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age
34
in Time and Space. Geological Society of America, Special Paper, v. 441,
pp. 59-70.
Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian
glaciation in the main Karoo Basin, South Africa: Stratigraphy,
depositional controls, and glacial dynamics. In: Fielding, C.R., Frank,
T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time
and Space. Geological Society of America, Special Paper, v. 441, pp. 7182.
Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late
Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153156.
Kani, T., Fukui, M., Isozaki, Y., and Nohda, S., 2008. The Paleozoic minimum of
87
Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A
critical turning point in the Late Paleozoic. Journal of Asian Earth
Sciences, v. 32, pp. 22-33.
Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F.,
Otto, J.B., and Waite, L.E., 1985. Construction of the seawater 87Sr/86Sr
curve for the Cenozoic and Cretaceous: Supporting data. Chemical
Geology, Isotope Geoscience Section, v. 58, pp. 55-81.
Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian
brachiopods: A record of seawater evolution and continental glaciation.
Palaeogeography, Palaeoclimatology, Palaeoecology, v, 224, pp. 333-351.
Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2006. 87Sr/86Sr record of
Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, v.
240, pp. 89-107.
Kump, L.R., and Arthur, M.A., 1997. Global chemical erosion during the
Cenozoic weatherability balances the budgets. In: Ruddiman, W.F., (Ed.),
Tectonic uplift and climate change, New York, Plenum Press, pp. 399425.
Martin, E., and Macdougall, J., 1995. Sr and Nd isotopes at the Permian/Triassic
boundary: A record of climate change. Chemical Geology, v. 125, pp. 7399.
McArthur, J.M, Howarth, R.J., and Bailey, T.R., 2001. Strontium isotope
stratigraphy, LOWESS Version 3: Best fit to the barine Sr-isotope curve
35
for 0-509 Ma and accompanying look-up table for deriving numerical age.
Journal of Geology, v. 109, pp. 155-170.
McArthur, J.M., and Howarth, R.J., 2004. Stronitum isotope stratigraphy. In:
Gradstein, J.G., Ogg, J.G., and Smith, A.G., (Eds.), A geologic time scale
2004. Cambridge University Press, Cambridge, pp. 96-125.
Mei, S., and Henderson, C.M., 2001. Evolution of Permian conodont
provincialism and its significance in global correlation and paleoclimate
implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170,
pp. 237-260.
Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., Bosserman, P.J., 1996.
Integrated Sr isotope variations and sea-level history of Middle to Upper
Cambrian platform carbonates: Implications for the evolution of Cambrian
seawater 87Sr/86Sr. Geology, v. 24, pp. 917-920.
Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D.,
Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic
deglaciation. Science, v. 315, pp. 87-91.
Morante, R., 1996. Permian and Early Triassic isotopic records of carbon and
strontium in Australia and a scenario of events about the Permian-Triassic
boundary. Historical Biology, v. 11, pp. 289-310.
Palmer, M.R., and Edmond, J.M. 1989. The strontium isotope budget of the
modern ocean. Earth and Planetary Science Letters, v. 92, pp. 11-26.
Paytan, A, Kastner, M., Martin, E.E., Macdougall, J.D., and Herbert, T., 1993.
Marine barite as a monitor of seawater strontium isotope composition.
Nature, v. 366, pp. 445-449.
Peterman, Z.E., Hedge, C.E., and Tourtelot, H.A., 1970. Isotopic composition of
strontium in seawater throughout Phanerozoic time. Geochimica et
Cosmochimica Acta, v. 34, pp. 105-120.
Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986. Textural, elemental and
isotopic variations among constituents in Middle Devonian limestones,
North America. Journal of Sedimentary Petrology, v. 56, pp. 715-727.
Scotese, C., 2002. PALEOMAP Project. www.scotese.com
Scotese, C.R., and McKerrow, W.S., 1990. Revised world maps and introduction.
In: McKerrow, W.S. and Scotese, C.R., (Eds.), Paleozoic Paleogeography
36
and Biogeography. Geological Society of London, Memoirs, v. 12, pp. 121.
Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007.
Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan
area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139.
Shields, G.A., Carden, G.A., Veizer, J., Meidla, T., Rong, J., and Li, R., 2003. Sr,
C, and O isotope geochemistry of Ordovician brachiopods: A major
isotopic event around the Middle-Late Ordovician transition. Geochimica
et Cosmochimica Acta, v. 67, pp. 2005-2025.
Stallard, R.F., 1995. Relating chemical and physical erosion. In: Brantley, S.L.
(Ed.), Reviews in Mineralogy, v. 31, pp. 543-564.
Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian
tectonically controlled basins: Evidence from the central Pequop
Mountains, Northeast Nevada. AAPG Hedberg Conference: Late
Paleozoic Tectonics and Hydrocarbon Systems of Western North
America—The Greater Ancestral Rocky Mountains. July 21-26, 2002.
Vail, Colorado.
Thisted, R.A., 1988. Elements of Statistical Computing. Chapmand and Hall,
New York, 427 p.
Tierney, K.E., and others. in prep. High-resolution carbon isotope composite
curve for the Permian System: Implications for organic carbon burial and
global climate.
Tierney, K.E., and others. in prep. An early Permian (Asselian-Sakmarian) carbon
isotope excursion from Nevada.
Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in
Gondwanaland reflected in transgressive-regressive depositional
sequences in Euramerica. Geological Society of America, Bulletin, v. 98,
pp. 475-487.
Veizer, J., and Compston W., 1974. 87Sr/86Sr in Precabrian carbonates as an index
of crustal evolution. Geochimica et Cosmochimica Acta, v. 40, pp. 905915.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden
G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek
37
F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O
evolution of Phanerozoic seawater. Chemical Geology, v. 161, pp. 59-88.
Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP
candidate section of Lopingian-Guadalupian boundary. Earth and
Planetary Science Letters, v. 220, pp. 57-67.
Wanless, H.R., and Shepard, F.P., 1936. Sea level and climatic changes related to
late Paleozoic cycles. Geological Society of America Bulletin, v. 47, pp.
1177-1206.
Wardlaw, B.R., Davydov, V., Mei, S., and Henderson, C., 1998. New reference
sections for the Upper Carboniferous and Lower Permian in Northeast
Nevada. Permophiles: Newsletter of the Subcommission on Permian
Stratigraphy, v. 31, pp. 5-8.
Wignall, P.B., Bedrine, S. Bond, D.P.G., Wang, W., Lai, X.L., Ali, J.R., and
Jiang, H.S., 2009. Facies analysis and sea-level change at the
Guadalupian-Lopingian global stratotype (Laibin, south China), and its
bearing on the end-Guadalupian mass extinction. Journal of the Geological
Society of London, v. 166, pp. 655-666.
Zachos, J.C., Opdyke, B.N., Quinn, T.M., Jones, C.E., Halliday, A.N., 1999.
Early Cenozoic glaciation, Antarctic weathering and seawater 87Sr/86Sr: Is
there a link? Chemical Geology, v. 161, pp. 165-180.
38
Chapter 3
High-resolution carbon isotope composite curve for the Permian System:
implications for organic carbon burial and global climate
Abstract
More than 1,000 marine carbonate carbon isotope (δ13Ccarb) samples from two
sections in the Pequop Mountains, Nevada, USA, and the Tieqiao section, near
Laibin, Guangxi Province, China were analyzed to create a stratigraphicallyordered, biostratigraphically well-constrained, high-resolution composite δ13Ccarb
curve for the Permian System. Samples were collected in conjunction with
conodont biostratigraphic sampling and from sections with well-established
foraminiferal biostratigraphic control. Previously published Permian composite
δ13Ccarb curves indicate elevated δ13Ccarb values >+4.0‰ for most of the Permian
but are relatively low in sample resolution. The high-resolution data presented
here demonstrate that there is significant structure to the Permian δ13Ccarb curve,
including both discrete positive and negative δ13Ccarb excursions.
Because there is a paucity of Permian δ13Ccarb data, particularly for the
Cisuralian and Guadalupian series, many of the events from these intervals
identified by this study remain to be identified elsewhere, and require verification
39
before they can be demonstrated to be global events. In contrast, considerable
data exists from the Lopingian Series. Some of the events from the uppermost
Guadalupian and Lopingian identified here have been documented from other
localities, which allows comparisons between data sets and discussion of the
global nature of these events. For example, our study can verify that the Kamura
event and the negative excursion at the Guadalupian-Lopingian boundary are truly
global geochemical features of the Permian δ13Ccarb record.
Introduction
The Permian was a time of transition from the glacial interval that
dominated the Pennsylvanian and early Permian to the Triassic which was icefree and considered to be an interval of global climate amelioration (Frakes and
Francis, 1988; Crowley and Baum, 1991, 1992; Crowell, 1999; Mei and
Henderson, 2001; Isbell, 2003; Fielding et al., 2008). The nature of the icehousegreenhouse transition and timing of global events that may have driven this
change remains controversial due to the lack of good biostratigraphic indicators
(Isbell, 2003a, 2003b; Isbell et al., 2006; Rygel et al., 2007; Fielding et al., 2008).
Although chemostratigraphic investigations have been carried out in recent years
(Korte et al., 2005; Grossman et al., 2008), the limited time resolution of these
studies (1-3 samples per million years) makes it difficult to identify global
excursions that may improve Permian chronostratigraphy. Furthermore,
considering the evidence for a highly variable climate during the Permian
icehouse-greenhouse transition, as observed in the terrestrial (tillites, periglacial
40
lake deposits, coals, evaporites, redbeds) and marine (ocean circulation, faunal
turnover) records, it seems likely that the carbon isotopic composition of the
oceans was undergoing fluctuations as well (Mei and Henderson, 2001; Davydov
et al, 1999).
Here, a biostratigraphically constrained carbon isotope (δ13Ccarb) curve is
reported from the sampling of marine limestones in measured sections of Nevada,
USA (Asselian-Artinskian) and South China (Kungurian-Changhsingian). This
investigation has shown that there is structure to the δ13Ccarb curve, including
possible excursions throughout the Permian.
These excursions can serve as
important chemostratigraphic horizons (or tie points). Further, when the carbon
isotope fluctuations are considered in conjunction with the rock record, it may
41
become possible to address the causes of deglaciation as Earth experienced the
first icehouse-to-greenhouse transition with fully vegetated continents (Montañez
et al., 2007).
The first reporting for many of the events noted, this is a
preliminary study that needs to be ground tested for repeatability to discern which
of these events are truly global in nature and which could be locally influenced.
Geologic Background
In the Permian, the Pangean supercontinent was fully assembled with the
Panthalassic
Ocean
surrounding the continent
and the Tethys Ocean
shaping
the
boundary
Ziegler
Scotese,
eastern
(Figure
et
1,
al.,
1997;
2002).
The
Cisuralian
interval
was
collected
from
two
sections 20 km apart in the
Pequop
Mountains
in
northeastern Nevada, USA
(Ninemile
Canyon
and
Rockland Ridge; Figure
42
2). The carbonates present in these mountains were originally deposited in basins
with open communication to the Panthalassic Ocean on the western margin of the
North American plate (Robinson,1961; Sweet and Snyder, 2002).
The Guadalupian and Lopingian samples were collected at the Tieqiao Section,
near Laibin, in Guangxi Province, China. This section records sedimentation
from the Jiangnan Basin on the South China block, between the Cathaysian and
Yangtze cratons (Wang et al., 2004; Figure 3). The strata were deposited on a
continuously subsiding platform creating a thick sediment wedge that had open
communication to the Tethys Ocean.
43
In the early Permian, conodont faunas were cosmopolitan but by the
beginning of the Kungurian Age conodont faunas become regionally endemic at
the species level (Behnken, 1975; Mei and Henderson, 2001). Near the beginning
of the Guadalupian Epoch species became endemic at the genus level. The
endemic nature of conodonts and other fauna during this interval indicates that the
global ocean was not mixing as completely as at other times (Figure 4).
Previous work
Carbon Isotopes
The Permian has not yet been subject to the intense and systematic
isotopic treatment as other Paleozoic time periods (e.g. Saltzman, 2005). The
interval that is best studied is the Permian-Triassic boundary interval. The endPermian biotic event is associated with a negative carbon isotope excursion and,
as is the case throughout the Phanerozoic, debate continues about the driving
mechanism for changes in δ13Ccarb (ocean anoxia: Wignall and Twitchett, 1996;
Isozaki, 1997; outgassing of oceanic H2S: Kump et al., 2005; methane clathrate
release due to global warming: Krull and Retallack, 2000; Siberian Trap
volcanism: Renne and Basu, 1991; Bolide impact: Becker and Poreda, 2001;
Kaiho et al., 2001; Becker et al., 2004; Kerr, 2004; Koeberl et al., 2004;
chemocline upward event: Riccardi et al., 2007; Kershaw, 2008).
It is also
instructive to note that the end-Permian event has been documented in multiple
44
sections worldwide (Iran: Korte et al., 2004; Slovenia: Dolenec et al., 2004;
Schwab and Spangenberg, 2004; Japan; Musashi et al., 2001; Austria: Magaritz et
al., 1992; Wolbach et al., 1994; China: Krull et al., 2004), which suggests that
events documented elsewhere in the Permian section may also be recognizable
globally.
Previously, there were two major δ13Ccarb composite curves published for
the Permian (Korte et al., 2005; Grossman et al., 2008). The samples in the
δ13Ccarb curve produced by Korte et al., (2005) are differentiated into two
45
categories depending on how reliable each sample is shown to be, and considering
factors such as cathodoluminescence, trace element concentration, and
stratigraphic certainty.
Although the curve includes samples tied to
biostratigraphic zones within stages, the sampling density is still low and makes it
difficult to identify true excursions.
The curve produced by Grossman et al. (2008) is based on lowmagnesium calcite from screened brachiopod shells and extends up from the
Pennsylvanian through the Cisuralian and Guadalupian (Permian). This curve has
stage-level biostratigraphic control on individual samples, which limits the ability
to correlate trends globally and to identify excursions. Both the Korte et al.
(2005) and Grossman et al. (2008) curves confirm that values in the Permian are
generally elevated relative to typical Paleozoic levels.
Climate
Estimation of the extent and timing of glaciation in the Late Paleozoic has
been an ongoing discussion focused primarily on low latitude cyclothemic
deposits (Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979; Veevers and
Powell, 1987; Heckel, 1994). The extent and timing of the Late Paleozoic Ice
Age has been redefined by Fielding et al. (2008) to include four episodes of
southern hemisphere continental glaciation in the Permian. The first two of these
episodes (P1: lower Asselian, 299 Ma - middle Sakmarian, 291 Ma and P2: upper
Sakmarian, 287 Ma – mid-Artinskian, 280 Ma) are considered major continental
46
glaciations with relatively large lateral extent, though a single large ice dome is
questioned (Isbell, 2003a).
The second two of these glacial episodes are
considered relatively small (P3: upper Kungurian, 273 Ma – upper Roadian, 268
Ma and P4: Wordian, 267 Ma – lowest most Wuchiapingian, 260 Ma), possibly
not of continental scale, as there is no evidence of bedrock displacement along
coastline in periglacial environments common to the first to events.
Biostratigraphic evidence that distinguishes these episodes is largely terrestrial,
making it difficult to fit these events into the marine biostratigraphic framework.
Methods
Samples were collected in measured sections in conjunction with
conodont samples starting in the Gzhelian (latest Pennsylvanian) at Ninemile
Canyon in the Pequop Mountains, Nevada. Sampling continued upward through
the lower Artinskian before switching over to Rockland Ridge approximately 20
km north starting in the upper Sakmarian through the lower most Kungurian.
Samples were collected at the Tieqiao section in China starting in the uppermost
Artinskian through the lowermost Changhsingian. These sections in Nevada and
China contain enough biostratigraphic overlap to ensure continuity in the
composite section.
47
All samples were drilled on a clean carbonate surface for approximately
500 μg of powder. For each sample, 75-95 μg was analyzed for δ18O relative to
Vienna Peedee Belemnite Limestone standard (V-PDB) and δ13Ccarb. Asselian
and Sakmarian samples from Ninemile Canyon, Nevada, were measured by Yohei
48
Matsui in Andrea Grottoli’s Stable Isotope Biogeochemistry Laboratory at The
Ohio State University using a Kiel device coupled to a Finnigan Delta IV Plus
stable isotope ratio mass spectrometer. Samples were acidified under vacuum
with 100% ortho-phosphoric acid.
The
resulting
CO2
was
cryogenically
purified and delivered to the mass spectrometer. Approximately 10% of samples
were run in duplicate. The standard deviation of repeated measurements of an
internal standard was ±0.03‰ for δ13C and ±0.09‰ for δ18O
Artinskian samples from Rockland Ridge, Nevada were measured by Greg
Cane at the University of Kansas Keck Paleoenvironmental and Environmental
Stable Isotope Laboratory under the direction of Luis Gonzalez. Samples here
were processed using a Kiel Carbonate Device III and a Finnigan MAT253
Isotope Ratio Mass Spectrometer. Samples were roasted under vacuum at 200o
for one hour then acidified using 100% prepared phosphoric acid at 75 o. CO2 is
trapped cryogenically, then transferred online to an IRMS instrument where it is
measured 8 times versus a calibrated CO2 reference tank for δ. Standards used for
calibration were NBS-18 Carbonatite and NBS-19 Limestone giving a precision
better than ±0.02‰ for δ13C and better than ±0.05‰ for δ18O.
Samples from the Artinskian through the Changhsingian from Tieqaio,
China were measured by Michael Joakimski at Erlangen University, Germany.
Carbonate powders were reacted with 100% phosphoric acid at 70 o C using a
Gasbench II connected to a Finnigan Five Plus mass spectrometer. All values are
reported in per mil concentration relative to V-PDB using NBS 19 as the standard.
49
50
R
Reproducibility was checked by replicate analysis of laboratory standards and
10% of samples were run in duplicate. Values can be considered dependable to
with in ±0.02‰.
Results
Values of δ13Ccarb at the base of the Cisuralian are ~2.0‰. The basal
Asselian low point is followed by a stepwise increase through the Asselian
culminating in an excursion in the Sakmarian with peaks of +4.4‰ and +4.8‰ VPDB. Through the remainder of the Sakmarian and the Artinskian there is a
steady decrease, reaching the lowest point in the Cisuralian at ~0.3‰ just above
the base of the Artinskian (Figure 7).
Values in the lower Artinskian are the lowest in the Cisuralian reaching
almost 0.0‰. From this point there is an increasing trend to approximately
+3.8‰ over an estimated 4 million years. Above this, there is some short-term
oscillation, but it is at a low amplitude through the remainder of the Artinskian.
Most of the Kungurian shows oscillations between ~+2‰ and ~+4‰. A short
term rise to +5.4‰ and return to values of 1.0‰ occurs just above the KungurianRoadian boundary (Figure 8).
The Guadalupian shows three distinct isotopic intervals corresponding
closely to stage boundaries. The curve in the Roadian begins with low values of ~
1‰ and then reaches higher values averaging +3.5‰.
The Wordian is
characterized by lower values averaging +1.6‰. Values in the Capitanian shift
positively to average +2.4‰.
51
The Capitanian interval of more positive δ13Ccarb values ends sharply in
the upper Capitanian negative excursion. The negative shift reaches a low of -2.8.
In the uppermost Capitanian, starting in conodont Jinogondolella granti Zone,
values are elevated to ~+3‰. These heavy values extend across the GuadalupianLopingian boundary to C. postbitteri and end in the C. dukouensis Zone, where
values descend to a low of -3.2‰. The Wuchiapingian starts with these relatively
low values near -3.2‰, but quickly recovers to a distinctly elevated interval
where values average +3.7‰ before reaching a high of +6.3‰. The top of the
Wuchiapingian shows a negative shift back to values ~ +2.0‰. The age of this
negative shift is not clearly defined, however, because the highest reported
conodont, C. leveni, is more than 120 m below. Furthermore, the shift is 286 m
below the first appearance of Palaeofusulina, which marks the middle
Wuchiapingian.
Discussion
The Permian δ13Ccarb curve documented in this study shows features that
may have been obscured in previous studies because of poor chronostratigraphic
control and low sample resolution. Many of the events documented in this here
(Figure 9) therefore require confirmation from high-resolution studies elsewhere
in the world where biostratigraphic control is adequate.
The basal Asselian through mid-Sakmarian are dominated by an
increasing trend that culminates in an excursion to values almost +5‰. The
52
Neostrep
pequopensis
Unit
Foram
Conodont
Series
Stage
Kung.
Neostrop
pnevi
δ13Ccarb
P. leonardensis
P. deltoides
Pr. guembeli
R. stanislavi
Ch. haxkinsi
1850
1775
1750
1725
1700
1675
1650
Chalaroschwagerina solita
Ch.nelsoni
Eoparafusulina liearis
1625
1600
1575
1550
1525
100 meters
Sweetognathus
whitei
Artinskian
Rockland Ridge
1825
1800
1500
Cisuralian
1475
1450
1425
1400
1375
1350
1325
Grainstone
Wackestone
Mounds
Covered
Sand
Silt
Chert
Sweet. merrilli
Neogond uralensis
Sch. cribroseptata
Sch. tersaPs. lineonada
1025
1000
975
950
925
Strep.
constrictus
Strep.
isolatus
Strep.
brownvillensis
1050
Sch. aff. moelleriP. giganteaEo. allisonensis
St. barskovi
Strep.
postfusus
Strep.
fusus
Strep
wabaunsensis
= ppm Sr less than 100
1275
1075
P. kansanensis
Sch. campa-Pseudo
fus. longissimoideaLep. koschmanniTr. ventricosus
Ninemile Canyon
Asselian
Sakmarian
Sweet.
binodosus
1300
1100
900
875
850
825
800
775
725
Gzhellian
Late Pennsylvanian
750
700
Strep.
virgilicus (s.l.)
675
650
625
600
0
1
2
3
4
5
6
Figure 3.7. δ13Ccarb data from Ninemile Canyon and Rockland Ridge
Nevada plotted against stratigraphy.
53
steady increase in values over millions of years indicates enhanced organic carbon
burial in the global oceans
related to glacial conditions that likely caused
vigorous circulation and upwelling (see Chapter 4 in this thesis; and Tierney et
al., in prep.)
Values through most of the Kungurian oscillate between +2‰ and +4‰,
similar to the curve from the Pennsylvanian icehouse world (Saltzman, 2005). In
the upper Kungurian in the interval that bears the fusulinid Schwagerina
chihsiaensis, low values of ~ 2‰ suggest relatively low rates of organic carbon
production and burial in a post-glacial world with less vigorous upwelling. The
rapid increase in values in the interval bearing the fusulinids Neomisellina,
Neoschwagerina, and Minojapanella pulchra reaches peak values of +5.4‰.This
shift back to heavier values may be related to the return of vigorous ocean
circulation as indicated by the presence of phosphates and organic-rich shales
such as the Phosphoria Formation (Carol et al., 1998; Stephens and Caroll, 1999).
The next interval of positive δ13Ccarb values observed across the
Guadalupian-Lopingian boundary was named the Kamura Event by Isozaki et al.,
(2006), based on original documentation in the study of a paleo-atoll that has
accreted to become part of modern southern Japan. This event, including a
plateau of δ13Ccarb values of ~+5‰ in the Lepidolina fusulinid Zone followed by a
decline by 4‰ in the Codonofusulina-Reichelina Zone, is attributed to a collapse
in primary productivity related to the end of the Guadalupian cool period (e.g.,
Tong et al., 1999; Hallam and Wignall, 1999; Beauchamp and Baud, 2002). The
54
negative shift that ends the Kamura event (Wignall et al., 2009) shares much in
common with the negative shift at the Permian-Triassic boundary (P-TB), most
55
importantly its association with a major biotic crisis. This biotic event eliminated
approximately 50% of species. The cause of both events may have been flushing
of organically-derived 12CO2 enriched anoxic bottom waters (Kershaw, 1999).
To the west of Tieqiao at Xiong Jia Chang Section, Wignall et al., (2009)
relate the negative excursion in the Prexuanhanensis Conodont Zone and the
concurrent foraminifer extinction to the emplacement of volcanics associated with
the Emeishan Large Igneous Province (LIP). At Gouchang, about 50 km away
from the eastern margin of the LIP shows the extinction interval and the following
negative excursion by approximately 20 meters of strata. The association of the
emplacement of the LIP, the extinction and the negative δ13Ccarb excursion they
conclude is likely a result of cooling and emission of SO2 and sulfate aerosol
formation in the atmosphere and consequent environmental changes.
The single negative shift noted in this study is followed by subsequent
negative shifts identified in this study that may be related to further activity in this
and other LIPs around the world. However, the negative excursion and extinction
event discussed by Wignall et al. is also associated with changes in base level, so
the changes attributed to the onset of volcanic influence may be acting in
combination with other factors already at work at the start of the extinction event,
such as changes in glacial mass and ocean-circulation changes.
This is testable by looking for precipitated micritic mud and microbialite
crust associated with this boundary event. Although the Kamura event is clearly
recorded in our section, there is evidence for regional variability in δ13Ccarb. Just
56
before the Guadalupian-Lopingian Boundary our data shows values of ~3‰
associated with the fusulinids Neomisellina, Neoschwagerina, and Minojapanella
pulchra. Values rapidly decline to exhibit a negative excursion to values as low
as -3.2‰ with the first appearance of Codonofusulina-Reichelina and the
conodont Clarkina postbitteri. These values are consistent with the findings of
earlier studies form this section and the GSSP at Meishan (Wang et al., 2004;
Kaiho et al., 2005) but absolute values are different than those shown at Kamura.
Offset of δ13Ccarb values from are not unheard of between sections representing
the Panthalassic and Tethys Oceans. This has been shown before by Mii et al.
(2006) in the Pennsylvanian values. However, in that case the Tethian values
were more elevated compared to the Panthalassic Ocean values possibly due to
upwelling in Panthalassic Ocean. This is opposite of what is observed here in the
Permian, suggesting that upwelling may have characterized the Tethys at this
time.
Above the negative excursion at the Guadalupian-Lopingian Boundary,
values recover to average ~3.7‰ but reach highs above +6‰. This suggests that
significant burial of organic matter may have been occurring in a stagnant ocean
related to enhanced preservation rather than high primary production (Saltzman,
2005).
57
58
Conclusion
I present a new biostratigraphically well-constrained, stratigraphically
ordered high-resolution δ13Ccarb composite for the Permian System.
Trends
identified here are in some cases well known in other regions, but in other time
intervals the trends must be documented elsewhere to determine whether they
were global in scope.
The best known event occurs near the Guadalupian-
Lopingian boundary and may be useful for intercontinental correlation.
The
structure of the δ13Ccarb curve will allow it to be used as a stratigraphic tool and
perhaps contribute to untangling the complicated climate story that is so relevant
to our modern climate change.
References
Beauchamp, B., and Baud, A., 2002. Growth and demise of Permian biogenic
chert along northwest Pangea: Evidence for end-Permian collapse of
thermohaline circulation. Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 184, pp. 37- 63.
Becker, L., and Poreda, R.J., 2001. Fullerene and mass extinction in the geologic
record. Meteoritic and Planetary Sciences, v. 36, p. A17.
Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harison, T.M., Nicholson, C.,
and Iasky, R., 2004. Bedout: A possible end-Permian impact crater
offshore of northwestern Australia. Science, v. 304, pp. 1469-1477.
Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont
biostratigraphy in western and southwestern United States. Journal of
Paleontology, v. 49, pp. 284-315.
Caroll A., Stephens, N.P., Hendrix, M.S., Glenn, and G.R., 1998. Eolian-derived
siltstone in the Upper Permian Phosphoria Formation: Implications for
marine upwelling. Geology, v. 26, pp. 1023-1026.
Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning,
and climate change. American Journal of Science, v. 278, pp. 1345-1372.
59
Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the
climate system. Geological Society of America, Memoir, v. 192, pp. 1106.
Crowley, T.J., and Baum, S.K., 1991. Estimating Carboniferous sea-level
fluctuations from Gondwana ice extent. Geology, v. 19, pp. 975-977.
Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation.
Geology, v. 20, pp. 507-510.
Dolenec, M., Ogorelec, B., and Lojen, S., 2003. Upper Carboniferous to lower
Triassic carbon isotopic signature in carbonate rocks of the western Tethys
(Slovenia). Geologica Carpathica, v. 54, pp. 217-228.
Dolenec, T., Orgorelec, B., Dolenec, M., and Lojen, S., 2004. Carbon isotope
variability and sedimentology of the upper Permian carbonate rocks and
changes across the Permian-Triassic boundary in the Masore section
(western Slovenia). Facies,
v. 50, pp. 287-299.
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A.T., and
Roberts, J., 2008. Stratigraphic record and facies associations of the late
Paleozoic ice age in eastern Australia (New South Wales and
Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.),
Resolving the Late Paleozoic Ice Age in Time and Space. Geological
Society of America, Special Paper, v. 441, pp. 41-57.
Frakes, L.A., 1979. Climates through Geologic Time: Amsterdam, Elsevier, 310
p.
Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates
from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp.547549.
Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B.,
Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon
sequestration in the Permo-Carboniferous: The isotopic record from low
latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp.
222-233.
Hallam, A., and Wignall, P.B., 1999. Mass extinction and sea-level changes.
Earth-Science Reviews, v. 48, pp. 217-250.
60
Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine
Pennsylvanian cyclothems in North America and consideration of possible
tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic
and eustatic controls on sedimentary cycles. Concepts in Sedimentology
and Paleontology, v. 4, pp. 65-87.
Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late
Paleozoic glaciation in Gondwana: Was glaciation responsible for the
development of Northern Hemisphere cyclothems? In: Chan, M.A., and
Archer, A.A., (Eds.), Extreme depositional environments: Mega end
members in geologic time. Geological Society of America, Special Paper,
v. 370, pp. 5-24.
Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic
deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R.,
Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age
in Time and Space. Geological Society of America, Special Paper, v. 441,
pp. 59-70.
Isozaki,Y., 1997. Permo-Triassic boundary Superanoxia and stratified
superocean: Records from lost deep-sea. Science, v. 276, pp. 235-238.
Isozaki, Y., Kawahata, H., and Ota, A., 2006. A unique carbon isotope record
across the Guadalupian-Lopingian (middle-upper Permian) boundary in
mid-oceanic paleo-atoll carbonates: The high-productivity “Kamura
Event” and its collapse in Panthalassa. Global and Planetary Change, v.
55, pp. 21-38.
Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K.,
Ueshima, M., Chen, Z., and Shi, G. R., 2001. End-Permian catastrophe by
a bolide impact: Evidence of a gigantic release of sulfur from the mantle.
Geology, v. 29, pp. 815-818.
Kaiho, K., Chen, Z.Q., Ohashi, T., Arinobu, T., Sawada, K., and Cramer, B.S.,
2005. A negative carbon isotope anomaly associated with the earliest
Lopingian (Late Permian) mass extinction. Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 223, pp. 172-180.
Kerr, R.A., 2004. Evidence of a huge, deadly impact found off the Australian
coast? Science, v. 304, pp. 941.
Kershaw, S., Zhang, T., and Lan, G., 2008. A microbialite carbonate crust at the
Permian-Triassic boundary in South China, and its palaeoenvironmental
61
significance. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 146,
pp. 1-18.
Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, AB., Sephton, M.A., 2004.
Geochemistry of the end-Permian extinction event in Austria and Italy: no
evidence for an extraterrestrial component. Geology, v. 32, pp. 1053-1056.
Korte, C., Kozur, H.W., Joachimski, M.M., Strauss, H., Veizer, J., and Schwark,
L., 2004. Carbon, sulfer, oxygen and strontium isotope records, organic
geochemistry and biostratigraphy across the Permian/Triassic boundary in
Abadeh, Iran. International Journal of Earth Science, v. 93, pp. 565-581.
Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian
brachiopods: A record of seawater evolution and continental glaciation.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, pp. 333-351.
Krull, E.S., and Retallack, G.J., 2000. δ13C depth profiles from paleosols across
the Permian –Triassic boundary: Evidence for methane release. Geological
Society of America Bulletin, v. 112, pp. 1459-1472.
Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y., and Li, R., 2004.
Stable carbon isotope stratigraphy across the Permian-Triassic boundary in
shallow marine carbonate platforms, Nanpanjiang Basin, south China.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 204, pp. 297-315.
Kump, L.R., Pavlov, A., Arthur, M.A., 2005. Massive release of hydrogen sulfide
to the surface ocean and atmosphere during intervals of oceanic anoxia.
Geology, v. 33, pp. 397-400.
Magaritz, M., Krishnamurty, R.V., Holser, W.T., 1992. Parallel trends in organic
and inorganic carbon isotopes across the Permian-Triassic boundary.
American Journal of Science, v. 292, p. 727-739.
Mei, S., and Henderson, C. M., 2001. Evolution of Permian conodont
provincialism and its significance in global correlation and paleoclimate
implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170,
pp.237–260.
Mii, H.S., Grossman, E.L., Yancey, T.E., Chuvashov, B., Egorov, A., 2001.
Isotopic records of brachiopod shells from the Russian Platform—
evidence for the onset of mid-Carboniferous Glaciation. Chemical
Geology, v. 175, pp. 133-147.
62
Musashi, M. Isozaki, Y., Koike, T., and Kreulen, R., 2001. Stable carbon isotope
signature in mid-Panthalassa shallow-water carbonates across the PermoTriassic boundary: evidence for 13C-depleted superocean. Earth and
Planetary Science Letters, v. 191, pp. 9-20.
Renne, P.R, and Basu, A.R., 1991. Rapid eruption of the Siberian traps flood
basalts at the Permo-Triassic boundary. Science, v. 253, pp. 176-179.
Riccardi, A., Kump, L.R., Arthur, M.A., and D’Hondt, S., 2007. Carbon isotopic
evidence for chemocline upward excursions during the end-Permian event.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 248, pp. 73-81.
Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P., 2008. The
magnitude of late Paleozoic glacio-eustatic fluctuations: A synthesis.
Journal of Sedimentary Research, v. 78, pp. 500-511.
Saltzman, M.R., 2005. Phosphorus, nitrogen, and the redox eveolution of the
Paleozoic Oceans. Geology, v. 33, pp. 573-576.
Schwab, V., and Spangenberg, J.E., 2004. Organic geochemistry across the
Permian-Triassic transition at the Idrijca Valley, western Slovenia.
Applied Geochemistry, v. 19, p. 55-72.
Scotese, C., 2002. PALEOMAP Project. www.scotese.com
Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007.
Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan
area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139.
Stephens, N.P., and Caroll, A.R., 1999. Salinity stratification in the Permian
Phosphoria sea: A proposed paleoceanographic model. Geology, v. 27, pp.
899-902.
Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian
tectonically controlled basins: Evidence from the central Pequop
Mountains, Northeast Nevada. AAPG Hedberg Conference: Late
Paleozoic Tectonics and Hydrocarbon Systems of Western North
America—The Greater Ancestral Rocky Mountains. July 21-26, 2002.
Vail, Colorado.
Tierney, K.E., and others. in prep. High-resolution carbon isotope composite
curve for the Permian System: Implications for organic carbon burial and
global climate.
63
Veevers, J.J., and Powell, M., 1987. Late Paleozoic glacial episodes in
Gondwanaland reflected in transgressive-regressive depositional
sequences in Euramerica. Geological Society of America Bulletin, v. 98,
pp. 475-487.
Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower
Carboniferous sequence stratigraphy of South China. Journal of China
University of Geosciences, v. 7, pp. 87-94.
Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP
candidate section of Lopingian-Guadalupian Boundary. Earth and
Planetary Science Letters, v. 220, pp. 57-67.
Wanless, H.R., and Shepard F.P., 1936. Sea level and climate change related to
the late Paleozoic cycles. Geological Society of America, Bulletin, v. 47,
pp. 1177-1206.
Wignall, P.B., and Twitchett, R.J., 1996. Oceanic anoxia and the end Permian
mass extinction. Science, v. 272, pp. 1155-1158.
Wignall, P.B., Morante, R., and Newton, R., 1998. The Permo-Triassic transition
in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies,
fauna and trace fossils. Geological Magazine, v. 135, pp. 47-62.
Wignall, P.B., Sun, Y., Bond, D.P.G., Izon, G., Newton, R.J., Védrine, S.,
Widdowson, M., Ali, J.R., Lai, X., Jiang, H., Cope, H., and Bottrell, S.H.,
2009. Volcanism, mass extinction, and carbon isotope fluctuations in the
Middle Permian of China. Science, v. 324, pp. 1179-1182.
Wolbach, W.S., Roegge, D.R., and Gilmour, I., 1994. The Permian-Triassic of
the Gartnerkofel-1Core (Carnic Alps, Austria): Organic carbon isotope
variation. Conference on New Developments Regarding the K/T Event
and Other Catastrophes in Earth History, Lunar and Planetary Institute,
Houston, pp. 133-134.
Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography
and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial
Environmental Changes—Quaternary, Carboniferous-Permian, and
Proterozoic. Oxford University Press, Oxford, pp. 111-146.
64
Chapter 4
An early Permian (Asselian-Sakmarian) carbon isotope excursion documented
from Nevada
Abstract: A δ13Ccarb curve starting just below the base of the Permian and
continuing through the basal Artinskian Stage shows a previously unrecognized
carbon isotope excursion. The excursion starts just below the Asselian-Sakmarian
boundary, peaking in the mid-Sakmarian, with values of +4.8‰ and returning to
baseline values of ~+1.0‰ in the upper Sakmarian. While previous studies have
suggested that values remain high through the entire Permian (~+4‰) and
excursions cannot be identified, the δ13Ccarb curve noted here indicates that
excursions can potentially be identified with increased sample resolution.
The
δ13Ccarb excursion shown here correlates closely to the main phase of the Late
Paleozoic Ice Age (LPIA), which reaches its climax in the Asselian and
Sakmarian. The excursion is here linked to high oceanic primary productivity
caused by the glaciation and added nutrient delivery to the photic zone driven by
eolian transport and active circulation in the oceans.
65
Introduction
The Cisuralian (early Permian) is a time thought to be the acme of the Late
Paleozoic Ice Age (LPIA) (Frakes and Francis, 1988; Crowley and Baum, 1991,
1992; Crowell and Peryt, 1995: Crowell, 1999; Isbell, 2003; Fielding et al., 2008).
The timing and extent of glacial episodes and their relation to climate change and
global carbon cycling, however, are still debated (Dickins, 1996; Isbell et al.,
2003; Montañez et al., 2007). One approach to a better understanding of the
causes and consequences of Permian glacial episodes is to compare
biostratigraphically well constrained carbon isotope stratigraphy with the episodic
66
physical record of glaciation during this interval.
The early Permian has been characterized in a previous study by
consistently high carbon isotope values averaging around ~+4‰ (Korte et al.,
2005). Grossman et al. (2008) showed greater variability than this, but several of
the major fluctuations in the curve do not correlate globally, so they may reflect
local controls on carbon cycling or stratigraphic uncertainty in correlations. These
previously published composite curves use brachiopod calcite and although they
may include a large number of samples for a single time horizon, the stratigraphic
resolution can be as low as
to ~1-2 samples per million
years
in
certain
time
intervals (e.g., the ‘good’
brachiopods of Korte et al.,
2005
in
the
Cisuralian).
Here we develop a new,
relatively
δ13Ccarb
high
curve
resolution
for
the
Permian (Cisuralian) using
micritic limestones collected
from measured sections in
northeast Nevada. We then
examine
the
relationship
67
between events in the δ13Ccarb record, glaciations, and global climate.
Geological settings
During the latest Pennsylvanian and early Permian the supercontinent
Pangea was fully assembled, with Nevada located along the western margin of the
North American plate, a few degrees north of the equator (Sweet and Snyder,2002
Figure 1). Tectonic changes in the area created relatively short-lived dropdown
basins that collected sediment to form thick strata for the life of that basin
(Hodgkinson, 1961; Wardlaw et al., 1998; Sweet and Snyder, 2002).
The
Ninemile Canyon section is located in the Pequop Mountains in northeast Nevada
(Figure 2). During the late Paleozoic this area was covered with a shallow epeiric
sea that had open communication with the open ocean.
The Ninemile Canyon section includes strata spanning the Kasimovian
Stage (upper middle Pennsylvanian) through the Kungurian Stage (Permian).
These strata contain both fusulinids and conodonts that are correlable to other
sections globally (Behnken, 1975; Stevens, 1979; Wardlaw et al., 1998; Mei and
Henderson, 2001; Figure 3). In this study, samples were collected from the
Ghzelian (upper Pennsylvanian) across the Pennsylvanian-Permian boundary up
through to the Artinskian Stage. This interval of time is represented in two
formations, the Riepe Spring Limestone and the Rib Hill Formation (Wardlaw et
al., 1998). Both of these formations are dominated by a wide range of fine and
coarser grained limestone lithologies (for a detailed discussion of the region see
68
Robinson et al., 1961).
The Riepe Spring Limestone was interrupted by
occasional chert-rich intervals and conglomeratic channelizations.
Glacial Events
Episodes of the Late Paleozoic Ice Age (LPIA) have been based in part on
low latitude cyclic strata in North America and Europe (Veevers and Powell,
1987; Frakes and Francis, 1988; Crowley and Baum, 1991, 1992; Frakes et al.,
1992; Gastaldo et al., 1996 Crowell, 1999; Crowell and Peryt, 1995; Hyde et al.,
1999, Heckel, 2008). More recently, Southern Hemisphere ice-proximal and
glaciogenic deposits been re-evaluated (e.g. Isbell, 2008: Fielding et al., 2008).
Isbell et al. (2006) examined evidence for glaciation from the major basins
around Gondwana, including the Paraná Basin of Brazil, Paraguay, and Uruguay,
the Karoo Basin of South Africa, the Kalahari Basin of Namibia, Botswana and
69
South Africa, the Transantarctic Basin of the central Transantarctic Mountains,
the Officer and Canning Basins of Western Australia, and the Gondwana Master
Basins of Peninsular India. Three glacial events were defined, including two that
were local and alpine in nature in the Carboniferous (Glacial I and II) and a third
more extensive episode extending from the upper most Carboniferous or basal
Permian (Asselian) through the middle Sakmarian (Permian) (Glacial III). In
eastern Australia, eight major glacial events were defined through this same
interval (Fielding et al., 2008). Four of the events were identified from the
Carboniferous (C1-C4) and four more events were identified from the Permian
(P1-P4). The focus of this study is the isotopic proxy of glaciation in the period
corresponding to the P1 episode (basal Asselian to middle Sakmarian), and the P2
episode, (late Sakmarian through middle Artinskian).
These events were dated
using SHRIMP analysis of tuffs that are interbedded with glacial and periglacial
deposits (Fielding et al., 2008). Additionally, the glacial episodes are constrained
biostratigraphically using palynostratigraphic and brachiopod zones, but these are
difficult to correlate with standard marine zonations from sections in Nevada.
Methods and Results
Methods
One of the main goals of this project was to increase stratigraphic
resolution of carbon isotope stratigraphy through the lower Permian. This could
only be accomplished if the sample medium used is micrite. Brachiopods, while
commonly assumed to return the most reliable values in chemostratigraphic
70
investigations (e.g. Mii et al., 1999), limit sampling resolution because analysis
can take place only on intervals yielding appropriate specimens.
Carbonate
powders containing an admixture of select carbonate grains (i.e. crinoids,
brachiopods, etc.) and primary marine micrite have been shown repeatedly to
faithfully record the original isotopic signature of Paleozoic marine waters (e.g.,
Saltzman, 2005; Banner and Hansen, 1990). The dependability of micrite as a
sample medium has been demonstrated in every other system in the Paleozoic
(Cambrian: Ripperdan et al., 1992; Saltzman et al., 1998; 2000; Ordovician:
Finney et al., 1999; Kump et al., 1999, Silurian: Cramer et al., in press, Devonian:
Joachimski and Buggisch 1993; Wang et al., 1996, and Carboniferous: Saltzman,
2002).
A particularly useful demonstration of the comparability of the two
71
methods is shown in the Silurian of Gotland where micrite and brachiopods were
processed from the same strata and show nearly identical results (compare results
of Munnecke et al., 1997 and Bickert et al., 1997, as well as Cramer et al., in
press).
The Ninemile Canyon section was collected from below the basal Permian
boundary through the top of the Sakmarian stage. The lithologies are largely
micritic mud to packstone with occasional chert and rare siliciclastic-rich
intervals.
Forty carbonate samples were processed for δ13Ccarb through the
Asselian and Sakmarian interval with a preference for fine grained carbonate. All
samples were processed in by Yohei Matsui in Andrea Grottoli’s Stable Isotope
Biogeochemistry Laboratory at The Ohio State University. Each sample was
drilled on a clean carbonate surface for approximately 500μg of powder. For each
sample, 75-95μg was analyzed for δ18O and δ13Ccarb relative to Vienna Peedee
Belemnite Limestone standard (V-PDB). A Kiel device coupled to a Finnigan
Delta IV Plus stable isotope ratio mass spectrometer was used for analysis.
Samples were acidified under vacuum with 100% ortho-phosphoric acid. The
resulting CO2 was cryogenically purified and delivered to the mass spectrometer.
Approximately 10% of samples were run in duplicate. The standard deviation of
repeated measurements of an internal standard was ±0.03‰ for δ13C and ±0.09‰
for δ18O
72
Results
The lowest sample in the Gzhelian measured δ13Ccarb of +3.4 ‰ (VPDB).
From this point, there is a decrease to +1.5‰ at 27.5 m above the PennsylvanianPermian boundary.
A stepwise increase is observed through the Asselian,
reaching an initial peak at 4.4‰ at 117 meters above the base of the Permian,
followed by a second peak reaching +4.8‰ in the mid-Sakmarian. Values decline
to +1.7‰ just below the Sakmarian-Artinskian boundary (Figure 4). When the
δ13Ccarb
values
produced in study
were plotted against
δ18O
values
no
covariant trend was
observed that would
indicate alteration of
primary
values
(Figure 5).
Discussion
The Asselian through mid-Sakmarian δ13Ccarb excursion is unlike many
other positive carbon isotope excursions in the Paleozoic (Buggisch and
Joachimski, 2006; Cramer et al., in press) in that the change (+3.3‰) occurs over
a relatively long interval of time (~8 Ma). However, as with the shorter duration
73
(< 2 myr) excursions that are common during the Paleozoic (e.g., Brenchley et al.,
2003; Cramer and Saltzman, 2005; Saltzman, 2005), this Asselian-Sakmarian
excursion is likely related to changes in nutrient cycling, organic matter
preservation and burial. The early Permian δ13Ccarb curve is discussed here in the
context of the early Permian stratigraphic record of climate change and biotic
turnover.
Causes of the δ13Ccarb excursion
Positive shifts in marine δ13Ccarb such as that observed here are commonly
interpreted to reflect increased burial of isotopically light organic carbon (e.g.,
Kump and Arthur, 1999; Arthur et al., 1987 Berner, 2004; Figure 6).
This
enhanced organic burial can result from an increase in primary production or in
the fraction of organic carbon that is preserved upon reaching the seafloor.
Increased preservation of organic carbon can be caused by stagnation of oceanic
bottom waters, possibly associated with downwelling of warm, saline bottom
waters (Bralower and Thierstein, 1984; Herbert and Sarmiento, 1991; Cramer and
Saltzman, 2005). In addition, anoxic bottom waters will promote regeneration of
nutrient phosphorus, which may promote primary production (Van Cappellen and
Ingall, 1996; Lenton and Watson, 2000).
74
75
Positive δ13Ccarb excursions that relate to anoxic events may be associated with
episodes of high sea level and extensive black shale deposition in deep ocean
basins (Scholle and Arthur, 1980; Arthur et al., 1987; Pedersen and Calvert, 1990;
Cramer and Saltzman, 2005, 2007; Cramer et al., 2006). According to this
model, in order to maintain anoxic conditions, climatic warming must be
sustained through the entire interval and would likely be preserved lithologically
as black shales in the deep basins. This is not what is present through this interval
in the major deep cratonic basins (Norwegian Barents Sea-Svalbard- North
Greenland area: Stemmerik and Worsley; 2005; Northwest China: Chen et al.,
2003; South Africa; Bangert et al., 1999; eastern Australia: Rygel et al., 2008;
Western Australia: James et al., 2009). It is possible that significant quantities of
organic matter were buried in nearshore siliciclastic environments with high
sedimentation rates. However, Permian nearshore siliciclastic deposits remain
poorly dated, and difficult to relate to changes in marine carbonate δ13Ccarb.
In addition to high organic carbon burial, which is the most plausible
scenario, enhanced carbonate weathering during sea level fall may also increase
δ13Ccarb (Kump and Arthur, 1999). Enhanced carbonate weathering may also have
been promoted by the major mountain building event occurring in the Urals
(Chuvashov, 1990).
In this scenario, the weathering products of ancient
limestones that are isotopically heavy are added to the ocean carbon reservoir,
shifting the overall values to higher δ13Ccarb. This mechanism would fit the
pattern of a long-term, low amplitude δ13Ccarb event. However, the timing of
76
erosive episodes during the mountain building event is difficult to match with the
timing of δ13Ccarb changes.
It seems plausible that the Asselian through mid-Sakmarian δ13Ccarb
excursion described here has resulted from a combination of both enhanced
organic carbon burial and carbonate weathering. In order to change the rate of
primary production (Arthur et al., 1987), which is the most likely mechanism for
increasing organic carbon burial, a change must occur in the availability of
nutrients to the surface waters.
Changing the rate of primary production can be done in several ways, all
of which are consistent with the timing of the Asselian through mid-Sakmarian
δ13Ccarb excursion during one of the largest glaciations of the Late Paleozoic Ice
Age (Isbell, 2003; Fielding, 2007). There was likely an increase in the equator-topole thermal gradient, which would have increased ocean ventilation and
delivered relatively nutrient-rich bottom waters to the surface in regions of
upwelling (Bralower and Thierstein, 1984; Herbert and Sarmiento, 1991). By
creating stronger zones of upwelling and stimulating productivity, more carbon
could be delivered to the sea floor in the form of organic matter to be added to the
lithospheric reservoir. Additionally, in a time of glaciation there is likely to be a
stronger atmospheric circulation, delivering more nutrients to the oceans by
means of eolian transport (e.g., Falkowski, 1997).
Evidence for enhanced
atmospheric dust can be seen in massive siliciclastic sequences such as the Earp
and Scherrer Formations represent eolian deposited sediment in the marine realm
77
(Soreghan, 1992). Through the Permian there is also evidence that the interior of
Pangea becoming increasingly arid (Francis, 1994; Ziegler et al., 1997). These
two factors could combine to enhance nutrient delivery and already enhanced
primary productivity.
Sequence stratigraphic evidence from the Kansas-Oklahoma region and
regional sea level curves from western Pangea reveal evidence of sea level fall
during the Asselian through mid-Sakmarian δ13Ccarb excursion, and this is
consistent with the notion of both enhanced weathering of carbonates and higher
organic carbon burial. A highstand is recognized at the base of the Permian and a
major sequence boundary occurs in the mid-Sakmarian (Henderson and Mei,
2000; Boardman et al., 2009).
Council
Grove-Chase
Specifically, in the midcontinent region, the
Supersequence
begins
in
the
upper
Ghzelian
(Pennsylvanian), indicating a long-term highstand before the beginning of the
Permian; it ends in the mid-Sakmarian in a major regression (Mazzullo et al.,
2007; Boardman et al., 2009). Additionally, Permian localities around western
Pangea such as western Canada, the Phosphoria Basin, and the Sverdrup Basin
show a highstand of sea level at the base of the Asselian; it drops to a lowstand in
the mid-Sakmarian (Beauchamp et al., 1989; Beauchamp and Henderson, 1994;
Ross and Ross, 1995; Henderson and Mei, 2000).
This pattern of long term sea-level fall during the Asselian through midSakmarian excursion is reflected in the lithologies at the Ninemile Canyon section
in Nevada. The latest Carboniferous Gzhelian interval is cyclic, showing short78
term (likely glacio-eustatic) sea level change.
In the Carboniferous-Permian
boundary interval, a massive cliff-forming packstone is followed by more
cyclothems that give way to grainstones with conglomeratic channelizations by
the middle of the Sakmarian. These lithologic changes could be interpreted as a
long term decline in sea-level in this region. It is difficult to independently
identify eustatic sea level as the ultimate driver of these changes in relative sea
level in Nevada, however, because the region experienced tectonic activity that
caused basin subsidence (Snyder and Sweet, 2002).
Climatic implications
Sequestration and burial of organic matter, as shown by the gradual
increase in δ13Ccarb values, would have led to a reduction in atmospheric CO2
(Berner, 2005). This in turn would have increased the likelihood of glaciation.
Sedimentologic evidence of early Permian glaciation has been identified in this
interval by both Isbell et al. (Glacial III 2006) and Fielding et al. (2007). There is
no evidence of glaciation in the equatorial region of Nevada during the Permian.
Geologic evidence of climate changes are found in the southern hemisphere,
including western Australia, South America, and Antarctica (e.g., Isbell, 2003;
Isbell et al., 2008a; 2008b; Rygel et al., 2007).
For example, based on
sedimentologic evidence including tillites, periglacial sediments, and evidence of
regional isostatic loading, a glacial interval apparently started in the basal
79
Asselian and ended in the mid-Sakmarian, which is consistent with our
interpretation of the δ13Ccarb curve as recording a reduction in atmospheric CO2.
Grossman et al. (2008) show elevated δ13Ccarb values (4.6‰) that cross the
Pennsylvanian-Permian boundary and drop in the mid-Sakmarian to 3.6‰. These
values were derived from Composita brachiopods, which have been shown to be
1‰ higher than other components at the same horizon in the Pennsylvanian but
Grossman et al. (2008) proposed that this offset in values does not continue in to
the Permian. The δ13Ccarb trends shown by Grossman et al. (2008) indicate an
early Permian shift in which samples from the Russian Platform have increasing
values similar to the findings from this study. This trend contrasts with their
values derived from samples in the U.S. Midcontinent (Grossman et al., 2008).
This disagreement in the isotopic trends in different regions could be related to
correlation problems. The appearance of the conodont Sw. merrilli has recently
come into question as the delineator of the boundary because it seems to have
appeared significantly earlier in Bolivia (Henderson, 2009). This diachroneity
may account for the poor correlation between the different regions studied for
δ13Ccarb.
Values for δ13Ccarb reported by Korte et al. (2005) are similar to those
reported by Grossman et al. (2007). Korte et al. (2005) showed values for the
Asselian and Sakmarian that range between ~+3.0‰ and ~+5.5‰, averaging
+4.3‰. However, the Asselian and Sakmarian, which span 14.6 million years
(Wardlaw et al., 2008) is one of the most sparsely sampled intervals in this study
80
with only 17 reliable data points (‘good brachiopods’ of Korte et al., 2005) that
are used to calculate the running average.
While these studies have not identified clear trends within the early
Permian, they have shown that the interval is different from other times in the
geologic timescale. The early Permian was the first interval of a well forested
planet experiencing a glaciation and associated changes in carbon cycling.
Proxy evidence for atmospheric CO2 produced from fossil organic matter
and pedogenic carbonate nodules (Montañez et al., 2007) shows a trend that
declines from the lowest Permian reaching low values in the mid-Asselian and
remaining low until the mid-Sakmarian, where values rise rapidly. These data
agree with the interpretation that burial of organic matter occurred during the
time of the Asselian through mid-Sakmarian δ13Ccarb excursion.
Conclusion
High resolution sampling reveals a δ13C excursion in the mid-Sakmarian.
In this interval, glaciation occurred globally and sea level fell. Atmospheric
carbon dioxide was low when glaciation occurred, which can be explained by
high organic matter burial and the observed δ13C excursion. It is likely that
oceanographic and atmospheric conditions through this long glacial interval
increased nutrient delivery to the surface oceans to increase the burial of organic
matter.
81
References
Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C. 1987. The CenomanianTuronian Oceanic Anoxic Event II: Palaeoceanographic controls on
organic matter production and preservation. In: Brook J., and Fleet, A.J,
(Eds.), Marine Petroleum Source Rocks. Geological Society of London
Special Publications, v. 26, pp. 401-420.
Banner, J.L., and Hanson, G.N., 1990. Calculation of simultaneous isotopic and
trace element variation during water-rock interaction with applications to
carbonate diagenesis. Geochimica et Cosmochimica Acta, v. 54, pp.
3123-3137.
Bangert, B., Stollhofen, H., and Lorenz, V., 1999. The geochronology and
significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian
Dwyka Group of Namibia and South Africa. Journal of African Earth
Sciences, v. 29, pp. 33-49.
Beauchamp, B., Harrison, J.C., and Henderson, C.M., 1989. Upper Paleozoic
stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic
Archipelago, Part 1: Time frame and tectonic evolution. Current Research,
Part G, Geological Survey of Canada, Paper, v. 89-1G, pp. 105-113.
Beauchamp, B., and Henderson, C.M., 1994. Great Bear Cape and Trappers Cove
Formations, Sverdrup Basin, Canadian Arctic, conodont zonation.
Bulletin of Canadian Petroleum Geology, v. 42, pp. 562-597.
Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford
University Press, New York, 150 p.
Bickert, T., Paetold, J., Samtleben, C., and Munnecke, A., 1997.
Paleoenvironmental changes in the Silurian indicated by stable isotopes in
brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica
Acta, v. 61, pp. 2717-2730.
Boardman, D.R., II, Wardlaw, B.R., and Nestell, M.K., 2009. Stratigraphy and
conodont biostratigraphy of the uppermost Carboniferous and lower
Permian from the North American Midcontinent. Kansas Geological
Survey, Bulletin, v. 255, pp. 1-41.
Bralower, T.J., and Thierstien, H.R., 1984. Low productivity and slow deep-water
circulation in mid-Cretaceous oceans. Geology, v. 12, pp. 614-618.
82
Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T.,
Meidla, T., and Nõlvak, J., 2003. High-resolution stable isotope
stratigraphy of Upper Ordovician sequences: Constraints on timing of
bioevents and environmental changes associated with mass extinction and
glaciation. Geological Society of America, Bulletin, v. 115, pp. 89-104.
Buggisch, W., and Joachimski, M.M., 2006. Carbon isotope stratigraphy of the
Devonian of central and southern Europe. Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 240, pp. 68-88.
Chen, Z.Q., and Shi, G.R., 2003. Late Paleozoic depositional history of the Tarim
Basin, Northwest China: An integration of biostratigraphic and
lithostratigraphic constraints. American Association of Petroleum
Geologists, Bulletin, v. 87, pp.1323-1354.
Chuvashov, B.I., Dyupina, G.V., Mizens, G.A., and Chernych, V.V., 1990. Keysections of the Upper Carboniferous and Lower Permian of the western
slope of the Urals and Preurals. Ural Branch Academic Science of Russia,
Sverdlovsk: Uralian Branch of Russian Academy of Sciences, pp.3-367.
Cramer, B.D., and Saltzman, M.R. 2005. Sequestration of 12C in the deep ocean
during the early Wenlock (Silurian) positive carbon excursion.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, pp. 333-349.
Cramer, B.D., Saltzman, M.R., and Kleffner, M.A., 2006. Spatial and temporal
variability in organic carbon burial during global positive carbon isotope
excursions: New insight from high resolution δ13Ccarb stratigraphy from
the type area of the Niagran (Silurian) Provincial Series. Stratigraphy, v. 2,
pp. 327-340.
Cramer, B.D., and Saltzman, M.R., 2007. Early Silurian paired δ13Ccarb and
δ13Corg analyses from the midcontinent of North America: Implications for
Paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 256, pp. 195-203.
Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Mӓnnik,
P., Martma, T., Jeppsson, L., Kleffner, M.A. Barrick, J.E., Johnson, C.A.,
Emsbo, P., Bickert, T., Joachimski, M.M., Saltzman, M.R., in press.
Testing the limits of Paleozoic chronostratigraphic correlation via highresolution (<500kyr) integrated conodont, graptolite and carbon isotope
(δ13Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian)
boundary: Is a unified Phanerozoic timescale achievable? (In press with
Geological Society of America Bulletin.)
83
Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian
period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.),
Permian of northern Pangea, Paleogeography, paleoclimates, stratigraphy.
Springer-Verlag, Berlin, v. 1, pp. 62-74.
Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the
climate system. Geological Society of America, Memoir, v. 192, pp. 1106.
Crowley, T.J. and Baum, S.K., 1991. Estimating Carboniferous sea-level
fluctuations from Gondwana ice extent. Geology, v. 19, p. 975-977.
Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation.
Geology, v. 20, pp. 507-510.
Dickins, J.M., 1996. Problems of a Late Paleozoic glaciation in Australia and
subsequent climate in the Permian. Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 125, pp. 185-197.
Falkowski, P.G., 1997. Evolution of the nitrogen cycle and its influence on the
biological sequestration of CO2 in the ocean. Nature, v. 387, pp. 272-275.
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and
Roberts, J., 2008. Stratigraphic record and facies associations of the late
Paleozoic ice age in eastern Australia (New South Wales and
Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.),
Resolving the Late Paleozoic Ice Age in Time and Space. Geological
Society of America, Special Paper, v. 441, pp. 41-57.
Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R. L., Sweet, W.C.,
Jacobson, S. R., Soufiane, A., Achab, A., and Noble, P.J., 1999. Late
Ordovician mass extinction: A new perspective from stratigraphic sections
in central Nevada. Geology, v. 27, pp. 215-218.
Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates
from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp. 547549.
Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the
Phanerozoic: The history of the Earth’s climate over the past 600 million
years. Cambridge University Press, Cambridge, 274 p.
84
Francis, J.E., 1994. Palaeoclimates of Pangea—Geologic evidence. In: Embry,
A.F., Beauchamp, B., and Glass, D.J., (Eds.), Pangea Global
Environments and Resources. Canadian Society of Petroleum Geologists,
Memoir, v. 17, pp. 265-274.
Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W., 1996. Out of the icehouse into the greenhouse: A late Paleozoic analogue for modern global
vegetational change. Geological Society of America, Today, v. 10, pp. 17.
Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B.,
Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon
sequestration in the Permo-Carboniferous: The isotopic record from low
latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp.
222-233.
Heckel, P., 2008. Pennsylvanian cyclothems in Midcontinent North America as
far-field effects of waxing and waning of Gondwana ice sheets. In:
Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late
Paleozoic in Time and Space. Geological Society of America, Special
Paper, v. 441, pp. 275-289.
Henderson, C.M., and Mei, S., 2000. Preliminary cool water Permian conodont
zonation in Northern Pangea: A review. Permophiles: Newsletter of the
Subcommission on Permian Stratigraphy, v. 36, pp. 16-23.
Henderson, C.M., Schmitz, M., Crowley, J., and Davydov, V., 2009. Evolution
and Geochronology of Sweetognathus lineage from Bolivia and the Urals
of Russia: Biostratigraphic problems and implications for Global
Stratotype Section and Point (GSSP) definition. Permophiles: Newsletter
of the Subcommission on Permian Stratigraphy, v. 53, pp. 20-21.
Herbert, T.D., and Sarmiento, J.L., 1991. Ocean nutrient distribution and
oxygenation: Limits on the formation of warm saline bottom water over
the past 91 m.y. Geology, v. 19, pp. 702-705.
Hodgkinson, K.A., 1961. Pemian stratigraphy of northeastern Nevada and
northwestern Utah. Brigham Young University Geology Studies, v. 8, pp.
167-196.
Hyde, W.T., Crowley, T.J., Tarasov, L., and Paltier, W.R., 1999. The Pangean ice
age: Studies with a coupled climate-ice sheet model. Climate Dynamics, v.
15, pp. 619-629.
85
Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late
Paleozoic glaciation in Gondwana: Was glaciation responsible for the
development of Northern Hemisphere cyclothems? In: Chan, M.A., and
Archer, A.A., (Eds.), Extreme Depositional Environments: Mega EndMembers in Geologic Time. Geological Society of America, Special
Paper, v. 370, pp. 5-24.
Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian
glaciation in the main Karoo Basin, South Africa: Stratigraphy,
depositional controls, and glacial dynamics. In: Fielding, C.R., Frank,
T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time
and Space. Geological Society of America, Special Paper, v. 441, pp. 7182.
Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic
deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R.,
Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age
in Time and Space. Geological Society of America, Special Paper, v. 441,
pp. 59-70.
James, N.P., Frank, T.D., Fielding, C.R., 2009. Carbonate sedimentation in a
Permian high-latitude, subpolar depositional realm: Queensland, Australia.
Journal of Sedimentary Research, v. 79, pp.125-143.
Joachimski, M.M., and Buggisch, W., 1993. Anoxic events in the late Frasnian—
Causes of the Frasnian-Fammenian faunal crisis? Geology, v. 21, pp. 675678.
Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian
brachiopods: A record of seawater evolution and continental glaciation.
Palaeogeography, Palaeoclimatology, Palaeoecology, v, 224, pp. 333-351.
Kump, L.R., and Arthur, M.A.,1999. Interpreting carbon-isotope excursions:
Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198.
Lenton, T.M., and Watson, A.J., 2000. Redfield revisited: 1. Regulation of nitrate
phosphate and oxygen in the ocean. Global Biogeochemical Cycles, v. 14,
pp. 225-248.
Mazzullo, S.J., Boardman, D.R., II, Grossman, E.L., and Dimmick-Wells, K.,
2007. Oxygen-carbon isotope stratigraphy of Upper Carboniferous to
Lower Permian marine deposits in Midcontinent U.S.A. (Kansas and NE
86
Oklahoma): Implications for seawater chemistry and depositional
cyclicity. Carbonates and Evaporaites, v. 22, pp. 55-72.
Mei, S., and Henderson, C.M., 2001. Evolution of Permian conodont
provincialism and its significance in global correlation and paleoclimate
implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170,
pp.237-260.
Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999. Carboniferous isotope
stratigraphies of North America: Implications for Carboniferous
paleoceanography and Mississippian glaciation. Geological Society of
America, Bulletin, v. 111, p. 960-973.
Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D.,
Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic
deglaciation. Science, v. 315, pp. 87-91.
Munnecke, A., Westphal, H., Reijmer, J.J.G, and Samtleben, C., 1997. Microspar
development during early marine burial diagenesis: A comparison of
Pliocene carbonates from the Bahamas with Silurian limestones from
Gotland (Sweden). Sedimentology, v. 44, pp. 977-990.
Pedersen, T.F., and Calvert, S.E., 1990. Anoxia vs. Productivity: What controls
the formation of organic-carbon-rich sediments and sedimentary rocks?
American Association of Petroleum Geologists, Bulletin, v. 74, pp. 454466.
Ripperdan, R.L., Magaritz, M., Nicoll, R.S., and Shergold, J.H., 1992.
Simultaneous changes in carbon isotopes, sea level, and conodont
biozones within the Cambrian-Ordovician boundary interval at Black
Mountain, Australia. Geology, v. 20, pp. 1039-1042.
Robinson, G.B., Jr., 1961. Stratigraphy and Leonardian fusilinid paleontology in
Central Pequop Mountains, Elko County, Nevada. Brigham Young
University, Geology Studies, v. 8, pp. 93-145.
Ross, C.A., and Ross, J.R., 1995. Permian sequence stratigraphy. In: Scholle,
P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern
Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag,
Berlin, v. 1, pp. 98-123.
Rygel, M.C., Fielding, C.R., Bann, K.L., Frank, T.D., Birgenheier, L.P., and Tye,
S.C., 2008. The Early Permian Wasp Head Formation, Sydney Basin:
87
High-latitude, shallow marine sedimentation following the late Asselianearly Sakmarian glacial event in eastern Australia. Sedimentology, v. 55,
pp. 1517-1540.
Saltzman, M.R., Runneggar, B., and Lohmann, K.C., 1998. Carbon isotope
stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the
eastern Great Basin: Record of a global oceanographic event. Geological
Society of America, Bulletin, v. 110, pp. 285-297.
Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A.,
Chang, W.T., Peng, S., Ergaliev, E.K., and Runnegar, B., 2000. A global
carbon isotope excursion (SPICE) during the Late Cambrian: Relation to
trilobite extinctions, organic-matter burial and sea level. Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 162, pp. 211-223.
Saltzman, M.R., 2002. Carbon and oxygen isotope stratigraphy of the Lower
Mississippian (Kinderhookian-lower Osagean), Western United States:
Implications for seawater chemistry and glaciation. Geological Society of
America, Bulletin, v. 114, pp. 96-108.
Saltzman, M.R., 2005. Phosphorus, nitrogen and the redox evolution of the
Paleozoic oceans. Geology, v. 33, pp. 573-576.
Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous
pelagic limestones: Potential stratigraphic and petroleum exploration tool.
American Association of Petroleum Geologists, Bulletin, v. 64, pp. 67-87.
Scotese, C., 2002. PALEOMAP Project. www.scotese.com
Stemmerik, L., and Worsley, D., 1995. Permian history of the Barents shelf area.
In: Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S., (Eds.), Permian of
northern Pangea: Sedimentary basins and economic resources, SpringerVerlag, Berlin, v. 2, pp. 81-97.
Stevens, C.H., Wagner, D.B., and Sumsion, R.S., 1979. Permian fusilinid
biostratigraphy, Central Cordilleran Miogeosyncline. Journal of
Paleontology, v. 53, pp. 29-36.
Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian
tectonically controlled basins: Evidence from the central Pequop
Mountains, Northeast Nevada. AAPG Hedberg Conference: Late
Paleozoic Tectonics and Hydrocarbon Systems of Western North
America—The Greater Ancestral Rocky Mountains. July 21-26, 2002.
Vail, Colorado.
88
VanCappellen, P., and Ingall, E.D., 1996. Redox stabilization of the atmosphere
and oceans by phosphorus-limited marine productivity. Science, v. 271,
pp. 493-496.
Veevers, J.J., Powell, M., 1987. Late Paleozoic glacial episodes in Gondwanaland
reflected in transgressive-regressive depositional sequences in Euramerica.
Geological Society of America, Bulletin, v. 98, pp. 475-487.
Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower
Carboniferous sequence stratigraphy of South China. Journal of China
University of Geosciences, v. 7, pp. 87-94.
Wardlaw, B.R., Davydov, V., Mei,S., and Henderson, C., 1998. New Reference
Section for the Upper Carboniferous and Lower Permian in northeastern
Nevada. Permophiles: Newsletter of the Subcommission on Permian
Stratigraphy, v. 31, pp. 5-8.
Wardlaw, B.R., Davydov, V., and Gradstien, F.M., 2004. The Permian Period. In:
Gradstein, F.M., Ogg, F.G., and Smith, A.G., (Eds.), A geologic time scale
2004. Cambridge University Press, Cambridge, United Kingdom, pp. 249270.
Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography
and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial
Environmental Changes—Quaternary, Carboniferous-Permian, and
Proterozoic. Oxford University Press, Oxford, pp. 111-146.
89
Combined References
Andersson, P.S., Wasserburg, G.J., and Ingri, J., 1992. The sources and transport
of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science
Letters, v. 113, pp. 459-472.
Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., 1987. The CenomanianTuronian oceanic anoxic event II: Palaeoceanographic controls on organic
matter production and preservation. In: Brooks, J., and Fleet, A.J., (Eds.),
Marine Petroleum Source Rocks. Geological Society of London Special
Publication, v. 26, pp. 401-420.
Banner, J.L., and Hanson, G.N., 1990. Calculation of simultaneous isotopic and
trace element variation during water-rock interaction with applications to
carbonate diagenesis. Geochimica et Cosmochimica Acta, v. 54, pp.
3123-3137.
Bangert, B., Stollhofen, H., and Lorenz, V., 1999. The geochronology and
significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian
Dwyka Group of Namibia and South Africa. Journal of African Earth
Sciences, v. 29, pp. 33-49.
Beauchamp, B., Harrison, J.C., and Henderson, C.M., 1989. Upper Paleozoic
stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic
Archipelago, Part 1: Time frame and tectonic evolution. Current Research,
Part G, Geological Survey of Canada, Paper, v. 89-1G, pp. 105-113.
Beauchamp, B., and Henderson, C.M., 1994. Great Bear Cape and Trappers Cove
Formations, Sverdrup Basin, Canadian Arctic, conodont zonation.
Bulletin of Canadian Petroleum Geology, v. 42, pp. 562-597.
Beauchamp, B., and Baud, A., 2002. Growth and demise of Permian biogenic
chert along northwest Pangea: Evidence for end-Permian collapse of
thermohaline circulation. Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 184, pp. 37- 63.
Becker, L., and Poreda, R.J., 2001. Fullerene and mass extinction in the geologic
record. Meteoritic and Planetary Sciences, v. 36, p. A17.
Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harison, T.M., Nicholson, C.,
and Iasky, R., 2004. Bedout: A possible end-Permian impact crater
offshore of northwestern Australia. Science, v. 304, pp. 1469-1477.
90
Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont
biostratigraphy in western and southwestern United States. Journal of
Paleontology, v. 49, pp. 284-315.
Berner, R.A., 2004. A model for calcium, magnesium and sulfate in seawater over
Phanerozoic time. American Journal of Science, v. 304, pp. 438-453.
Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford
University Press, New York, 150 p.
Berner, R.A., 2006a. GEOCARBSULF: A combined model for Phanerozoic
atmospheric O2 and CO2 over Phanerozoic time. Geochimica et
Cosmochimica Acta, v. 70, pp. 5653-5664.
Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the
GEOCARBSULF model. American Journal of Science, v. 306, pp. 295302.
Bickert, T., Paetold, J., Samtleben, C., and Munnecke, A., 1997.
Paleoenvironmental changes in the Silurian indicated by stable isotopes in
brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica
Acta, v. 61, pp. 2717-2730.
Boardman, D.R., II, Wardlaw, B.R., and Nestell, M.K., 2009. Stratigraphy and
conodont biostratigraphy of the uppermost Carboniferous and lower
Permian from the North American Midcontinent. Kansas Geological
Survey, Bulletin, v. 255, pp. 1-41.
Bralower, T.J., and Thierstien, H.R., 1984. Low productivity and slow deep-water
circulation in mid-Cretaceous oceans. Geology, v. 12, pp. 614-618.
Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T.,
Meidla, T., and Nõlvak, J., 2003. High-resolution stable isotope
stratigraphy of Upper Ordovician sequences: Constraints on timing of
bioevents and environmental changes associated with mass extinction and
glaciation. Geological Society of America, Bulletin, v. 115, pp. 89-104.
Buggisch, W., and Joachimski, M.M., 2006. Carbon isotope stratigraphy of the
Devonian of central and southern Europe. Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 240, pp. 68-88.
Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F.,
and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout
Phanerozoic time. Geology, v. 10, pp. 516-519.
91
Caroll A., Stephens, N.P., Hendrix, M.S., Glenn, and G.R., 1998. Eolian-derived
siltstone in the Upper Permian Phosphoria Formation: Implications for
marine upwelling. Geology, v. 26, pp. 1023-1026.
Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, T.A., 1983. Graphical
methods for data analysis. Pacific Grove, CA: Wadsworth and Belmont.
Chen, Z.Q., and Shi, G.R., 2003. Late Paleozoic depositional history of the Tarim
Basin, Northwest China: An integration of biostratigraphic and
lithostratigraphic constraints. American Association of Petroleum
Geologists, Bulletin, v. 87, pp.1323-1354.
Chuvashov, B.I., Dyupina, G.V., Mizens, G.A., and Chernych, V.V., 1990. Keysections of the Upper Carboniferous and Lower Permian of the western
slope of the Urals and Preurals. Ural Branch Academic Science of Russia,
Sverdlovsk: Uralian Branch of Russian Academy of Sciences, pp.3-367.
Cleveland, W.S., 1979. Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, v. 74, pp.
829-836.
Cleveland, W.S., 1981. LOWESS: A program for smoothing scatterplots by
robust locally weighted regression. The American Statistical Association,
v. 74, p. 45.
Cleveland W.S., Grosse, E., and Shyu, W.M., 1992. Local regression models. In:
Chambers, J.M., and Hastie, T., (Eds.), Statistical Models in South Pacific
Grove, CA. Wadsworth and Brooks/Cole, pp. 309-376.
Cramer, B.D., and Saltzman, M.R. 2005. Sequestration of 12C in the deep ocean
during the early Wenlock (Silurian) positive carbon excursion.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, pp. 333-349.
Cramer, B.D., Saltzman, M.R., and Kleffner, M.A., 2006. Spatial and temporal
variability in organic carbon burial during global positive carbon isotope
excursions: New insight from high resolution δ13Ccarb stratigraphy from
the type area of the Niagran (Silurian) Provincial Series. Stratigraphy, v. 2,
pp. 327-340.
Cramer, B.D., and Saltzman, M.R., 2007. Early Silurian paired δ13Ccarb and
δ13Corg analyses from the midcontinent of North America: Implications for
Paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 256, pp. 195-203.
92
Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Mӓnnik,
P., Martma, T., Jeppsson, L., Kleffner, M.A. Barrick, J.E., Johnson, C.A.,
Emsbo, P., Bickert, T., Joachimski, M.M., Saltzman, M.R., in press.
Testing the limits of Paleozoic chronostratigraphic correlation via highresolution (<500kyr) integrated conodont, graptolite and carbon isotope
(δ13Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian)
boundary: Is a unified Phanerozoic timescale achievable? (In press with
Geological Society of America Bulletin.)
Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning,
and climate change. American Journal of Science, v. 278, pp. 1345-1372.
Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian
period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.),
Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy.
Springer-Verlag, Berlin, v. 1, pp. 62-74.
Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the
climate system. Geological Society of America, Memoir, v. 192, pp. 1106.
Crowley, T.J., and Baum, S.K., 1991. Estimating Carboniferous sea-level
fluctuations from Gondwana ice extent. Geology, v. 19, pp. 975-977.
Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation.
Geology, v. 20, pp. 507-510.
Davis, A.C., Bickle, M.J., and Teagle, D.A.H., 2003. Imbalance in the oceanic
strontium budget. Earth and Planetary Science Letters, v. 211, pp. 173187.
Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., and Fletcher,
A., 1994. Construction of the Mississippian, Pennsylvanian and Permian
seawater 87Sr/86Sr curve. Chemical Geology, v. 112, pp. 145-167.
DePaolo, D.J., and Ingram, B., 1985. High-resolution stratigraphy with strontium
isotopes. Science, v. 227, pp. 938-941.
Derry, L.A., Jacobsen, S.B., and Kauffman, A.J., 1992. Sedimentary cycling and
environmental change in the late Proterozoic: Evidence from stable and
radiogenic isotopes. Geochimica et Cosmochimica Acta, v. 56, pp. 13171329.
93
Dessert, C., Dupré, B. Gaillardet, J., Franҫois, L.M., and Allègre, C.J., 2003.
Basalt weathering laws and the impact of basalt weathering on the global
carbon cycle. Chemical Geology, v. 202, pp. 257-273.
Dickins, J.M., 1996. Problems of a Late Paleozoic glaciation in Australia and
subsequent climate in the Permian. Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 125, pp. 185-197.
Dolenec, M., Ogorelec, B., and Lojen, S., 2003. Upper Carboniferous to lower
Triassic carbon isotopic signature in carbonate rocks of the western Tethys
(Slovenia). Geologica Carpathica, v. 54, pp. 217-228.
Dolenec, T., Orgorelec, B., Dolenec, M., and Lojen, S., 2004. Carbon isotope
variability and sedimentology of the upper Permian carbonate rocks and
changes across the Permian-Triassic boundary in the Masore section
(western Slovenia). Facies,
v. 50, pp. 287-299.
Falkowski, P.G., 1997. Evolution of the nitrogen cycle and its influence on the
biological sequestration of CO2 in the ocean. Nature, v. 387, pp. 272-275.
Faure, G., Assereto, R., and Tremba, E.L., 1978. Strontium isotope composition
of marine carbonates of Middle Triassic to Early Jurassic age, Lombardic
Alps, Italy. Sedimentology, v. 25, pp. 523-538.
Faure, G., and Mensing, T.M., 2004. Isotopes: Principles and Application. Wiley,
928 p.
Fielding, C.R., Rygel, M.C, Frank, T.D., Birgenheier, L.P., Jones, A.T., and
Roberts, J., 2006. Near-field stratigraphic record of the late Paleozoic
Gondwanan Ice Age from eastern Australia discloses multiple alternating
glacial and non-glacial intervals. Geological Society of America, Abstracts
with Programs, v. 38, p. 317.
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and
Roberts, J., 2008. Stratigraphic record and facies associations of the late
Paleozoic ice age in eastern Australia (New South Wales and
Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.),
Resolving the Late Paleozoic Ice Age in Time and Space. Geological
Society of America, Special Paper, v. 441, pp. 41-57.
Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R. L., Sweet, W.C.,
Jacobson, S. R., Soufiane, A., Achab, A., and Noble, P.J., 1999. Late
Ordovician mass extinction: A new perspective from stratigraphic sections
in central Nevada. Geology, v. 27, pp. 215-218.
94
Frakes, L.A., 1979. Climates through Geologic Time. Elsevier, Amsterdam, 310
p.
Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates
from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp.547549.
Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the
Phanerozoic: The history of the Earth’s climate over the past 600 million
years. Cambridge University Press, Cambridge, 274 p.
Francis, J.E., 1994. Palaeoclimates of Pangea—Geologic evidence. In: Embry,
A.F., Beauchamp, B., and Glass, D.J., (Eds.), Pangea Global
Environments and Resources. Canadian Society of Petroleum Geologists,
Memoir, v. 17, pp. 265-274.
Frank, T.D., Birgenheier, L.P., Fielding, C.R., and Rygel, M.C., 2006. Near-field
stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern
Australia provides a framework for examining far-field stable isotope
records. Geological Society of America, Abstracts with Programs, v. 38,
pp. 318.
Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W., 1996. Out of the icehouse into the greenhouse: A late Paleozoic analogue for modern global
vegetational change. Geological Society of America, Today, v. 10, pp. 17.
Gibbs, M.T., Rees, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and
Rowley, D.B., 2002. Simulations of Permian climate and comparisons
with climate sensitive sediments. Journal of Geology, v. 110, pp. 33-55.
Gradstein, F.M., Ogg, J.G., and Smith, A.G., (Eds.), 2004. A geologic time scale
2004. Cambridge University Press, Cambridge, United Kingdom, 589 p.
Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B.,
Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon
sequestration in the Permo-Carboniferous: The isotopic record from low
latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp.
222-233.
Hallam, A., and Wignall, P.B., 1999. Mass extinction and sea-level changes.
Earth-Science Reviews, v. 48, pp. 217-250.
95
Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine
Pennsylvanian cyclothems in North America and consideration of possible
tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic
and eustatic controls on sedimentary cycles, Concepts in Sedimentology
and Paleontology, v. 4, pp. 65-87.
Heckel, P., 2008. Pennsylvanian cyclothems in Midcontinent North America as
far-field effects of waxing and waning of Gondwana ice sheets. In:
Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late
Paleozoic in Time and Space. Geological Society of America, Special
Paper, v. 441, pp. 275-289.
Henderson, C.M., and Mei, S., 2000. Preliminary cool water Permian conodont
zonation in Northern Pangea: A review. Permophiles: Newsletter of the
Subcommission on Permian Stratigraphy, v. 36, pp. 16-23.
Henderson, C.M., Schmitz, M., Crowley, J., and Davydov, V., 2009. Evolution
and Geochronology of Sweetognathus lineage from Bolivia and the Urals
of Russia: Biostratigraphic problems and implications for Global
Stratotype Section and Point (GSSP) definition. Permophiles: Newsletter
of the Subcommission on Permian Stratigraphy, v. 53, pp. 20-21.
Herbert, T.D., and Sarmiento, J.L., 1991. Ocean nutrient distribution and
oxygenation: Limits on the formation of warm saline bottom water over
the past 91 m.y. Geology, v. 19, pp. 702-705.
Hodgkinson, K.A., 1961. Pemian stratigraphy of northeastern Nevada and
northwestern Utah. Brigham Young University Geology Studies, v. 8, pp.
167-196.
Hyde, W.T., Crowley, T.J., Tarasov, L., and Paltier, W.R., 1999. The Pangean ice
age: Studies with a coupled climate-ice sheet model. Climate Dynamics, v.
15, pp. 619-629.
Hyde, W.T., Grossman, E.L., Crowley, T.J., Pollard, D., and Scotese, C.R., 2006.
Siberian glaciation as constraint on Permian-Carboniferous CO2 levels.
Geology, v. 34, pp. 421-424.
Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late
Paleozoic glaciation in Gondwana: Was glaciation responsible for the
development of Northern Hemisphere cyclothems? In: Chan, M.A., and
Archer, A.A., (Eds.), Extreme Depositional Environments: Mega End96
Members in Geologic Time. Geological Society of America, Special
Paper, v. 370, pp. 5-24.
Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian
glaciation in the main Karoo Basin, South Africa: Stratigraphy,
depositional controls, and glacial dynamics. In: Fielding, C.R., Frank,
T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time
and Space. Geological Society of America, Special Paper, v. 441, pp. 7182.
Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic
deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R.,
Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age
in Time and Space. Geological Society of America, Special Paper, v. 441,
pp. 59-70.
Isozaki,Y., 1997. Permo-Triassic boundary Superanoxia and stratified
superocean: Records from lost deep-sea. Science, v. 276, pp. 235-238.
Isozaki, Y., Kawahata, H., and Ota, A., 2006. A unique carbon isotope record
across the Guadalupian-Lopingian (middle-upper Permian) boundary in
mid-oceanic paleo-atoll carbonates: The high-productivity “Kamura
Event” and its collapse in Panthalassa. Global and Planetary Change, v.
55, pp. 21-38.
James, N.P., Frank, T.D., Fielding, C.R., 2009. Carbonate sedimentation in a
Permian high-latitude, subpolar depositional realm: Queensland, Australia.
Journal of Sedimentary Research, v. 79, pp.125-143.
Joachimski, M.M., and Buggisch, W., 1993. Anoxic events in the late Frasnian—
Causes of the Frasnian-Fammenian faunal crisis? Geology, v. 21, pp. 675678.
Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late
Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153156.
Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K.,
Ueshima, M., Chen, Z., and Shi, G. R., 2001. End-Permian catastrophe by
a bolide impact: Evidence of a gigantic release of sulfur from the mantle.
Geology, v. 29, pp. 815-818.
Kaiho, K., Chen, Z.Q., Ohashi, T., Arinobu, T., Sawada, K., and Cramer, B.S.,
2005. A negative carbon isotope anomaly associated with the earliest
97
Lopingian (Late Permian) mass extinction. Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 223, pp. 172-180.
Kani, T., Fukui, M., Isozaki, Y., and Nohda, S., 2008. The Paleozoic minimum of
87
Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A
critical turning point in the Late Paleozoic. Journal of Asian Earth
Sciences, v. 32, pp. 22-33.
Kerr, R.A., 2004. Evidence of a huge, deadly impact found off the Australian
coast? Science, v. 304, pp. 941.
Kershaw, S., Zhang, T., and Lan, G., 2008. A microbialite carbonate crust at the
Permian-Triassic boundary in South China, and its palaeoenvironmental
significance. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 146,
pp. 1-18.
Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, AB., Sephton, M.A., 2004.
Geochemistry of the end-Permian extinction event in Austria and Italy: no
evidence for an extraterrestrial component. Geology, v. 32, pp. 1053-1056.
Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F.,
Otto, J.B., and Waite, L.E., 1985. Construction of the seawater 87Sr/86Sr
curve for the Cenozoic and Cretaceous: Supporting data. Chemical
Geology, Isotope Geoscience Section, v. 58, pp. 55-81.
Korte, C., Kozur, H.W., Joachimski, M.M., Strauss, H., Veizer, J., and Schwark,
L., 2004. Carbon, sulfer, oxygen and strontium isotope records, organic
geochemistry and biostratigraphy across the Permian/Triassic boundary in
Abadeh, Iran. International Journal of Earth Science, v. 93, pp. 565-581.
Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian
brachiopods: A record of seawater evolution and continental glaciation.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, pp. 333-351.
Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2006. 87Sr/86Sr record of
Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, v.
240, pp. 89-107.
Kovalevich, V.M., Peryt, T.M., and Petrichenko, O.I., 1998. Secular variation in
seawater chemistry during the Phanerozoic as indicated by brine
inclusions in halite. Journal of Geology, v. 106, pp. 695-712.
98
Krull, E.S., and Retallack, G.J., 2000. δ13C depth profiles from paleosols across
the Permian –Triassic boundary: Evidence for methane release. Geological
Society of America Bulletin, v. 112, pp. 1459-1472.
Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y., and Li, R., 2004.
Stable carbon isotope stratigraphy across the Permian-Triassic boundary in
shallow marine carbonate platforms, Nanpanjiang Basin, south China.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 204, pp. 297-315.
Kump, L.R., and Arthur, M.A., 1997. Global chemical erosion during the
Cenozoic weatherability balances the budgets. In: Ruddiman, W.F., (Ed.),
Tectonic uplift and climate change, New York, Plenum Press, pp. 399425.
Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions:
Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198.
Kump, L.R., Pavlov, A., Arthur, M.A., 2005. Massive release of hydrogen sulfide
to the surface ocean and atmosphere during intervals of oceanic anoxia.
Geology, v. 33, pp. 397-400.
Lenton, T.M., and Watson, A.J., 2000. Redfield revisited: 1. Regulation of nitrate
phosphate and oxygen in the ocean. Global Biogeochemical Cycles, v. 14,
pp. 225-248.
Lowenstein, T.K., Horita, J., Kovalevych, V.M., and Timofeef, M.N., 2005. The
major-ion composition of Permian seawater. Geochimica et
Cosmochimica Acta, v. 69, pp. 1701-1719.
Magaritz, M., Krishnamurty, R.V., Holser, W.T., 1992. Parallel trends in organic
and inorganic carbon isotopes across the Permian-Triassic boundary.
American Journal of Science, v. 292, p. 727-739.
Martin, E.E., and MacDougall, J.D., 1995. Sr and Nd isotopes at the
Permian/Triassic Boundary: A record of climate change. Chemical
Geology, v. 125, pp. 73-99.
Mazzullo, S.J., Boardman, D.R., II, Grossman, E.L., and Dimmick-Wells, K.,
2007. Oxygen-carbon isotope stratigraphy of Upper Carboniferous to
Lower Permian marine deposits in Midcontinent U.S.A. (Kansas and NE
Oklahoma): Implications for seawater chemistry and depositional
cyclicity. Carbonates and Evaporaites, v. 22, pp. 55-72.
99
McArthur, J.M, Howarth, R.J., and Bailey, T.R., 2001. Strontium isotope
stratigraphy, LOWESS Version 3: Best fit to the barine Sr-isotope curve
for 0-509 Ma and accompanying look-up table for deriving numerical age.
Journal of Geology, v. 109, pp. 155-170.
McArthur, J.M., and Howarth, R.J., 2004. Stronitum isotope stratigraphy. In:
Gradstein, J.G., Ogg, J.G., and Smith, A.G., (Eds.), A geologic time scale
2004. Cambridge University Press, Cambridge, pp. 96-125.
Mei, S., and Henderson, C. M., 2001. Evolution of Permian conodont
provincialism and its significance in global correlation and paleoclimate
implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170,
pp.237–260.
Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999. Carboniferous isotope
stratigraphies of North America: Implications for Carboniferous
paleoceanography and Mississippian glaciation. Geological Society of
America, Bulletin, v. 111, p. 960-973.
Mii, H.S., Grossman, E.L., Yancey, T.E., Chuvashov, B., Egorov, A., 2001.
Isotopic records of brachiopod shells from the Russian Platform—
evidence for the onset of mid-Carboniferous Glaciation. Chemical
Geology, v. 175, pp. 133-147.
Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., Bosserman, P.J., 1996.
Integrated Sr isotope variations and sea-level history of Middle to Upper
Cambrian platform carbonates: Implications for the evolution of Cambrian
seawater 87Sr/86Sr. Geology, v. 24, pp. 917-920.
Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D.,
Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2forced climate and vegetation instability during Late Paleozoic
deglaciation. Science, v. 315, pp. 87-91.
Morante, R., 1996. Permian and Early Triassic isotopic records of carbon and
strontium in Australia and a scenario of events about the Permian-Triassic
boundary. Historical Biology, v. 11, pp. 289-310.
Munnecke, A., Westphal, H., Reijmer, J.J.G, and Samtleben, C., 1997. Microspar
development during early marine burial diagenesis: A comparison of
Pliocene carbonates from the Bahamas with Silurian limestones from
Gotland (Sweden). Sedimentology, v. 44, pp. 977-990.
100
Musashi, M. Isozaki, Y., Koike, T., and Kreulen, R., 2001. Stable carbon isotope
signature in mid-Panthalassa shallow-water carbonates across the PermoTriassic boundary: evidence for 13C-depleted superocean. Earth and
Planetary Science Letters, v. 191, pp. 9-20.
Palmer, M.R., and Edmond, J.M. 1989. The strontium isotope budget of the
modern ocean. Earth and Planetary Science Letters, v. 92, pp. 11-26.
Parrish, J.T., and Peterson, F., 1988. Wind directions predicted from global
circulation models and wind directions determined from eolian sandstones
of the western United States – A comparison. Sedimentary Geology, v. 56,
pp. 261-282.
Parrish, J.T., 1993. Climate of the supercontinent Pangea. Journal of Geology, v.
101, pp. 215-233.
Paytan, A, Kastner, M., Martin, E.E., Macdougall, J.D., and Herbert, T., 1993.
Marine barite as a monitor of seawater strontium isotope composition.
Nature, v. 366, pp. 445-449.
Pedersen, T.F., and Calvert, S.E., 1990. Anoxia vs. Productivity: What controls
the formation of organic-carbon-rich sediments and sedimentary rocks?
American Association of Petroleum Geologists, Bulletin, v. 74, pp. 454466.
Peterman, Z.E., Hedge, C.E., and Tourtelot, H.A., 1970. Isotopic composition of
strontium in seawater throughout Phanerozoic time. Geochimica et
Cosmochimica Acta, v. 34, pp. 105-120.
Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986. Textural, elemental and
isotopic variations among constituents in Middle Devonian limestones,
North America. Journal of Sedimentary Petrology, v. 56, pp. 715-727.
Renne, P.R, and Basu, A.R., 1991. Rapid eruption of the Siberian traps flood
basalts at the Permo-Triassic boundary. Science, v. 253, pp. 176-179.
Riccardi, A., Kump, L.R., Arthur, M.A., and D’Hondt, S., 2007. Carbon isotopic
evidence for chemocline upward excursions during the end-Permian event.
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 248, pp. 73-81.
Ripperdan, R.L., Magaritz, M., Nicoll, R.S., and Shergold, J.H., 1992.
Simultaneous changes in carbon isotopes, sea level, and conodont
biozones within the Cambrian-Ordovician boundary interval at Black
Mountain, Australia. Geology, v. 20, pp. 1039-1042.
101
Robinson, G.B., Jr., 1961. Stratigraphy and Leonardian fusilinid paleontology in
Central Pequop Mountains, Elko County, Nevada. Brigham Young
University, Geology Studies, v. 8, pp. 93-145.
Ross, C.A., and Ross, J.R., 1995. Permian sequence stratigraphy. In: Scholle,
P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern
Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag,
Berlin, v. 1, pp. 98-123.
Royer, D.L., Berner, R.A., Montañez, Tabor, N.J., and Beerling, D.J., 2004. CO2
as a primary driver of Phanerozoic climate. Geological Society of
America, Today, v. 14, pp. 4-10.
Rygel, M.C., Fielding, C.R., Bann, K.L., Frank, T.D., Birgenheier, L.P., and Tye,
S.C., 2008. The Early Permian Wasp Head Formation, Sydney Basin:
High-latitude, shallow marine sedimentation following the late Asselianearly Sakmarian glacial event in eastern Australia. Sedimentology, v. 55,
pp. 1517-1540.
Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P., 2008. The
magnitude of late Paleozoic glacio-eustatic fluctuations: A synthesis.
Journal of Sedimentary Research, v. 78, pp. 500-511.
Saltzman, M.R., Runneggar, B., and Lohmann, K.C., 1998. Carbon isotope
stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the
eastern Great Basin: Record of a global oceanographic event. Geological
Society of America, Bulletin, v. 110, pp. 285-297.
Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A.,
Chang, W.T., Peng, S., Ergaliev, E.K., and Runnegar, B., 2000. A global
carbon isotope excursion (SPICE) during the Late Cambrian: Relation to
trilobite extinctions, organic-matter burial and sea level. Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 162, pp. 211-223.
Saltzman, M.R., 2002. Carbon and oxygen isotope stratigraphy of the Lower
Mississippian (Kinderhookian-lower Osagean), Western United States:
Implications for seawater chemistry and glaciation. Geological Society of
America, Bulletin, v. 114, pp. 96-108.
Saltzman, M.R., 2005. Phosphorus, nitrogen and the redox evolution of the
Paleozoic oceans. Geology, v. 33, pp. 573-576.
102
Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous
pelagic limestones: Potential stratigraphic and petroleum exploration tool.
American Association of Petroleum Geologists, Bulletin, v. 64, pp. 67-87.
Schwab, V., and Spangenberg, J.E., 2004. Organic geochemistry across the
Permian-Triassic transition at the Idrijca Valley, western Slovenia.
Applied Geochemistry, v. 19, p. 55-72.
Scotese, C., 2002. PALEOMAP Project. www.scotese.com
Scotese, C.R., and McKerrow, W.S., 1990. Revised world maps and introduction.
In: McKerrow, W.S. and Scotese, C.R., (Eds.), Paleozoic Paleogeography
and Biogeography. Geological Society of London, Memoirs, v. 12, pp. 121.
Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007.
Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan
area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139.
Shields, G.A., Carden, G.A., Veizer, J., Meidla, T., Rong, J., and Li, R., 2003. Sr,
C, and O isotope geochemistry of Ordovician brachiopods: A major
isotopic event around the Middle-Late Ordovician transition. Geochimica
et Cosmochimica Acta, v. 67, pp. 2005-2025.
Stallard, R.F., 1995. Relating chemical and physical erosion. In: Brantley, S.L.
(Ed.), Reviews in Mineralogy, v. 31, pp. 543-564.
Stemmerik, L., and Worsley, D., 1995. Permian history of the Barents shelf area.
In: Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S., (Eds.), Permian of
northern Pangea: Sedimentary basins and economic resources, SpringerVerlag, Berlin, v. 2, pp. 81-97.
Stephens, N.P., and Caroll, A.R., 1999. Salinity stratification in the Permian
Phosphoria sea: A proposed paleoceanographic model. Geology, v. 27, pp.
899-902.
Stevens, C.H., Wagner, D.B., and Sumsion, R.S., 1979. Permian fusilinid
biostratigraphy, Central Cordilleran Miogeosyncline. Journal of
Paleontology, v. 53, pp. 29-36.
Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian
tectonically controlled basins: Evidence from the central Pequop
Mountains, Northeast Nevada. AAPG Hedberg Conference: Late
Paleozoic Tectonics and Hydrocarbon Systems of Western North
103
America—The Greater Ancestral Rocky Mountains. July 21-26, 2002.
Vail, Colorado.
Tabor, N.J., and Montañez, I.P., 2002. Shifts in late Paleozoic atmospheric
circulation over western equatorial Pangea: Insights from pedogenic
mineral δ18O compositions. Geology, v. 30, pp. 1127-1130.
Tabor, N.J., and Montañez, I.P., 2004. Morphology and distribution of fossil soils
in the Permo Pennsylvanian Wichita and Bowie Groups, north-central
Texas, USA: Implications for western equatorial Pangean paleoclimate
during icehouse- greenhouse transition. Sedimentology, v. 51, pp. 851884.
Tabor, N.J., and Montañez, I.P., 2005. Oxygen and hydrogen isotope
compositions of Permian pedogenic phyllosilicates: Development of
modern surface domain arrays and implications for paleotemperature
reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, v.
223, pp. 127- 146.
Thisted, R.A., 1988. Elements of Statistical Computing. Chapmand and Hall,
New York, 427 p.
Tierney, K.E., and others. in prep. High-resolution carbon isotope composite
curve for the Permian System: Implications for organic carbon burial and
global climate.
Tierney, K.E., and others. in prep. An early Permian (Asselian-Sakmarian) carbon
isotope excursion from Nevada.
Tramp, K.L., Elmore, R.D., and Soreghan, G.S., 2004. Paleoclimatic inferences
from paleopedology and magnetism of the Permian Maroon Formation
loessite, Colorado, USA. Geological Society of America, Bulletin, v. 116,
pp. 671-686.
VanCappellen, P., and Ingall, E.D., 1996. Redox stabilization of the atmosphere
and oceans by phosphorus-limited marine productivity. Science, v. 271,
pp. 493-496.
Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in
Gondwanaland reflected in transgressive-regressive depositional
sequences in Euramerica. Geological Society of America, Bulletin, v. 98,
pp. 475-487.
104
Veevers, J.J., Conaghan, P.J., Powell, C., Cowan, E.J., McDonnell, K.L., and
Shaw, S.E., 1994. Eastern Australia. In: Veevers, J.J. and Powell, C.,
(Eds.), Permian-Triassic Pangean Basins and Foldbelts along the
Panthalassan Margin of Gondwanaland. Geological Society of America,
Memoir, v. 184, pp. 11-171.
Veizer, J., and Compston W., 1974. 87Sr/86Sr in Precabrian carbonates as an index
of crustal evolution. Geochimica et Cosmochimica Acta, v. 40, pp. 905915.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden
G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek
F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O
evolution of Phanerozoic seawater. Chemical Geology, v. 161, pp. 59-88.
Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower
Carboniferous sequence stratigraphy of South China. Journal of China
University of Geosciences, v. 7, pp. 87-94.
Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP
candidate section of Lopingian-Guadalupian boundary. Earth and
Planetary Science Letters, v. 220, pp. 57-67.
Wanless, H.R., and Shepard, F.P., 1936. Sea level and climatic changes related to
late Paleozoic cycles. Geological Society of America Bulletin, v. 47, pp.
1177-1206.
Wardlaw, B.R., Davydov, V., Mei, S., and Henderson, C., 1998. New reference
sections for the Upper Carboniferous and Lower Permian in Northeast
Nevada. Permophiles: Newsletter of the Subcommission on Permian
Stratigraphy, v. 31, pp. 5-8.
Wardlaw, B.R., Davydov, V., and Gradstien, F.M., 2004. The Permian Period. In:
Gradstein, F.M., Ogg, F.G., and Smith, A.G., (Eds.), A geologic time scale
2004. Cambridge University Press, Cambridge, United Kingdom, pp. 249270.
Wignall, P.B., and Twitchett, R.J., 1996. Oceanic anoxia and the end Permian
mass extinction. Science, v. 272, pp. 1155-1158.
Wignall, P.B., Morante, R., and Newton, R., 1998. The Permo-Triassic transition
in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies,
fauna and trace fossils. Geological Magazine, v. 135, pp. 47-62.
105
Wignall, P.B., Bedrine, S. Bond, D.P.G., Wang, W., Lai, X.L., Ali, J.R., and
Jiang, H.S., 2009. Facies analysis and sea-level change at the
Guadalupian-Lopingian global stratotype (Laibin, south China), and its
bearing on the end-Guadalupian mass extinction. Journal of the Geological
Society of London, v. 166, pp. 655-666.
Wignall, P.B., Sun, Y., Bond, D.P.G., Izon, G., Newton, R.J., Védrine, S.,
Widdowson, M., Ali, J.R., Lai, X., Jiang, H., Cope, H., and Bottrell, S.H.,
2009. Volcanism, mass extinction, and carbon isotope fluctuations in the
Middle Permian of China. Science, v. 324, pp. 1179-1182.
Wolbach, W.S., Roegge, D.R., and Gilmour, I., 1994. The Permian-Triassic of
the Gartnerkofel-1Core (Carnic Alps, Austria): Organic carbon isotope
variation. Conference on New Developments Regarding the K/T Event
and Other Catastrophes in Earth History, Lunar and Planetary Institute,
Houston, pp. 133-134.
Zachos, J.C., Opdyke, B.N., Quinn, T.M., Jones, C.E., Halliday, A.N., 1999.
Early Cenozoic glaciation, Antarctic weathering and seawater 87Sr/86Sr: Is
there a link? Chemical Geology, v. 161, pp. 165-180.
Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography
and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial
Environmental Changes—Quaternary, Carboniferous-Permian, and
Proterozoic. Oxford University Press, Oxford, pp. 111-146.
Ziegler, A.M., Rees, P.M., and Naugolnykh, S.V., 2002. The Early Permian floras
of Prince Edward Island, Canada: Differentiating global from local effects
of climate change. Canadian Journal of Earth Sciences, v. 39, pp. 223-238.
106
Appendix A: Data Tables
107
Table 1
Nine Mile Canyon Section, Nevada, USA Permian Composite
Section 1
Starting #: 5466027 (2nd Roll Starting #:
5153159)
108
Ticket #
age
Meter
Sr ppm
5466027
5466028
5466029
5466030
5466031
5466032
5466033
5466034
5466035
5466036
302.000
301.901
301.859
301.848
301.833
301.818
301.803
301.787
301.772
301.757
301.749
301.734
301.719
301.704
301.689
301.673
301.666
301.651
301.635
301.620
301.605
301.590
301.575
301.567
301.552
625
631.5
634.25
635
636
637
638
639
640
641
641.5
642.5
643.5
644.5
645.5
646.5
647
648
649
650
651
652
653
653.5
654.5
226.629
5466037
5466038
5466039
5466040
5466041
5466042
5466043
5466044
5466045
5466046
5466047
5466048
5466049
5466050
5466051
87
86
Sr/ Sr
0.708254
unc
δ Ccarb
13
δ O
18
Stage
Series
0.000008
0.006
-13.710
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Notes
continued
Table 1 continued
109
5466052
5466053
5466054
301.537
301.522
301.506
655.5
656.5
657.5
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
5466055
5466056
5466057
5466058
5466059
5466060
5466061
5466062
301.491
301.476
301.468
301.453
301.438
301.423
301.408
301.392
658.5
659.5
660
661
662
663
664
665
634.459
0.708128
0.000007
2.355
-7.470
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
5466063
5466064
5466065
5466066
5466067
5466068
301.377
301.362
301.354
301.339
301.324
301.309
666
667
667.5
668.5
669.5
670.5
391.781
0.708181
0.000009
2.757
-5.542
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
5466069
5466070
5466071
5466072
5466073
5466074
5466075
301.294
301.278
301.263
301.256
301.241
301.225
301.210
671.5
672.5
673.5
674
675
676
677
352.092
0.708102
0.000009
1.876
-9.154
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
5466076
5466077
5466078
301.195
301.180
301.165
678
679
680
258.624
0.708364
0.000007
1.107
-8.457
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
continued
Table 1 continued
110
5466079
5466080
5466081
5466082
5466083
5466084
5466085
5466086
5466087
301.157
301.142
301.127
301.111
301.096
301.081
301.066
301.058
301.043
680.5
681.5
682.5
683.5
684.5
685.5
686.5
687
688
5466088
5466089
5466090
5466091
5466092
5466093
301.028
301.013
301.005
300.997
300.937
300.884
689
690
690.5
691
695
698.5
255.73
5466094
5466095
5466096
5466097
5466098
5466099
5466100
5466101
5466102
5466103
5466104
5466105
300.830
300.808
300.785
300.762
300.739
300.716
300.694
300.671
300.648
300.625
300.603
300.580
702
703.5
705
706.5
708
709.5
711
712.5
714
715.5
717
718.5
202.923
0.708227
0.708408
0.000008
0.000009
2.201
0.736
-5.263
-7.475
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
10 cm below conglomerate
parallel to conglomerate lens 1.5
m thick
erosional surface?
continued
Table 1 continued
111
5466106
300.557
720
Ghzelian
Penn
5466107
5466108
5466109
5466110
5466111
5466112
5466113
5466114
5466115
5466116
5466117
300.534
300.511
300.489
300.466
300.443
300.420
300.397
300.375
300.352
300.329
300.306
721.5
723
724.5
726
727.5
729
730.5
732
733.5
735
736.5
533.33
0.708459
0.000007
2.259
-12.433
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
C7
5466118
5466119
5466120
5466121
5466122
5466123
5466124
5466125
5466126
300.284
300.261
300.238
300.215
300.192
300.170
300.147
300.124
300.101
738
739.5
741
742.5
744
745.5
747
748.5
750
313.686
0.708319
0.000008
3.416
-9.998
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
C8
5466127
5466128
5466129
5466130
5466131
5466132
5466133
300.078
300.056
300.033
300.010
299.987
299.965
299.942
751.5
753
754.5
756
757.5
759
760.5
276.46
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
0.708179
0.000012
3.326
-5.892
covered above for 16 m
C9
continued
Table 1 continued
112
5466134
5466135
299.919
299.896
762
763.5
5466136
5466137
5466151
5466152
5466153
5466154
5466155
5466156
5466157
299.873
299.851
299.266
299.243
299.220
299.197
299.175
299.152
299.129
765
766.5
805
806.5
808
809.5
811
812.5
814
280.439
0.708135
0.00001
2.829
5466158
5466159
5466160
5466162
299.114
299.106
299.008
299.004
815
815.5
822
823.5
285.144
0.708194
0.000011
3.415
5153159
5153160
5153161
5153162
5153163
5153164
5153165
5153166
5153167
5153168
5153169
299.000
298.968
298.936
298.904
298.872
298.841
298.809
298.777
298.745
298.713
298.681
825
825.5
826
826.5
827
827.5
828
828.5
829
829.5
830
214.87
0.708099
0.000011
2.397
5153170
298.649
830.5
336.24
0.708137
0.000007
1.989
Ghzelian
Ghzelian
Penn
Penn
-6.202
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
Penn
-4.789
Ghzelian
Ghzelian
Ghzelian
Ghzelian
Penn
Penn
Penn
Penn
-4.689
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
-4.905
Asselian
Cisuralian
C10
6.5 m covered
CARB-PERMIAN BOUNDARY
first appearance S. isolatus
continued
Table 1 continued
113
5153171
5153172
5153173
5153174
5153175
5153176
5153177
5153178
5153179
298.617
298.586
298.554
298.522
298.490
298.458
298.426
298.394
298.362
831
831.5
832
832.5
833
833.5
834
834.5
835
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153180
5153181
5153182
298.330
298.299
298.267
835.5
836
836.5
418.115
0.708112
0.000011
2.910
-5.705
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
5153183
5153184
5153185
5153186
5153187
5153188
5153189
5153190
5153191
298.235
298.203
298.171
298.139
298.107
298.075
298.043
298.012
297.980
837
837.5
838
838.5
839
839.5
840
840.5
841
187.046
0.708185
0.000012
2.006
-6.259
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153192
5153193
5153194
5153195
5153196
5153197
5153198
297.948
297.916
297.884
297.852
297.820
297.788
297.757
841.5
842
842.5
843
843.5
844
844.5
191.084
0.708282
0.000011
1.529
-5.949
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
continued
Table 1 continued
114
5153199
5153200
5153201
5153202
297.725
297.693
297.661
297.629
845
845.5
846
846.5
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153203
5153204
5153205
5153206
5153207
5153208
297.597
297.565
297.533
297.501
297.470
297.438
847
847.5
848
848.5
849
849.5
547.093
0.708129
0.000007
3.105
-6.912
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153209
5153210
5153211
5153212
5153213
5153214
5153215
5153216
5153217
5153218
5153219
297.406
297.374
297.342
297.310
297.278
297.246
297.214
297.183
297.151
297.119
297.087
850
850.5
851
851.5
852
852.5
853
853.5
854
854.5
855
398.745
0.708189
0.00001
3.041
-6.969
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153220
5153221
5153222
5153223
5153224
5153225
297.055
297.023
296.991
296.959
296.896
296.832
855.5
856
856.5
857
858
859
172.198
0.708168
0.000012
1.831
-3.843
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
continued
Table 1 continued
115
5153226
5153227
5153228
5153229
5153230
5153231
5153232
5153233
296.800
296.768
296.704
296.449
296.417
296.386
296.322
296.130
859.5
860
861
865
865.5
866
867
870
1.908
-6.437
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153234
5153235
5153236
5153237
5153238
5153239
5153240
5153241
295.875
295.780
295.684
295.493
295.429
295.365
295.301
295.270
874
875.5
877
880
881
882
883
883.5
132.999
0.708195
0.000011
2.586
-4.623
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153242
5153243
5153244
5153245
5153246
5153247
295.238
295.206
295.110
295.046
294.983
294.951
884
884.5
886
887
888
888.5
135.403
0.70805
0.000009
3.545
-5.156
Asselian
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153248
5153249
5153250
5153251
5153252
294.919
294.903
294.887
294.855
294.823
889
889.25
889.5
890.0
890.5
215.345
0.7079
0.000009
3.493
-4.277
Asselian
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
889
continued
Table 1 continued
116
5153253
5153254
5153255
5153256
294.791
294.728
294.696
294.664
891.0
892.0
892.5
893.0
5153257
5153258
5153259
5153260
5153261
5153262
5153263
5153264
5153265
294.632
294.600
294.568
294.600
294.572
294.543
294.486
294.429
294.401
893.5
894.0
894.5
895.0
895.5
896.0
897.0
898.0
898.5
94.72
5153266
5153267
5153268
5153269
5153270
5153271
5153272
5153273
5153274
294.372
294.344
294.315
294.258
294.230
294.201
294.030
293.973
293.945
899.0
899.5
900.0
901.0
901.5
902.0
905.0
906.0
906.5
87.66
0.708353
0.000012
2.032
5153275
5153276
5153277
5153278
5153279
293.916
293.888
293.859
293.831
293.802
907.0
907.5
908.0
908.5
909.0
196.761
0.707939
0.000008
3.499
0.708246
0.000000
2.448
Asselian
Asselian
Asselian
Asselian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Asselian
Asselian
Asselian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
-2.763
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
-2.181
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
-5.447
first appearance S. merrilli
continued
Table 1 continued
117
5153280
5153281
5153282
5153283
5153284
5153285
5153286
5153287
5153288
5153289
5153290
293.660
293.631
293.603
293.574
293.546
293.517
293.489
293.175
293.118
293.061
293.004
911.5
912.0
912.5
913.0
913.5
914.0
914.5
920.0
921.0
922.0
923.0
164.531
0.707891
0.000007
3.415
-9.949
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153291
5153292
5153293
5153294
5153295
5153296
5153297
5153298
5153299
292.947
292.919
292.834
292.777
292.748
292.720
292.691
292.663
292.634
924.0
924.5
926.0
927.0
927.5
928.0
928.5
929.0
929.5
159.364
0.707883
0.000009
3.217
-5.919
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153300
5153301
5153302
5153303
5153304
5153305
5153306
5153307
292.606
292.560
292.514
292.469
292.423
292.378
292.332
292.286
930.0
930.8
931.6
932.4
933.2
934.0
934.8
935.6
90.66
0.708278
0.000017
4.075
-3.810
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
continued
Table 1 continued
118
5153308
292.241
936.4
5153309
5153310
5153311
5153312
5153313
5153314
5153315
5153316
5153317
292.207
292.178
292.150
292.121
292.093
292.064
292.036
292.007
291.979
937.0
937.5
938.0
938.5
939.0
939.5
940.0
940.5
941.0
85.93
5153318
5153319
5153320
5153321
5153322
5153323
5153324
5153325
5153326
5153327
291.922
291.893
291.865
291.836
291.808
291.751
291.694
291.637
291.580
291.523
942.0
942.5
943.0
943.5
944.0
945.0
946.0
947.0
948.0
949.0
5153328
5153329
5153330
5153331
5153332
5153333
5153334
291.494
291.437
291.352
291.323
291.266
291.209
291.181
949.5
950.5
952.0
952.5
953.5
954.5
955.0
Sakmarian
Cisuralian
-5.250
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
4.350
-2.009
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
3.480
-4.957
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
0.707906
0.000002
3.815
76.79
0.708191
0.000000
141.121
0.707913
0.000013
continued
Table 1 continued
119
5153335
5153336
5153337
291.153
291.124
291.096
955.5
956.0
956.5
5153338
291.039
957.5
5153339
5153340
5153341
5153342
5153343
5153344
5153345
5153346
5153347
291.010
290.782
290.668
290.640
290.611
290.583
290.326
290.298
290.241
958.0
962.0
964.0
964.5
965.0
965.5
970.0
970.5
971.5
5153348
5153349
5153350
290.127
290.041
289.984
973.5
975.0
976.0
138.93
0.70784
5153351
5153352
5153353
289.956
289.927
289.870
976.5
977.0
978.0
225.069
5153354
5153355
5153356
5153357
5153358
5153359
289.842
289.813
289.756
289.642
289.585
289.528
978.5
979.0
980.0
982.0
983.0
984.0
5153360
5153361
289.500
289.472
984.5
985.0
149.804
0.707861
0.000024
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
3.489
-5.037
Sakmarian
Cisuralian
3.589
-5.228
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
0.000007
4.325
-5.179
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
0.707782
0.000006
4.380
-5.333
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
176.949
0.707825
0.000008
4.398
-5.219
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
225.342
0.707795
0.000008
4.839
-4.696
Sakmarian
Sakmarian
Cisuralian
Cisuralian
continued
Table 1 continued
120
5153362
5153363
5153364
5153365
5153366
5153367
289.457
289.443
289.429
289.415
289.400
289.386
985.3
985.5
985.8
986.0
986.3
986.5
5153368
5153369
5153370
289.358
289.187
289.016
987.0
990.0
993.0
218.458
0.707843
0.000003
4.077
5153371
5153372
5153373
5153374
5153375
5153376
5153377
5153378
288.788
288.759
288.731
288.679
288.674
288.617
288.560
288.503
997.0
997.5
998.0
998.9
999.0
1000.0
1001.0
1002.0
172.159
0.7078
0
5153379
288.446
1003.0
271.693
0.707807
0.00002
5153380
5153381
5153382
5153383
5153384
288.389
288.360
288.303
288.275
288.218
1004.0
1004.5
1005.5
1006.0
1007.0
5153385
5153386
5153387
5153388
288.132
288.104
287.904
287.876
1008.5
1009.0
1012.5
1013.0
223.125
0.70784
0.000017
286.466
0.70784
0.000003
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
-5.588
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
2.901
-6.036
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
2.737
-6.158
Sakmarian
Cisuralian
2.364
-4.941
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
2.777
-5.144
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
continued
Table 1 continued
121
5153389
5153390
5153391
5153392
5153393
5153394
5153395
287.819
287.762
287.705
287.648
287.591
287.534
287.477
1014.0
1015.0
1016.0
1017.0
1018.0
1019.0
1020.0
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153396
5153397
5153398
5153399
5153400
5153401
5153402
5153403
5153404
287.306
287.221
287.164
287.107
287.050
286.993
286.936
286.879
286.822
1023.0
1024.5
1025.5
1026.5
1027.5
1028.5
1029.5
1030.5
1031.5
95.03
0.708492
0.000006
2.221
-4.510
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153405
5153406
5153407
5153408
286.508
286.480
286.451
286.423
1037.0
1037.5
1038.0
1038.5
92.79
0.708141
0.000009
2.272
-5.869
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5153409
5153410
5153411
5153412
5153413
5153414
5153415
5153416
286.394
286.366
286.337
286.280
286.252
286.223
286.195
286.166
1039.0
1039.5
1040.0
1041.0
1041.5
1042.0
1042.5
1043.0
197.58
0.707839
0.000000
2.308
-4.863
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
continued
Table 1 continued
122
5153417
5153418
286.109
286.081
1044.0
1044.5
Sakmarian
Sakmarian
Cisuralian
Cisuralian
5153419
5153420
5153421
5153422
5153423
5153424
5153425
5153426
5153427
5153428
286.053
286.024
285.996
285.939
285.882
285.825
285.768
285.682
285.625
285.597
1045.0
1045.5
1046.0
1047.0
1048.0
1049.0
1050.0
1051.5
1052.5
1053.0
144.34
0.707807
0.000003
2.370
-5.664
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5466169
5466170
5466171
5466172
5466173
5466174
5466175
285.540
285.483
285.426
285.369
285.312
285.255
285.198
1054.0
1055.0
1056.0
1057.0
1058.0
1059.0
1060.0
148.13
0.708042
0.000005
1.735
-3.689
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5466176
5466177
5466178
5466179
5466180
5466181
5466182
5466183
285.169
285.141
285.084
285.027
284.827
284.799
284.742
284.685
1060.5
1061.0
1062.0
1063.0
1066.5
1067.0
1068.0
1069.0
1.876
-3.912
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
continued
Table 1 continued
123
5466184
5466185
5466186
5466187
5466188
284.628
284.571
284.514
284.457
284.400
1070.0
1071.0
1072.0
1073.0
1074.0
136.87
0.707746
0.000006
1.864
-5.165
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5466189
5466190
5466191
5466192
5466193
284.400
1075.0
1076.0
1077.0
1078.0
1079.0
107.52
0.707776
0.000045
1.893
-4.570
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
2.066
-4.611
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
Cisuralian
5466194
5466195
5466196
5466197
5466198
5466199
5466200
5466201
5466202
5466203
1080.0
1081.0
1082.0
1083.0
1085.0
1086.0
1087.0
1088.0
1089.0
1090.0
2162.8
0.707725
0.000004
Chalaroschwagerina
continued
Table 2
Rockland Ridge Section, Nevada, USA Permian Composite Section 2
nd
Starting #: 5153434 (2 Roll Starting #: 5466204)
124
Ticket #
5153434
5153435
5153436
5153437
5153438
5153439
5153440
5153441
5153442
5153443
5153444
5153445
5153446
5153447
5153448
5153449
5153450
5153451
5153452
5153453
5153454
5153455
5153456
5153457
5153458
5153459
age
284.4
Meter
1235
1236.5
1241
1243
1244
1246
1249
1250
1253
1254
1255
1256
1257
1258
1259
1260
1262
1263
1264.5
1266
1268
1269.5
1270
1271
1275
1282
Sr ppm
153.91
41.50
151.93
87Sr/86Sr
carbonate
2.328
oxygen
-5.671
0.707907
0.708932
0.708425
1.493
-6.079
2.340
-6.746
1.388
-6.410
1.420
-5.038
0.893
-5.926
Stage
Upper Sak
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Sakmarian
Artinskian
Notes
00TAS021
00TAS022
Paint 46
00TAS031
W97-55F
00TAS033
00TAS034
00TAS041
00TAS042 continued
Chalaroschwagerina
Table 2 continued
125
5153460
5153461
5153462
5153463
5153464
5153465
5153466
5153467
5153468
5153469
5153470
5153471
5153472
5153473
5153474
5153475
5153476
5153477
5153478
5153479
5153480
5153481
5153482
5153483
5153484
5153485
5153486
5153487
5153488
5153489
284.3893
284.3786
284.3678
284.3571
284.3357
284.3143
284.2928
284.2499
284.2178
284.1428
284.0677
284.0034
283.8962
283.7569
283.7354
283.7247
283.7086
283.6926
283.6711
283.6497
283.6283
283.6068
283.5907
283.5747
283.5211
283.5104
283.4889
283.4675
283.446
283.4032
1283
1284
1285
1286
1288
1290
1292
1296
1299
1306
1313
1319
1329
1342
1344
1345
1346.5
1348
1350
1352
1354
1356
1357.5
1359
1364
1365
1367
1369
1371
1375
0.489
-7.270
0.324
-8.353
1.389
-3.083
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
00TAS043
00TAS062
00TAS063
00TAS071
W97222
continued
Table 2 continued
126
5153490
5153491
5153492
5153493
5153494
5153495
5153496
5153497
5153498
5153499
5153500
5153501
5153502
5153503
5153504
5153505
5153506
5153507
5153508
5153509
5153510
5153511
5153512
5153513
5153514
5153515
5153516
5153517
5153518
5153519
283.3924
283.371
283.3496
283.3174
283.3067
283.2745
283.2531
283.221
283.1995
283.1781
283.1566
283.1352
283.1138
283.0923
283.0066
282.9208
282.8351
282.7708
282.7493
282.7065
282.6636
282.6314
282.6153
282.5993
282.5778
282.5564
282.535
282.5135
282.4921
282.4599
1376
1378
1380
1383
1384
1387
1389
1392
1394
1396
1398
1400
1402
1404
1412
1420
1428
1434
1436
1440
1444
1447
1448.5
1450
1452
1454
1456
1458
1460
1463
0.707646
-7.039
262.66
0.707668
1.929
-3.856
281.43
0.707625
2.062
-4.338
158.33
0.707698
1.584
-8.585
1.277
-7.462
353.20
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
W97258
BEDDED CHERT
W97360
00TAS081
00TAS082
continued
Table 2 continued
127
5153520
5153521
5153522
5153523
5153524
5153525
5153526
5153527
5153528
5153529
5153530
5153531
5153532
5153533
5153534
5466204
5466205
5466206
5466207
5466208
5466209
5466210
282.4171
282.4063
282.3903
282.3742
282.3527
282.3313
282.3099
282.2777
282.2456
282.2241
282.1705
282.1491
282.1169
282.1009
282.0848
282.0526
281.9883
281.9669
281.9454
281.924
281.9026
281.8811
1467
1468
1469.5
1471
1473
1475
1477
1480
1483
1485
1490
1492
1495
1496.5
1498
1501
1507
1509
1511
1513
1515
1517
5466211
5466212
5466213
5466214
5466215
5466216
281.8597
281.8382
281.8168
281.8061
281.7954
281.7847
1519
1521
1523
1524
1525
1526
1.931
-5.020
377.555
0.707605
2.236
-4.396
261.80
0.707645
2.186
-4.700
1.503
-7.012
2.079
198.03
-4.038
0.707614
0.998
-6.264
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
W97420
00TAS083
00TAS092
CHERT
W97457, PAINT 55, 1523
00TAS103, 1529
continued
Table 2 continued
128
5466217
5466218
5466219
5466220
5466221
5466222
5466223
5466224
5466225
5466226
5466227
5466228
5466229
5466230
5466231
5466232
5466233
5466234
5466235
5466236
5466237
5466238
5466239
5466240
5466241
5466242
5466243
5466244
5466245
281.7793
281.6935
281.6828
281.6721
281.6614
281.6507
281.64
281.6292
281.6185
281.6078
281.5971
281.5864
281.5756
281.5649
281.5542
281.5435
281.5328
281.522
281.5113
281.5006
281.4899
281.4685
281.4577
281.447
281.2058
281.2005
281.1951
281.1898
281.1844
1526.5
1534.5
1535.5
1536.5
1537.5
1538.5
1539.5
1540.5
1541.5
1542.5
1543.5
1544.5
1545.5
1546.5
1547.5
1548.5
1549.5
1550.5
1551.5
1552.5
1553.5
1555.5
1556.5
1557.5
1580
1580.5
1581
1581.5
1582
1.040
-9.109
1.966
-8.477
1.711
-5.748
2.200
-2.367
2.109
-5.427
2.194
-4.897
1.753
-5.351
1.442
-5.327
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
00TAS104, 1529.5
00TAS105, 1554
00TAS111, PAINT 56
C33
continued
Table 2 continued
129
5466246
5466247
5466248
5466249
5466250
5466251
5466252
5466253
5466254
5466255
5466256
5466257
5466258
5466259
5466260
5466261
5466262
5466263
5466264
5466265
5466266
5466267
5466268
5466269
5466270
5466271
5466272
5153540
5153541
281.179
281.1737
281.1683
281.163
281.1576
281.1523
281.1469
281.1415
281.1362
281.1308
281.1094
280.627
280.5842
280.5413
280.4984
280.4555
280.4287
280.4019
280.3484
280.2948
280.2412
280.209
280.1876
280.1661
280.0911
280.0697
280.0482
280.0268
280.0054
1582.5
1583
1583.5
1584
1584.5
1585
1585.5
1586
1586.5
1587
1589
1634
1638
1642
1646
1650
1652.5
1655
1660
1665
1670
1673
1675
1677
1684
1686
1688
1690
1692
2.061
-5.748
2.571
-4.825
2.452
-4.656
2.323
-5.864
2.269
-7.972
3.298
-6.824
3.08
-9.38
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
00TAS122
W97842
00TAS124
GASTROPODS?
00TAS131
W97952
00TAS132
C35, 1655
continued
Table 2 continued
130
5153542
5153544
5153545
5153546
5153547
5153548
5153549
5153550
5153551
5153552
5153553
5153554
5153555
5153556
5153557
5153558
5153559
5153560
5153560
5153561
5153562
5153563
5153564
5153565
5153566
5153567
5153568
5153569
5153570
5153571
279.9732
279.9518
279.9303
279.8982
279.8767
279.8446
279.8124
279.7588
279.7374
279.716
279.6945
279.6731
279.6516
279.6302
279.5873
279.5659
279.5337
279.5123
279.5016
279.4801
279.4587
279.4373
279.4051
279.3837
279.3622
279.3515
279.3086
279.2658
279.239
279.1693
1695
1697
1699
1702
1704
1707
1710
1715
1717
1719
1721
1723
1725
1727
1731
1733
1736
1738
1739
1741
1743
1745
1748
1750
1752
1753
1757
1761
1763.5
1770
3.66
-5.29
3.58
-5.94
3.11
-9.59
2.09
-12.23
2.87
-6.06
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
TAS144
Paint 62
W97-1122
continued
Table 2 continued
131
5153572
5153573
5153574
5153575
5153576
5153577
5153578
5153579
5153580
5153581
5153582
5153583
5153584
5153585
5153586
5153587
5153588
5153589
5153590
5153591
5153592
5153593
5153594
5153595
5153596
5153597
5153598
5153599
5153600
5153601
279.1371
279.105
279.0836
279.03
278.9871
278.9442
278.9067
278.8853
278.8424
278.821
278.7942
278.7406
278.6977
278.6762
278.6334
278.6119
278.5905
278.5369
278.478
278.4672
278.4565
278.4244
278.4083
278.3922
278.3708
278.3279
278.2957
278.2689
278.2261
278.1939
1773
1776
1778
1783
1787
1791
1794.5
1796.5
1800.5
1802.5
1805
1810
1814
1816
1820
1822
1824
1829
1834.5
1835.5
1836.5
1839.5
1841
1842.5
1844.5
1848.5
1851.5
1854
1858
1861
4.17
2.35
-6.23
-7.25
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
TAS162
p 63
just across erosional boundary
p 64
TAS 171
continued
Table 2 continued
132
5153602
5153603
5153604
5153605
5153606
5153607
5153608
5153609
5153610
5153611
5153612
5153613
5153614
5153615
5153616
5153617
5153618
5153619
5153620
5153621
5153622
5153623
5153624
5153625
5153626
5153627
5153628
5153629
5153630
5153631
278.1618
278.1242
278.1028
278.0814
278.0599
278.0385
278.0171
277.9956
277.9795
277.9581
277.9152
277.9045
277.8616
277.8295
277.7437
277.7116
277.6794
277.6473
277.6205
277.5883
277.5669
277.5562
277.5347
277.4972
277.465
277.4436
277.4222
277.4061
277.39
277.3739
1864
1867.5
1869.5
1871.5
1873.5
1875.5
1877.5
1879.5
1881
1883
1887
1888
1892
1895
1903
1906
1909
1912
1914.5
1917.5
1919.5
1920.5
1922.5
1926
1929
1931
1933
1934.5
1936
1937.5
2.11
2.49
2.97
-7.03
-11.24
-4.72
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
TAS 172
TAS 173
thin silty bed above
TAS 174
W97-1400
TAS 181
p 67
W97-1483
continued
Table 2 continued
133
5153632
5153633
5153634
5153635
5466273
5466274
5466275
5466276
5466277
5466278
5466279
5466280
5466281
5466282
5466283
5466284
5466285
5466286
5466287
5466288
5466289
5466290
5466291
5466292
5466293
5466294
5466295
5466296
5466297
5466298
277.3471
277.3257
277.3096
277.2935
277.2775
277.2453
277.2185
277.1971
277.181
277.1649
277.1488
277.1328
277.1167
277.1006
277.0899
277.0738
277.0577
277.0417
277.0256
277.0149
277.0041
276.9881
276.972
276.9559
276.9398
276.9238
276.897
276.8326
276.8058
276.7898
1940
1942
1943.5
1945
1946.5
1949.5
1952
1954
1955.5
1957
1958.5
1960
1961.5
1963
1964
1965.5
1967
1968.5
1970
1971
1972
1973.5
1975
1976.5
1978
1979.5
1982
1988
1990.5
1992
2.66
-8.62
3.06
-6.57
3.09
-5.55
2.74
-7.82
2.00
-7.76
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
TAS 191 top of limestone bluff
TAS 193
TAS 194
RED
TAS 196
p 68
TAS 203
TAS 204
TAS 205
W97-1582
continued
Table 2 continued
134
5466299
5466300
5466301
5466302
5466303
5466304
5466305
5466306
5466307
5466308
5466309
5466310
5466311
5466312
5466313
5466314
5466315
5466316
5466317
5466318
5466319
5466320
5466321
5466322
5466323
5466324
5466325
5466326
5466327
5466328
276.7737
276.763
276.7523
276.8058
276.7308
276.7255
276.704
276.6826
276.6611
276.6397
276.6183
276.5968
276.5754
276.5218
276.5004
276.4789
276.4575
276.4414
276.4253
276.4093
276.3932
276.3557
276.3396
276.3235
276.3074
276.2914
276.2753
276.2538
276.2324
276.211
1993.5
1994.5
1995.5
1990.5
1997.5
1998
2000
2002
2004
2006
2008
2010
2012
2017
2019
2021
2023
2024.5
2026
2027.5
2029
2032.5
2034
2035.5
2037
2038.5
2040
2042
2044
2046
2.52
-7.79
3.32
-4.49
3.24
-9.83
3.80
-4.93
3.40
-6.89
3.37
-4.85
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
W97-1590 p 69
TAS 212
conodont C41
W97-1610
TAS 213
P70
TAS 221
TAS 223
W97-1715
continued
Table 2 continued
135
5466329
5466330
5466331
5466332
5466333
5466334
5466335
5466336
5466337
5466338
5466339
5466340
5466341
5466342
5466343
5466344
5466345
5466346
5466347
5466348
5466349
5466350
5466351
5466352
5466353
5466354
5466355
5466356
5466357
5466358
276.1895
276.1681
276.1467
276.1252
276.1038
276.0931
276.0823
276.0716
276.0448
276.018
275.9912
275.9644
275.9376
275.9108
275.884
275.8572
275.8305
275.8197
275.7822
275.7608
275.734
275.7072
275.6804
275.6536
275.6268
275.6
2048
2050
2052
2054
2056
2057
2058
2059
2061.5
2064
2066.5
2069
2071.5
2074
2076.5
2079
2081.5
2082.5
2086
2088
2090.5
2093
2095.5
2098
2100.5
2103
2109
2111.5
2114
2114.5
2.79
-8.34
3.33
-4.54
3.20
-4.56
3.92
-4.95
4.04
-6.59
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Artinskian
Kungurian
Kungurian
Kungurian
Kungurian
P 72
W97-1805
base of the Kungurian
P. crassitectoria
Conodont C43
TAS 233
continued
Table 2 continued
136
5466359
5466360
5466361
5466362
5466363
5466364
5466365
5466366
5466367
5466368
5466369
5466370
5466371
5466372
5466373
5466374
5466375
5466376
2116
2117
2118
2118.5
2120
2121
2122.5
2123
2124
2125.5
2126.5
2127
2128.5
2129.5
2130
2131
2131.5
2132
2.65
-10.35
2.87
-4.98
2.53
-6.79
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
Kungurian
conodont C-45
continued
-+
Table 3
Tieqaio Section, Laibin, China Permian Composite Section 1
Starting #: 1241591 (2nd Roll Starting #: 1242429)
Ticket #
age
Meter
"H" #
1591
-0.30
-
1592
-0.18
-
1593
-0.05
1594
Sr ppm
87
86
13
18
δ Ccarb
δ O
137
Fuslinid Zone
Formation
Stage
1.82
-14.07
Pseudoschwagerina-Pamirina
Maping
Artinskian(?)
-
1.55
-11.74
Pseudoschwagerina-Pamirina
Maping
Artinskian(?)
Pseudoschwagerina-Pamirina
Maping
0.10
H1
1.74
Artinskian(?)
-10.18
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
1595
0.25
H1
Artinskian
2.89
-7.38
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
1596
0.40
Artinskian
H1
3.03
-4.90
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
1597
Artinskian
0.70
H1
2.83
-7.13
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1598
1.00
H1
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1599
1.25
H1
2.63
-11.94
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1600
1.50
H1
3.01
-4.83
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1601
1.70
H1
2.96
-5.69
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1602
2.00
H1
1.90
-10.06
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
409.62
374.40
Sr/ Sr
0.707668
0.707585
Conodont Zone
1603
2.25
H1
2.50
-7.64
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1604
2.50
H1
2.77
-5.42
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1605
2.75
H1
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1606
3.00
H1
2.51
-5.63
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1607
3.25
H1
2.29
-5.88
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1608
3.50
H1
2.39
-5.75
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1609
3.75
H1
2.26
-5.94
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1610
4.00
H1
2.00
-5.65
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1611
4.35
H2
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1612
4.85
H2
2.78
-7.77
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1613
5.25
H2
2.69
-8.45
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1614
5.50
H2
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1615
5.75
H2
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
156.87
10.84
0.707569
0.707713
3.05
-4.89
continued
Table 3 continued
1616
6.00
H3
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1617
6.20
H3
140.31
0.707651
2.42
-5.13
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1618
6.40
H3
2.62
-5.37
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
2.77
-4.57
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
2.87
-3.22
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
2.47
-5.03
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
-4.65
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1619
6.75
H4
1620
7.30
H4
1621
7.55
H4
1622
8.00
H5
1623
8.30
H5
1624
8.55
H5
1625
8.72
H5
1626
8.93
H5
1627
9.43
H5
2.10
168.81
0.707607
2.56
262.50
-5.16
0.707585
138
1628
9.63
H6
2.84
-4.86
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1629
10.00
H6
2.41
-4.71
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1630
10.43
H6
2.37
-5.49
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1631
10.72
H6
2.27
-5.15
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1632
11.25
H6
2.84
-5.42
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1633
11.70
H6
3.06
-5.89
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1634
12.00
H7
2.97
-6.52
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1635
12.66
H7
3.28
-6.18
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1636
13.00
H8
3.12
-6.05
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1637
13.50
H8
3.46
-6.17
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1638
14.00
H8
3.27
-5.91
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1639
14.50
H8
2.81
-5.92
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1640
14.91
H8
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1641
15.50
H8
2.68
-4.63
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1642
15.95
H8
2.87
-5.22
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1643
16.54
H8
2.95
-5.78
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
242.35
0.707508
continued
Table 3 continued
1644
17.00
H8
2.57
-5.73
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1645
17.50
H8
3.05
-5.51
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1646
18.00
H8
2.67
-5.17
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1647
18.45
H8
2.77
-5.45
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1648
19.00
H8
2.90
-5.42
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1649
19.50
H8
3.11
-5.17
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1650
19.80
H9
3.26
-4.37
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1651
20.80
H9
2.08
-5.67
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
139
1652
21.30
H9
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1653
21.60
H9
4.86
-6.25
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1654
22.10
3.29
-5.39
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1655
22.75
H9
H11
(no10)
3.33
-7.91
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1656
23.05
H11
2.95
-6.20
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
23.68
H11
3.40
-5.68
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1657
1657+
40 cm shale
420.48
0.707588
H12
1658
24.30
H13
1.47
-6.55
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1659
25.00
H13
3.20
-4.86
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1660
25.85
H13
2.64
-5.38
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1660+ 40 cm shale
H14
1661
26.45
H15
2.96
1662
26.85
H15
1663
27.46
H15
2.65
-7.39
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1664
27.93
H15
2.72
-5.59
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1665
28.10
H16
2.88
-4.88
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1666
28.75
H16
2.01
-6.99
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1667
29.15
H16
2.15
-6.05
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
1668
29.60
H16
2.49
-5.03
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
687.13
-5.10
0.707554
continued
Table 3 continued
1669
1670
275.600
29.85
H16
462.55
0.707464
39.00
H18
602.22
0.707421
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Artinskian
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
Kungurian
1671
275.594
39.50
H18
2.63
-4.91
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
1672
275.587
40.10
H18
2.18
-4.15
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1673
275.579
40.75
H18
2.63
-4.14
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
140
1674
275.572
41.35
H18
2.70
-4.06
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1675
275.563
42.05
H19
2.54
-4.18
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1676
275.555
42.75
H19
2.58
-4.06
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1677
275.549
43.25
H19
2.43
-4.87
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1678
275.541
43.85
H19
2.96
-4.08
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1679
275.537
44.25
H19
2.62
-4.04
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1680
275.524
45.25
H19
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1681
275.488
48.25
H19
3.08
-3.98
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1682
275.467
50.00
H20
2.82
-4.04
Ps. costatus
Staffella, Pseudofusulina, S. tschernyschewi
Chihsia
Kungurian
1683
275.453
51.15
H21
1.83
-4.98
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1684
275.443
52.00
H21
2.32
-3.51
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1685
275.419
54.00
H21
2.98
-4.32
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1686
275.397
55.80
H22
2.33
-4.35
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1687
275.371
57.90
H22
3.27
-4.28
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1688
275.364
58.50
H22
3.29
-3.79
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1689
275.346
60.00
H23
3.52
-3.57
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1690
275.326
61.65
H23
3.83
-3.00
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1691
275.307
63.25
H24
3.45
-2.49
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1692
275.283
65.25
H24
3.07
-4.73
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1693
275.263
66.85
H24
2.73
-5.46
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1.70
-6.19
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Ps. costatus
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1694
275.237
69.00
H25
1695
275.220
70.40
H25
1696
275.205
71.70
H25
1055.00
1175.00
0.707412
0.707402
1.99
-3.95
continued
Table 3 continued
1697
275.179
73.80
H26
2.64
-3.60
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1698
275.148
76.40
H26
2.85
-4.22
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Kungurian
141
1699
275.121
78.60
H27
3.18
-3.54
Wentzellophyllum - Misellina claudiae
Chihsia
1700
275.104
80.00
H27
2.22
-4.88
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1701
275.081
81.90
H28
2.48
-4.31
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1702
275.066
83.20
H28
2.44
-4.78
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1703
275.046
84.80
H29
3.20
-3.50
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1704
275.027
86.40
H29
2.58
-5.21
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1705
275.003
88.40
H30
2.98
-4.41
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1706
274.980
90.30
H31
3.26
-8.06
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1707
274.960
91.90
H31
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Kungurian
1708
274.935
94.00
H32
1709
274.907
96.30
H33
3.53
1710
274.883
98.30
H33
1711
274.858
100.40
H34
3.21
-6.99
Wentzellophyllum - Misellina claudiae
Chihsia
1712
274.845
101.40
H35
3.23
-5.00
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1713
274.820
103.50
H36
3.93
-5.85
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1714
274.797
105.40
H37
3.50
-4.26
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1715
274.778
107.00
H37
3.41
-6.59
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1716
274.749
109.40
H38
2.68
-8.87
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1717
274.732
110.80
H39
2.13
-5.08
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
Kungurian
772.70
-4.73
0.707371
1718
274.710
112.60
H39
2.35
-8.83
Wentzellophyllum - Misellina claudiae
Chihsia
1719
274.686
114.60
H40
2.32
-5.12
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1720
274.660
116.70
H40
2.82
-4.89
Wentzellophyllum - Misellina claudiae
Chihsia
Kungurian
1721
274.635
118.80
H41
2.99
-6.51
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1722
274.608
121.00
H41
3.10
-4.15
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1723
274.587
122.80
H41
3.27
-4.23
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
continued
Table 3 continued
142
1724
274.566
124.50
H42
3.20
-4.76
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1725
274.558
125.20
H43
3.15
-4.10
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1726
274.544
126.30
H44
3.28
-5.24
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1727
274.524
128.00
H44
3.12
-4.51
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1728
274.498
130.10
H45
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1729
274.479
131.70
H45
3.20
-7.98
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1730
274.455
133.70
H45
3.07
-5.38
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1731
274.433
135.50
H45
3.51
-4.85
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1732
274.414
137.10
H46
3.39
-4.10
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1733
274.388
139.20
H47
3.40
-5.10
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1734
274.367
141.00
H47
3.73
-5.09
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
3.98
-6.65
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
Chihsia
Kungurian
553.20
0.707391
1735
274.345
142.80
H48
1736
274.329
144.10
H49
1737
274.305
146.10
H50
4.02
-4.26
Nankingella orbicularis - Yangchienia
1738
274.284
147.80
H50
3.75
-5.84
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1739
274.258
150.00
H50
3.54
-8.27
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1740
274.234
152.00
H50
3.22
-6.11
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1741
274.209
154.00
H51
3.25
-5.30
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1742
274.189
155.70
H52
3.35
-5.86
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1743
274.167
157.50
H52
3.09
-5.18
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1744
274.142
159.60
H52
3.32
-5.02
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1745
274.116
161.70
H52
2.39
-5.05
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1746
274.089
164.00
H52
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
Kungurian
646.40
0.707339
1747
274.067
165.80
H52
2.85
-4.34
Nankingella orbicularis - Yangchienia
Chihsia
1748
274.040
168.00
H53
1.63
-5.98
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1749
274.021
169.60
H53
2.55
-7.66
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1750
274.000
171.30
H53
2.44
-5.59
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
continued
Table 3 continued
1751
273.977
173.20
H54
2.90
-5.40
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1752
273.947
175.70
H54
3.00
-6.36
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1753
273.928
177.30
H54
2.38
-6.15
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
143
1754
273.908
178.90
H55
2.44
-6.37
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1755
273.891
180.30
H56
3.12
-4.63
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1756
273.877
181.50
H56
2.66
-5.77
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1757
273.862
182.70
H57
2.68
-6.50
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1758
273.844
184.20
H57
1.29
-7.05
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1759
273.830
185.40
H58
2.97
-7.10
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1760
273.816
186.50
H58
3.33
-7.29
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1761
273.792
188.50
H58
2.83
-7.83
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
Kungurian
1762
273.780
189.50
H58
2.78
-7.49
Nankingella orbicularis - Yangchienia
Chihsia
1763
273.752
191.80
H60
2.79
-7.04
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1764
273.734
193.30
H60
2.91
-5.75
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1765
273.715
194.90
H60
2.72
-7.30
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1766
273.697
196.40
H60
2.90
-6.38
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1767
273.687
197.20
H60
2.24
-6.73
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1768
273.668
198.80
H60
2.66
-6.41
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1769
273.647
200.50
H61
3.61
-7.45
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1770
273.627
202.20
H62
3.26
-5.48
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1771
273.618
202.90
H62
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1772
273.606
203.90
H62
3.19
-4.42
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1773
273.590
205.20
H62
2.98
-5.54
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1774
273.571
206.80
H62
2.73
-5.73
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1775
273.555
208.10
H63
3.25
-6.92
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1776
273.537
209.60
H63
2.80
-5.73
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1777
273.520
211.00
H63
3.25
-4.77
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1778
273.506
212.20
H63
2.76
-7.77
Nankingella orbicularis - Yangchienia
Chihsia
Kungurian
1346.00
0.707269
continued
Table 3 continued
144
1779
273.486
213.80
H64
3.69
-4.76
Schwagerina chihsiaensis
Chihsia
Kungurian
1780
273.467
215.40
H64
3.00
-7.35
Schwagerina chihsiaensis
Chihsia
Kungurian
1781
273.444
217.30
H64
3.55
-4.78
Schwagerina chihsiaensis
Chihsia
Kungurian
1782
273.433
218.20
H64
2.48
-6.70
Schwagerina chihsiaensis
Chihsia
Kungurian
1783
273.417
219.50
H65
3.24
-5.49
Schwagerina chihsiaensis
Chihsia
Kungurian
1784
273.384
222.30
H65
2.79
-5.18
Schwagerina chihsiaensis
Chihsia
Kungurian
1785
273.368
223.60
H65
2.74
-6.11
Schwagerina chihsiaensis
Chihsia
Kungurian
1786
273.345
225.50
H65
3.37
-4.38
Schwagerina chihsiaensis
Chihsia
Kungurian
1787
273.326
227.10
H66
3.13
-5.52
Schwagerina chihsiaensis
Chihsia
Kungurian
1788
273.306
228.70
H66
3.52
-5.97
Schwagerina chihsiaensis
Chihsia
Kungurian
1789
273.282
230.70
H66
2.87
-5.11
Schwagerina chihsiaensis
Chihsia
Kungurian
1790
273.264
232.20
H66
Schwagerina chihsiaensis
Chihsia
Kungurian
1791
273.244
233.80
H66
Schwagerina chihsiaensis
Chihsia
Kungurian
1792
273.228
235.20
H66
3.58
-4.96
Schwagerina chihsiaensis
Chihsia
Kungurian
1793
273.203
237.20
H67
3.74
-5.36
Schwagerina chihsiaensis
Chihsia
Kungurian
1794
273.178
239.30
H67
4.00
-4.38
Schwagerina chihsiaensis
Chihsia
Kungurian
1795
273.156
241.10
H67
3.33
-6.81
Schwagerina chihsiaensis
Chihsia
Kungurian
1796
273.134
242.90
H67
2.92
-4.97
Schwagerina chihsiaensis
Chihsia
Kungurian
1797
273.110
244.90
H68
2.52
-7.05
Schwagerina chihsiaensis
Chihsia
Kungurian
1798
273.080
247.40
H69
2.75
-4.98
Schwagerina chihsiaensis
Chihsia
Kungurian
1799
273.041
250.60
2.87
-3.84
Schwagerina chihsiaensis
Chihsia
Kungurian
1800
273.026
251.90
H69
H71
(N70)
3.36
-4.29
Schwagerina chihsiaensis
Chihsia
Kungurian
1801
272.997
254.30
H71
1.06
-7.38
Schwagerina chihsiaensis
Chihsia
Kungurian
1802
272.975
256.10
H71
2.72
-6.42
Schwagerina chihsiaensis
Chihsia
Kungurian
1803
272.945
258.60
H71
3.01
-4.72
Schwagerina chihsiaensis
Chihsia
Kungurian
1804
272.923
260.40
H71
2.11
-5.62
Schwagerina chihsiaensis
Chihsia
Kungurian
1805
272.899
262.40
H72
2.21
-7.17
Schwagerina chihsiaensis
Chihsia
Kungurian
1384.00
0.707256
continued
Table 3 continued
145
1806
272.874
264.40
H72
3.21
-6.21
Schwagerina chihsiaensis
Chihsia
Kungurian
1807
272.855
266.00
H73
2.84
-6.23
Schwagerina chihsiaensis
Chihsia
Kungurian
1808
272.829
268.20
H74
3.56
-4.90
Schwagerina chihsiaensis
Chihsia
Kungurian
1809
272.806
270.10
H74
Schwagerina chihsiaensis
Chihsia
Kungurian
1810
272.781
272.10
H74
3.08
-6.05
Schwagerina chihsiaensis
Chihsia
Kungurian
1811
272.762
273.70
H75
1.61
-8.80
Schwagerina chihsiaensis
Chihsia
Kungurian
1812
272.740
275.50
H89(Skip)
3.18
-8.99
Schwagerina chihsiaensis
Chihsia
Kungurian
1813
272.720
277.20
H89
3.59
-4.88
Schwagerina chihsiaensis
Chihsia
Kungurian
1814
272.687
279.90
H89
3.34
-6.02
Schwagerina chihsiaensis
Chihsia
Kungurian
1815
272.665
281.70
H89
2.97
-5.35
Schwagerina chihsiaensis
Chihsia
Kungurian
1816
272.636
284.10
H89
3.86
-4.70
Schwagerina chihsiaensis
Chihsia
Kungurian
Kungurian
2027.00
0.707204
1817
272.604
286.80
H90
3.67
-5.37
Schwagerina chihsiaensis
Chihsia
1818
272.577
289.00
H90
2.60
-7.71
Schwagerina chihsiaensis
Chihsia
Kungurian
1819
272.577
289.00
H90
3.64
-8.62
Schwagerina chihsiaensis
Chihsia
Kungurian
1820
272.553
291.00
H90
3.63
-7.44
Schwagerina chihsiaensis
Chihsia
Kungurian
1821
272.529
293.00
H90
2.88
-6.22
Schwagerina chihsiaensis
Chihsia
Kungurian
1822
272.504
295.00
H90
3.86
-5.61
Schwagerina chihsiaensis
Chihsia
Kungurian
1823
272.480
297.00
H90
4.24
-7.91
Schwagerina chihsiaensis
Chihsia
Kungurian
1824
272.456
299.00
H90
2.78
-8.42
Schwagerina chihsiaensis
Chihsia
Kungurian
1825
272.438
300.50
H90
3.63
-4.81
Schwagerina chihsiaensis
Chihsia
Kungurian
1826
272.408
303.00
H90
Schwagerina chihsiaensis
Chihsia
Kungurian
1827
272.384
305.00
H90
2.92
-6.40
Schwagerina chihsiaensis
Chihsia
Kungurian
1828
272.359
307.00
H90
4.52
-3.85
Schwagerina chihsiaensis
Chihsia
Kungurian
1829
272.342
308.40
H90
4.19
-5.40
Schwagerina chihsiaensis
Chihsia
Kungurian
1830
272.318
310.40
H90
2.79
-6.65
Schwagerina chihsiaensis
Chihsia
Kungurian
1831
272.299
312.00
H90
3.51
-4.95
Schwagerina chihsiaensis
Chihsia
Kungurian
1832
272.275
314.00
H90
3.59
-5.06
Schwagerina chihsiaensis
Chihsia
Kungurian
1833
272.244
316.50
H90
3.68
-5.36
Schwagerina chihsiaensis
Chihsia
Kungurian
595.46
0.707270
continued
Table 3 continued
1834
272.220
318.50
H90
3.33
-7.75
Schwagerina chihsiaensis
Chihsia
Kungurian
1835
272.190
321.00
H90
3.47
-8.28
Schwagerina chihsiaensis
Chihsia
Kungurian
1836
272.166
323.00
H90
3.29
-5.98
Schwagerina chihsiaensis
Chihsia
Kungurian
1837
272.142
325.00
H90
3.64
-6.69
Schwagerina chihsiaensis
Chihsia
Kungurian
1838
272.118
327.00
H90
3.27
-5.96
Schwagerina chihsiaensis
Chihsia
Kungurian
1839
272.093
329.00
H90
4.12
-4.76
Schwagerina chihsiaensis
Chihsia
Kungurian
1840
272.069
331.00
H90
3.43
-6.36
Schwagerina chihsiaensis
Chihsia
Kungurian
1841
272.045
333.00
H90
3.87
-4.58
Schwagerina chihsiaensis
Chihsia
Kungurian
1842
272.021
335.00
H90
Schwagerina chihsiaensis
Chihsia
Kungurian
Kungurian
755.72
0.707190
146
1843
271.997
337.00
H90
3.20
-4.62
Schwagerina chihsiaensis
Chihsia
1844
271.972
339.00
H90
4.19
-3.87
Schwagerina chihsiaensis
Chihsia
Kungurian
1845
271.948
341.00
H90
3.76
-4.25
Schwagerina chihsiaensis
Chihsia
Kungurian
1846
271.926
342.80
H91
2.88
-5.85
Schwagerina chihsiaensis
Chihsia
Kungurian
1847
271.902
344.80
H91
3.11
-5.55
Schwagerina chihsiaensis
Chihsia
Kungurian
1848
271.878
346.80
H91
1.74
-7.45
Schwagerina chihsiaensis
Chihsia
Kungurian
1849
271.854
348.80
H92
3.71
-4.04
Schwagerina chihsiaensis
Chihsia
Kungurian
1850
271.842
349.80
H92
3.25
-3.40
Schwagerina chihsiaensis
Chihsia
Kungurian
1851
271.818
351.80
H93
2.86
-5.71
Schwagerina chihsiaensis
Chihsia
Kungurian
1852
271.793
353.80
H93
3.22
-6.74
Schwagerina chihsiaensis
Chihsia
Kungurian
1853
271.778
355.10
H94
3.27
-8.61
Schwagerina chihsiaensis
Chihsia
Kungurian
1854
271.757
356.80
H94
Schwagerina chihsiaensis
Chihsia
Kungurian
1855
271.739
358.30
H94
3.21
-4.44
Schwagerina chihsiaensis
Chihsia
Kungurian
1856
271.710
360.70
H94
2.09
-7.50
Schwagerina chihsiaensis
Chihsia
Kungurian
1857
271.686
362.70
H95
2.68
-4.52
Schwagerina chihsiaensis
Chihsia
Kungurian
1042.86
0.707224
1858
271.663
364.60
H95
3.59
-3.31
Schwagerina chihsiaensis
Chihsia
Kungurian
1859
271.640
366.50
H96
3.45
-3.86
Schwagerina chihsiaensis
Chihsia
Kungurian
1860
271.616
368.50
H97
3.32
-6.53
Schwagerina chihsiaensis
Chihsia
Kungurian
1861
271.593
370.40
H97
1.45
-8.44
Schwagerina chihsiaensis
Chihsia
Kungurian
continued
Table 3 continued
1862
271.573
372.00
H98
3.40
-4.82
Schwagerina chihsiaensis
Chihsia
Kungurian
1863
271.549
374.00
H98
4.01
-4.24
Schwagerina chihsiaensis
Chihsia
Kungurian
Kungurian
147
1864
271.535
375.20
H99
3.88
-5.19
Schwagerina chihsiaensis
Chihsia
1865
271.511
377.20
H99
3.30
-4.74
Schwagerina chihsiaensis
Chihsia
Kungurian
1866
271.484
379.40
H99
2.58
-4.98
Schwagerina chihsiaensis
Chihsia
Kungurian
1867
271.462
381.20
H99
2.93
-4.99
Schwagerina chihsiaensis
Chihsia
Kungurian
1868
271.433
383.60
H99
3.30
-4.39
Chihsia
Kungurian
1869
271.400
386.30
H100
3.63
-3.63
S. subasymmetricus
Maokou
Kungurian
1870
271.375
388.40
H100
3.83
-3.61
S. subasymmetricus
Maokou
Kungurian
1871
271.352
390.30
H100
3.50
-6.36
S. subasymmetricus
Maokou
Kungurian
1872
271.338
391.50
H100
3.83
-3.96
S. subasymmetricus
Maokou
Kungurian
1873
271.329
392.20
H101
4.38
-3.62
S. subasymmetricus
Maokou
Kungurian
1874
271.317
393.20
H101
Maokou
Kungurian
1875
271.301
394.50
H101
3.96
-4.02
S. subasymmetricus
Maokou
Kungurian
1876
271.288
395.60
H102
4.37
-3.71
S. subasymmetricus
Maokou
Kungurian
1877
271.278
396.40
H102
5.29
-4.88
S. subasymmetricus
Maokou
Kungurian
1878
271.271
397.00
H102
4.73
-4.93
S. subasymmetricus
Maokou
Kungurian
1879
271.415
385.10
H100
2.52
-4.60
S. subasymmetricus
Maokou
Kungurian
1880
271.259
398.00
H102
5.40
-4.50
S. subasymmetricus
Maokou
Kungurian
1881
271.242
399.40
H102
4.62
-5.80
S. subasymmetricus
Maokou
Kungurian
1882
271.230
400.40
H102
5.08
-4.59
S. subasymmetricus
Maokou
Kungurian
1883
271.219
401.30
H102
4.90
-4.16
S. subasymmetricus
Maokou
Kungurian
1884
271.205
402.50
H103
5.05
-4.74
S. subasymmetricus
Schwagerina chihsiaensis
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Kungurian
1885
271.193
403.50
H103
4.40
-4.88
S. subasymmetricus
Neomisellina, Neoschwagerina, Minojapanella
Maokou
Kungurian
543.73
0.707156
S. subasymmetricus
continued
Table 3 continued
pulchra
148
1886
271.180
404.50
H103
4.12
-5.11
S. subasymmetricus
1887
271.165
405.80
H103
4.14
-4.36
S. subasymmetricus
1888
271.151
406.90
H103
4.41
-3.46
S. subasymmetricus
1889
271.134
408.30
H104
4.99
-3.78
S. subasymmetricus
1890
271.122
409.30
H104
4.77
-4.49
S. subasymmetricus
1891
271.110
410.30
H104
4.28
-4.98
S. subasymmetricus
1892
271.096
411.50
H105
5.96
-4.19
S. subasymmetricus
1893
271.085
412.40
H105
4.36
-5.08
S. subasymmetricus
1894
271.073
413.40
H105
1895
271.056
414.80
H105
4.76
-4.51
S. subasymmetricus
1896
271.041
416.00
H106
4.79
-3.99
S. subasymmetricus
1897
271.029
417.00
H106
5.39
-3.61
S. subasymmetricus
1898
271.015
418.20
H106
4.05
-3.75
S. subasymmetricus
1899
271.000
419.40
H106
3.83
-5.99
S. subasymmetricus
1900
270.991
420.20
H106
4.27
-4.96
S. subasymmetricus
1901
270.977
421.30
H106
4.98
-3.50
S. subasymmetricus
1902
270.965
422.30
H106
3.38
-5.34
S. subasymmetricus
1903
270.953
423.30
H107
4.68
-4.79
S. subasymmetricus
1904
270.941
424.30
H107
3.14
-7.19
S. subasymmetricus
1905
270.929
425.30
H107
1906
270.917
426.30
H107
590.35
591.00
0.707133
S. subasymmetricus
0.707122
S. subasymmetricus
3.78
-5.17
S. subasymmetricus
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
continued
Table 3 continued
149
1907
270.904
427.40
H107
4.30
-4.66
S. subasymmetricus
1908
270.888
428.70
H108
4.00
-3.80
S. subasymmetricus
1909
270.878
429.50
H108
4.37
-4.85
S. subasymmetricus
1910
270.864
430.70
H108
3.35
-4.76
S. subasymmetricus
1911
270.852
431.70
H109
3.04
-5.69
S. subasymmetricus
1912
270.837
432.90
H109
4.43
-4.27
S. subasymmetricus
1913
270.825
433.90
H109
1914
270.812
435.00
H109
4.27
-5.26
S. subasymmetricus
1915
270.796
436.30
H109
4.78
-3.77
S. subasymmetricus
1916
270.781
437.50
H109
2.52
-5.27
S. subasymmetricus
1917
270.770
438.40
H110
3.08
-6.63
S. subasymmetricus
1918
270.760
439.30
H110
3.29
-4.49
S. subasymmetricus
1919
270.749
440.20
H110
1.93
-4.20
S. subasymmetricus
1920
270.735
441.30
H110
1.76
-5.46
S. subasymmetricus
1921
270.726
442.10
H110
3.88
-3.70
S. subasymmetricus
1922
270.714
443.10
H111
3.52
-4.28
S. subasymmetricus
1923
270.702
444.10
H111
4.28
-4.64
S. subasymmetricus
1924
270.693
444.80
H111
4.27
-3.43
S. subasymmetricus
1925
270.681
445.80
H111
3.25
-4.87
S. subasymmetricus
1926
270.668
446.90
H111
1927
270.657
447.80
H111
3.01
-4.68
S. subasymmetricus
1928
270.645
448.80
H111
2.85
-4.26
S. subasymmetricus
846.87
1253.31
0.707146
S. subasymmetricus
0.707001
S. subasymmetricus
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
continued
Table 3 continued
150
1929
270.636
449.50
H111
2.97
-4.07
S. subasymmetricus
1930
270.629
450.10
H111
2.07
-4.07
S. subasymmetricus
1931
270.622
450.70
H111
2.21
-3.70
S. subasymmetricus
1932
270.610
451.70
H111
2.47
-4.02
S. subasymmetricus
1933
270.600
452.50
H111
2.35
-4.36
S. subasymmetricus
1934
270.600
470.00
H112
1935
270.543
472.00
H112
1936
270.486
474.00
H112
J. nankingensis
1937
270.429
476.00
H112
J. nankingensis
1938
270.343
479.00
H112
J. nankingensis
1939
270.286
481.00
H112
J. nankingensis
1940
270.229
483.00
H112
1941
270.171
485.00
H112
J. nankingensis
1942
270.114
487.00
H112
J. nankingensis
1943
270.057
489.00
H112
J. nankingensis
1944
270.000
491.00
H112
J. nankingensis
1945
269.943
493.00
H112
J. nankingensis
1946
269.886
495.00
H112
J. nankingensis
1947
269.457
510.00
H113
1948
269.426
511.10
H113
1949
269.391
512.30
H113
0.14
-9.21
J. nankingensis
1950
269.369
513.10
H113
4.27
-3.27
J. nankingensis
J. nankingensis
x
J. nankingensis
0.99
2.41
238.31
-12.82
-5.78
0.707713
J. nankingensis
J. nankingensis
J. nankingensis
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Kungurian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
continued
Table 3 continued
151
1951
269.323
514.70
H113
4.09
-3.98
J. nankingensis
1952
269.300
515.50
H113
3.88
-4.33
J. nankingensis
1953
269.269
516.60
H113
1.03
-7.46
J. nankingensis
1954
269.223
518.20
H113
3.75
-5.10
J. nankingensis
1955
269.189
519.40
H113
2.63
-7.78
J. nankingensis
1956
269.160
520.40
H113
1.71
-8.53
J. nankingensis
1957
269.137
521.20
H113
4.10
-6.42
J. nankingensis
1958
269.089
522.90
H113
3.74
-3.61
J. nankingensis
1959
269.057
524.00
H113
4.17
-4.23
J. nankingensis
1960
269.031
524.90
H113
1961
268.954
527.60
H113
4.28
-5.40
J. nankingensis
1962
268.926
528.60
H113
4.36
-5.00
J. nankingensis
1963
268.897
529.60
H113
3.27
-6.79
J. nankingensis
1964
268.874
530.40
H113
3.40
-5.62
J. nankingensis
1965
268.826
532.10
H113
4.01
-7.41
J. nankingensis
1966
268.797
533.10
H113
0.35
-9.57
J. nankingensis
1967
268.771
534.00
H113
1.59
-7.34
J. nankingensis
1968
268.740
535.10
H113
2.56
-6.55
J. nankingensis
1969
268.720
535.80
H113
4.28
-5.82
J. nankingensis
1970
268.706
536.30
H113
1971
268.691
536.80
H114
4.60
-3.41
J. nankingensis
1972
268.677
537.30
H114
4.16
-5.24
J. nankingensis
402.40
0.707191
J. nankingensis
J. nankingensis
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
continued
Table 3 continued
152
1973
268.663
537.80
H114
4.28
-5.53
J. nankingensis
1974
268.649
538.30
H114
4.09
-5.60
J. nankingensis
1975
268.629
539.00
H114
4.26
-5.31
J. nankingensis
1976
268.614
539.50
H114
4.26
-5.34
J. nankingensis
1977
268.600
540.00
H114
4.04
-5.90
J. nankingensis
1978
268.586
540.50
H114
4.11
-5.73
J. nankingensis
1979
268.571
541.00
H114
1980
268.557
541.50
H114
3.40
-5.91
J. nankingensis
1981
268.543
542.00
H114
2.96
-6.08
J. nankingensis
1982
268.529
542.50
H114
3.52
-6.45
J. nankingensis
1983
268.514
543.00
H114
3.73
-6.49
J. nankingensis
1984
268.500
543.50
H114
4.30
-5.79
J. nankingensis
1985
268.486
544.00
H114
4.09
-6.04
J. nankingensis
1986
268.471
544.50
H114
4.16
-6.30
J. nankingensis
1987
268.457
545.00
H114
1988
268.443
545.50
H114
4.30
-5.52
J. nankingensis
1989
268.429
546.00
H114
4.36
-5.96
J. nankingensis
1990
268.414
546.50
H114
2.95
-6.32
J. nankingensis
1991
268.400
547.00
H114
4.61
-6.06
J. nankingensis
1992
268.386
547.50
H114
0.97
-7.06
J. nankingensis
1993
268.371
548.00
H114
4.36
-5.85
J. nankingensis
1994
268.357
548.50
H114
4.15
-6.22
J. nankingensis
900.65
995.92
0.707043
J. nankingensis
0.707056
J. nankingensis
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
continued
Table 3 continued
153
1995
268.343
549.00
H114
0.47
-7.87
J. nankingensis
1996
268.329
549.50
H114
4.08
-6.37
J. nankingensis
1997
268.314
550.00
H114
1998
268.300
550.50
H114
4.14
-5.51
J. nankingensis
1999
268.286
551.00
H114
3.99
-6.11
J. nankingensis
2000
268.271
551.50
H114
2.79
-7.48
J. nankingensis
2001
268.257
552.00
H114
0.12
-8.02
J. nankingensis
2002
268.243
552.50
H114
2.93
-6.14
J. nankingensis
2003
268.229
553.00
H114
2.93
-6.86
J. nankingensis
2004
268.214
553.50
H114
3.62
-6.47
J. nankingensis
2005
268.200
554.00
H114
3.19
-5.79
J. nankingensis
2006
268.186
554.50
H114
4.28
-5.25
J. nankingensis
2007
268.171
555.00
H114
2008
268.157
555.50
H114
2.69
-6.22
J. nankingensis
2429
268.143
556.00
H114
4.33
-5.34
J. nankingensis
2430
268.129
556.50
H114
4.34
-5.54
J. nankingensis
2431
268.114
557.00
H114
4.72
-5.02
J. nankingensis
2432
268.100
557.50
H114
4.58
-5.51
J. nankingensis
2433
268.086
558.00
H114
3.86
-5.34
J. nankingensis
2434
268.071
558.50
H114
3.38
-5.79
J. nankingensis
2435
268.057
559.00
H114
3.31
-5.60
J. nankingensis
2436
268.043
559.50
H114
4.09
-5.14
J. nankingensis
886.52
0.707054
J. nankingensis
J. nankingensis
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
continued
Table 3 continued
154
2437
268.029
560.00
H114
2438
268.014
560.50
H114
2439
268.006
560.80
H114
4.27
-5.35
J. nankingensis
2440
268.000
561.40
H115
4.71
-6.17
J. aserrata
2441
267.929
562.60
H115
3.78
-7.66
J. aserrata
2442
267.870
563.60
H115
2443
267.792
564.90
H115
4.19
-4.96
J. aserrata
2444
267.704
566.40
H115
3.05
-5.08
J. aserrata
2445
267.638
567.50
H115
3.45
-5.66
J. aserrata
2446
267.579
568.50
H115
2447
267.520
569.50
H115
2.08
-8.33
J. aserrata
2448
267.460
570.50
H115
1.12
-6.99
J. aserrata
2449
267.360
572.20
H115
4.12
-4.23
J. aserrata
2450
267.271
573.70
H115
0.93
-6.70
J. aserrata
2451
267.045
577.50
H115
2452
266.998
578.30
H115
4.40
-3.52
J. aserrata
2453
266.909
579.80
H115
4.16
-4.00
J. aserrata
2454
266.790
581.80
H115
2455
266.666
583.90
H115
1.75
-6.47
J. aserrata
2456
266.535
586.10
H115
2.48
-6.62
J. aserrata
2457
266.446
587.60
H115
2458
266.328
589.60
H115
3.54
728.62
500.13
382.30
700.90
513.21
302.91
-5.82
0.707067
J. nankingensis
J. nankingensis
0.707146
J. aserrata
0.707059
J. aserrata
0.707165
J. aserrata
0.707058
J. aserrata
0.707121
J. aserrata
0.77
-7.25
J. aserrata
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Roadian
Maokou
Roadian
Maokou
Roadian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
continued
Table 3 continued
155
2459
266.209
591.60
H115
1.04
-6.24
J. aserrata
2460
266.061
594.10
H115
0.00
-8.32
J. aserrata
2461
265.919
596.50
H115
183.20
0.707135
3.33
-5.82
J. aserrata
2462
265.800
598.50
H115
209.33
0.707087
2463
265.800
600.50
H116
2464
265.729
601.90
H116
2465
265.627
603.90
H116
3.01
-5.68
J. posterrata
2466
265.484
606.70
H116
0.55
-7.03
J. posterrata
2467
265.383
608.70
H116
-0.11
-8.45
J. posterrata
2468
265.316
610.00
H116
-0.43
-7.88
J. posterrata
2469
265.215
612.00
H116
0.47
-8.68
J. posterrata
2470
265.113
614.00
H116
2471
265.001
616.20
H116
2.99
-5.45
J. posterrata
2472
264.909
618.00
H116
1.84
-8.83
J. posterrata
2473
264.808
620.00
H116
0.89
-9.14
J. posterrata
2474
264.706
622.00
H116
2.42
-10.70
J. posterrata
2475
264.599
624.10
H116
2.25
-5.58
J. posterrata
2476
264.497
626.10
H116
2477
264.400
628.00
H116
2478
264.299
630.00
H116
2479
264.212
631.70
H116
3.01
-4.70
J. posterrata
2480
264.110
633.70
H116
3.76
-4.87
J. posterrata
J. aserrata
-1.20
175.95
137.52
-8.14
0.706954
J. posterrata
J. posterrata
0.707104
J. posterrata
J. posterrata
1.85
141.80
-6.98
0.707143
J. posterrata
J. posterrata
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Wordian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
continued
Table 3 continued
156
2481
264.019
635.50
H116
2.87
-6.33
2482
263.917
637.50
H116
2.97
-7.07
2483
263.805
639.70
H116
2.00
-6.54
2484
263.703
641.70
H116
0.47
-7.68
2485
264.059
634.70
H116
1.85
-7.90
2486
263.505
645.60
H116
2487
263.403
647.60
H116
2.99
-9.18
2488
263.240
650.80
H116
1.85
-8.04
2489
263.143
652.70
H116
1.75
-10.85
2490
263.057
654.40
H116
2.27
-7.20
2491
262.955
656.40
H116
2.32
-5.62
2492
262.879
657.90
H116
3.11
-4.99
2493
262.787
659.70
H116
2494
262.634
662.70
H117
3.93
-3.60
2495
262.538
664.60
H117
1.89
-8.24
2496
262.421
666.90
H117
2.12
-6.53
2497
262.329
668.70
H117
1.96
-6.66
2498
262.227
670.70
H117
2.08
-8.89
2499
262.166
671.90
H117
2.80
-5.52
2500
262.080
673.60
H117
4.00
-5.02
2501
262.003
675.10
H117
2.63
-5.74
2502
261.927
676.60
H117
187.62
208.04
165.92
0.707186
0.707097
0.707257
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
continued
Table 3 continued
157
2503
261.861
677.90
H117
-1.02
-9.11
2504
261.825
678.60
H117
-1.25
-8.78
2505
261.759
679.90
H117
-2.84
-9.80
2506
261.637
682.30
H117
-2.55
-9.17
2507
261.571
683.60
H117
2.47
-10.44
2508
261.474
685.50
H117
2.51
-6.30
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
J. shannoni/J.
altudaensis
2509
261.418
686.60
H117
0.47
-7.62
J. prexuanhanensis
2510
261.357
687.80
H117
-0.09
-7.93
J. prexuanhanensis
2511
261.286
689.20
H117
1.64
-7.03
J. prexuanhanensis
2512
261.235
690.20
H118
2513
261.174
691.40
H118
0.55
-7.08
J. prexuanhanensis
2514
261.133
692.20
H118
2.38
-7.43
J. prexuanhanensis
2515
261.087
693.10
H118
0.27
-7.24
J. prexuanhanensis
2516
261.067
693.50
H118
3.04
-2.57
J. prexuanhanensis
2517
261.046
693.90
H118
2518
261.036
694.10
H118
2.34
-6.14
J. prexuanhanensis
2519
261.001
694.80
H118
2.34
-7.05
J. prexuanhanensis
2520
260.985
695.10
H118
2.46
-6.33
J. xuanhanensis
2521
260.970
695.40
H118
2.71
-5.40
J. xuanhanensis
2522
260.939
696.00
H118
2.81
-6.92
J. xuanhanensis
2523
260.919
696.40
H118
3.30
-6.46
J. xuanhanensis
2524
260.904
696.70
H118
0.13
-8.19
J. xuanhanensis
187.51
0.707193
J. prexuanhanensis
J. prexuanhanensis
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
continued
Table 3 continued
158
2525
260.884
697.10
H118
-1.39
-8.87
J. xuanhanensis
2526
260.863
697.50
H119
-0.22
-11.31
J. xuanhanensis
2527
260.843
697.90
H119
2528
260.822
698.30
H119
1.13
-8.22
J. xuanhanensis
2529
260.802
698.70
H119
-1.21
-9.81
J. xuanhanensis
2530
260.787
699.00
H119
0.32
-9.81
J. xuanhanensis
2531
260.772
699.30
H119
3.20
-8.15
J. xuanhanensis
2532
260.751
699.70
H119
2.19
-11.26
J. xuanhanensis(?)
2533
260.736
700.00
H119
2534
260.716
700.40
H119
2.70
-9.39
J. xuanhanensis(?)
2535
260.695
700.80
H119
0.40
-8.44
J. xuanhanensis(?)
2536
260.680
701.10
H119
-0.86
-8.29
J. granti
2537
260.660
701.50
H119
-1.55
-8.70
J. granti
2538
260.644
701.80
H119
0.22
-7.99
J. granti
2539
260.629
702.10
H119
0.73
-8.19
J. granti
2540
260.614
702.40
H119
-1.00
-8.78
J. granti
2541
260.598
702.70
H119
-1.30
-8.51
J. granti
2542
260.583
703.00
H119
1.98
-7.57
J. granti
2543
260.568
703.30
H119
2544
260.553
703.60
H119
1.01
-8.89
J. granti
2545
260.537
703.90
H119
-0.90
-8.25
J. granti
2546
260.522
704.20
H119
0.87
-7.67
J. granti
J. xuanhanensis
1151.98
229.20
0.707486
J. xuanhanensis(?)
0.707090
J. granti
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
continued
Table 3 continued
159
2547
260.507
704.50
H119
2.02
-8.21
J. granti
2548
260.487
704.90
H119
3.68
-4.97
J. granti
2549
260.471
705.20
H119
2550
260.464
705.35
H119
0.54
-8.93
J. granti
2551
260.459
705.45
H119
2.51
-7.92
J. granti
2552
260.451
705.60
H119
2.13
-6.69
J. granti
2553
260.443
705.75
H119
1.72
-7.51
J. granti
2554
260.438
705.85
H119
1.61
-7.63
J. granti
2555
260.431
706.00
H119
2556
260.425
706.10
H119
2557
260.410
706.40
H119
182.57
0.707216
J. granti
2558
260.400
706.90
H119
159.20
0.707034
C. postbitteri
2559
260.397
707.00
H119
2.98
-4.01
C. postbitteri
2560
260.392
707.20
H119
2.70
-6.21
C. postbitteri
2561
260.385
707.50
H119
2562
260.374
707.90
H119
2563
260.367
708.20
H119
1.15
-10.31
C. postbitteri
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
Neomisellina, Neoschwagerina, Minojapanella
pulchra
2564
260.359
708.50
H120
-3.17
-9.53
C. dukouensis
Codonofusiella - Liangshanophyllum
2565
260.349
708.90
H120
-1.91
-8.83
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2566
260.341
709.20
H120
-1.26
-8.94
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
0.41
-11.71
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2567
260.331
709.60
H120
2568
260.320
710.00
H120
2569
260.315
710.20
H120
145.92
214.08
0.707137
J. granti
0.707115
J. granti
2.01
-7.36
J. granti
C. postbitteri
109.46
293.46
0.707006
C. postbitteri
0.707321
-0.19
-11.51
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Capitanian
Maokou
Wuchiapingian
Maokou
Wuchiapingian
Maokou
Wuchiapingian
Maokou
Wuchiapingian
Maokou
Wuchiapingian
Maokou
Wuchiapingian
Wujiaping
Wuchiapingian
continued
Table 3 continued
2570
260.307
710.50
H120
-2.26
-9.70
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2571
260.295
711.00
H120
2.03
-8.09
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2572
260.287
711.30
H120
-2.90
-9.40
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2573
260.277
711.70
H120
-1.86
-9.82
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2574
260.264
712.20
H120
-1.20
-9.32
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2575
260.259
712.40
H120
1.14
-9.22
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2576
260.251
712.70
H120
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2577
260.243
713.00
H120
1.69
-7.95
C. dukouensis
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2578
260.235
713.30
H120
-2.95
-8.95
C. asymmetrica
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
395.24
0.707039
160
2579
260.225
713.70
H120
0.08
-8.33
C. asymmetrica
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2580
260.220
713.90
H120
0.32
-8.67
C. asymmetrica
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2581
260.215
714.10
H120
0.14
-7.92
C. asymmetrica
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2582
260.210
714.30
H120
0.42
-8.62
C. asymmetrica
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2583
260.199
714.70
H120
C. asymmetrica
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
-10.33
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
1.74
-7.57
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
H122
1.48
-7.51
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
731.80
H122
2.50
-6.91
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
733.00
H122
2.96
-12.53
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
259.703
734.00
H122
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2592
259.683
734.80
H122
-0.16
-9.82
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2593
259.649
736.10
H122
4.14
-4.63
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2594
259.624
737.10
H122
1.21
-8.32
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2584
259.891
726.70
H122
2585
259.863
727.80
H122
455.33
2586
259.842
728.60
H122
-2.13
2587
259.809
729.90
H122
2588
259.786
730.80
2589
259.760
2590
259.729
2591
304.69
0.707070
C. leveni(?)
0.707227
2595
259.588
738.50
H122
2.06
-7.70
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2596
259.562
739.50
H122
4.33
-6.25
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2597
259.531
740.70
H122
4.11
-5.79
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
continued
Table 3 continued
2598
259.498
742.00
H122
2599
259.456
743.60
H122
3.52
2600
259.431
744.60
H122
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
-6.30
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2601
259.410
745.40
H122
2602
259.377
746.70
H122
1.21
-7.37
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2.70
-6.24
Codonofusiella - Liangshanophyllum
Wujiaping
2603
259.343
748.00
H122
-1.54
Wuchiapingian
-8.68
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2604
259.310
749.30
H122
2605
259.276
750.60
H122
2.50
-8.94
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
1.34
-7.99
Codonofusiella - Liangshanophyllum
Wujiaping
2606
259.248
751.70
H122
Wuchiapingian
2.53
-4.84
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
3.63
202.38
-5.71
161
2607
259.212
753.10
H122
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2608
259.189
754.00
H122
0.73
-8.73
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2609
259.156
755.30
H122
2.35
-7.76
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2610
259.120
756.70
H122
2.68
-7.96
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2611
259.078
758.30
H122
-0.38
-10.01
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2612
259.053
759.30
H122
2.65
-7.95
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2613
259.017
760.70
H122
2.25
-9.55
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2614
258.983
762.00
H122
2.47
-8.82
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2615
258.952
763.20
H122
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2616
258.922
764.40
H122
4.68
-7.81
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2617
258.906
765.00
H122
1.12
-7.00
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2618
258.896
765.40
H122
2.15
-8.76
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2619
258.888
765.70
H123
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2620
258.875
766.20
H123
4.90
-6.22
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2621
258.862
766.70
H123
4.01
-7.28
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2622
258.837
767.70
H123
3.10
-7.28
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2623
258.816
768.50
H123
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2624
258.798
769.20
H123
3.61
-7.74
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2625
258.793
769.40
H123
4.48
-6.34
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
154.12
0.707218
0.707197
continued
Table 3 continued
162
2626
258.790
769.50
H123
-0.26
-8.94
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2627
258.772
770.20
H123
1.88
-10.66
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2628
258.747
771.20
H123
3.76
-7.36
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2629
258.721
772.20
H123
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2630
258.708
772.70
H123
1.59
-7.80
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2631
258.677
773.90
H123
2.10
-8.23
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2632
258.662
774.50
H123
3.63
-7.43
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2633
258.659
774.60
H123
4.72
-7.05
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2634
258.647
775.10
H123
5.21
-6.20
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2635
258.636
775.50
H123
4.72
-5.22
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2636
258.629
775.80
H124
4.93
-9.20
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2637
258.613
776.40
H124
0.80
-7.99
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2638
258.598
777.00
H124
3.87
-7.75
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2639
258.582
777.60
H124
3.62
-8.88
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2640
258.575
777.90
H124
4.30
-6.69
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2641
258.593
777.20
H124
6.29
-7.66
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2642
258.510
780.40
H125
5.78
-8.07
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2643
258.495
781.00
H125
6.31
-7.57
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2644
258.482
781.50
H125
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2645
258.469
782.00
H125
5.09
-6.42
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2646
258.456
782.50
H125
4.92
-6.24
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2647
258.443
783.00
H125
4.85
-7.42
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2648
258.431
783.50
H125
5.14
-6.56
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2649
258.418
784.00
H125
5.00
-6.67
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2650
258.405
784.50
H125
5.04
-6.56
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2651
258.392
785.00
H125
5.29
-6.95
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2652
258.379
785.50
H125
4.96
-6.76
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2653
258.366
786.00
H125
5.07
-5.99
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
163.38
0.707156
continued
Table 3 continued
163
2654
258.353
786.50
H125
5.13
-6.94
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2655
258.341
787.00
H125
-0.25
-9.04
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2656
258.328
787.50
H125
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2657
258.315
788.00
H125
4.72
-6.33
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2658
258.302
788.50
H125
4.84
-6.44
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2659
258.289
789.00
H125
5.18
-7.23
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2660
258.276
789.50
H125
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2661
258.263
790.00
H126
3.45
-7.60
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2662
258.240
790.90
H126
5.28
-9.09
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2663
258.199
792.50
H126
-1.30
-8.85
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2664
258.184
793.10
H126
2.46
-7.85
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2665
258.166
793.80
H126
3.23
-9.08
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2666
258.150
794.40
H127
4.32
-6.42
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
4.56
-6.54
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
202.74
0.707178
2667
258.130
795.20
H127
2668
258.107
796.10
H127
2669
258.081
797.10
H127
4.87
-7.08
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2670
258.065
797.70
H127
5.01
-6.73
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2671
258.047
798.40
H127
2.90
-4.00
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2672
258.022
799.40
H127
4.89
-7.80
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2673
257.996
800.40
H127
4.94
-6.82
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2674
257.970
801.40
H127
4.88
-6.81
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2675
257.945
802.40
H128
2.61
-6.58
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2676
257.916
803.50
H128
2.88
-8.88
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2677
257.873
805.20
H128
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2678
257.844
806.30
H128
323.58
0.707355
3.75
-9.82
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2679
257.803
807.90
H128
4.81
-7.66
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2680
257.775
809.00
H129
4.95
-7.30
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2681
257.747
810.10
H129
5.08
-7.46
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
continued
Table 3 continued
2682
257.718
811.20
H129
5.05
-6.83
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2683
257.690
812.30
H129
5.10
-7.41
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2684
257.664
813.30
H129
4.58
-7.41
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2685
257.639
814.30
H129
0.27
-8.13
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2686
257.618
815.10
H129
5.01
-7.21
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2687
257.592
816.10
H129
5.08
-6.95
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2688
257.569
817.00
H129
3.84
-7.93
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2689
257.544
818.00
H129
5.27
-7.13
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2690
257.518
819.00
H129
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
234.29
0.707122
164
2691
257.497
819.80
H130
-0.46
-8.05
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2692
257.474
820.70
H131
4.76
-6.48
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2693
257.448
821.70
H131
5.17
-6.51
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2694
257.420
822.80
H131
5.07
-6.29
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2695
257.384
824.20
H131
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2696
257.361
825.10
H132
5.16
-6.62
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2697
257.335
826.10
H132
5.24
-7.02
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2698
257.302
827.40
H132
5.11
-6.84
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2699
257.266
828.80
H133
5.14
-6.63
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2700
257.227
830.30
H133
5.25
-7.84
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2701
257.189
831.80
H133
5.09
-7.05
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2702
257.145
833.50
H133
5.04
-6.99
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2703
257.099
835.30
H133
5.22
-6.88
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2704
257.060
836.80
H133
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2705
257.014
838.60
H133
4.95
-7.16
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2706
256.968
840.40
H133
3.28
-9.06
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2707
256.916
842.40
H133
4.12
-7.34
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2708
256.865
844.40
H133
4.59
-6.67
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2709
256.813
846.40
H133
4.20
-7.98
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
continued
Table 3 continued
2710
256.767
848.20
H133
2711
256.721
850.00
H133
4.93
2712
256.669
852.00
H133
4.68
2713
256.618
854.00
H133
2714
256.566
856.00
H133
2715
256.515
858.00
2716
256.464
2717
256.412
2718
256.361
-6.95
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
-6.84
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
3.82
-7.78
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
4.33
-7.20
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
H133
4.46
-6.60
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
860.00
H133
4.80
-6.99
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
862.00
H133
4.19
-7.42
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
864.00
H133
5.05
-6.95
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
165
2719
256.309
866.00
H133
4.85
-6.57
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2720
256.258
868.00
H133
3.26
-7.40
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2721
256.207
870.00
H133
5.81
-7.61
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2722
256.155
872.00
H133
4.33
-7.13
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2723
256.104
874.00
H133
3.98
-7.30
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2724
256.052
876.00
H133
4.41
-7.25
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2725
256.001
878.00
H133
4.49
-6.96
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2726
255.949
880.00
H133
4.74
-7.37
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2727
255.898
882.00
H133
4.61
-7.35
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2728
255.847
884.00
H133
4.67
-7.32
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2729
255.795
886.00
H133
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2730
255.744
888.00
H133
4.07
-7.33
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2731
255.692
890.00
H133
4.36
-6.50
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2732
255.654
891.50
H133
4.79
-7.11
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2733
255.615
893.00
H133
3.20
-6.92
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2734
255.577
894.50
H133
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2735
255.538
896.00
H133
2736
255.499
897.50
H133
2737
255.461
899.00
H133
284.29
0.707148
4.49
4.11
-6.80
-7.10
continued
Table 3 continued
2738
255.422
900.50
H133
2.86
-7.01
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2739
255.384
902.00
H133
4.42
-6.63
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2740
255.345
903.50
H133
3.64
-7.28
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2741
255.307
905.00
H133
4.61
-6.83
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2742
255.268
906.50
H133
4.07
-6.46
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2743
255.230
908.00
H133
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2744
255.191
909.50
H133
3.98
-7.26
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2745
255.152
911.00
H133
4.24
-6.96
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2746
255.114
912.50
H133
3.71
-6.77
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
303.64
0.707085
166
2747
255.075
914.00
H133
2.41
-7.77
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2748
255.050
915.00
H133
3.13
-7.43
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2749
255.024
916.00
H133
2.86
-7.09
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2750
254.998
917.00
H133
4.49
-6.71
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2751
254.972
918.00
H133
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2752
254.962
918.40
H133
3.55
-7.66
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2753
254.954
918.70
H133
0.84
-8.47
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2754
254.942
919.20
H134
3.08
-7.45
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2755
254.921
920.00
H134
4.08
-7.84
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2756
254.895
921.00
H134
2.67
-8.01
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2757
254.870
922.00
H134
2.71
-8.79
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2758
254.844
923.00
H134
0.93
-7.88
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2759
254.818
924.00
H134
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2760
254.792
925.00
H134
2.28
-6.09
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2761
254.767
926.00
H134
2.26
-8.21
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2762
254.741
927.00
H134
3.41
-9.06
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2763
254.708
928.30
H134
4.16
-9.16
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2764
254.630
931.30
H134
3.06
-14.39
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2765
254.574
933.50
H134
2.89
-11.03
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
285.67
0.707137
continued
Table 3 continued
2766
254.543
934.70
H134
2.98
-10.70
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2767
254.530
935.20
H134
3.17
-9.64
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2768
254.502
936.30
H134
4.57
-7.70
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2769
254.466
937.70
H134
2.29
-7.92
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2770
254.445
938.50
H134
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2771
254.422
939.40
H134
3.37
-12.84
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2772
254.396
940.40
H134
2.68
-10.06
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2773
254.386
940.80
H134
0.14
-11.86
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2774
254.360
941.80
H134
3.95
-7.55
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
167
2775
254.325
943.20
H134
4.38
-5.99
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2776
254.296
944.30
H134
2.80
-6.96
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2777
254.273
945.20
H134
4.65
-5.76
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2778
254.250
946.10
H134
-0.43
-9.58
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2779
254.235
946.70
H134
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2780
254.227
947.00
H134
3.12
-10.51
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2781
254.206
947.80
H134
3.84
-8.92
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2782
254.183
948.70
H134
4.57
-6.75
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2783
254.168
949.30
H134
3.31
-8.03
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2784
254.145
950.20
H134
4.27
-7.40
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2785
254.127
950.90
H134
3.18
-7.94
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2786
254.103
951.80
H134
2.95
-8.44
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2787
254.080
952.70
H134
3.18
-8.36
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2788
254.060
953.50
H134
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2789
254.047
954.00
H134
4.80
-6.36
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2790
254.026
954.80
H134
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
417.31
445.58
0.707063
0.707089
2791
254.001
955.80
H134
3.41
-7.72
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2792
253.975
956.80
H134
4.92
-6.04
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2793
253.952
957.70
H134
4.51
-5.99
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
continued
Table 3 continued
2794
253.929
958.60
H134
4.67
-6.31
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2795
253.911
959.30
H134
4.51
-7.80
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2796
253.890
960.10
H134
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2797
253.869
960.90
H134
4.41
-6.85
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2798
253.846
961.80
H134
4.21
-6.66
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
2799
253.800
963.60
H134
Codonofusiella - Liangshanophyllum
Wujiaping
Wuchiapingian
H135
Palaeofusulina - Colaniella
Dalong
Wuchiapingian(?)
2800
1013.60
H136
Palaeofusulina - Colaniella
Dalong
Wuchiapingian(?)
2801
1014.60
H136
2.45
-7.49
Palaeofusulina - Colaniella
Dalong
Wuchiapingian(?)
2802
1015.60
H136
2.35
-6.70
Palaeofusulina - Colaniella
Dalong
Wuchiapingian(?)
2803
1016.60
H136
2.14
-6.74
Palaeofusulina - Colaniella
Dalong
Wuchiapingian(?)
2804
1017.60
H136
Palaeofusulina - Colaniella
Dalong
Wuchiapingian(?)
2799+
50m
covered
168
continued