LC/MS in Lipidomics Michal Holčapek, Eva Cífková and Miroslav Lísa University of Pardubice, Department of Analytical Chemistry, Czech Republic http://holcapek.upce.cz/ Lipid Classification Nonpolar lipids Fatty acyls Polyketides COOH Fatty acyls Glycerolipids Sphingolipids Prenols Glycerolipids Saccharolipids Phospholipids Sterols Oleic acid O H O O Fatty acyls O Glycerol O O Sterols Triacylglycerol Prenols O OH OH Cholesterol Tocopherol 1 Lipid Classification Polar lipids Fatty acyls Sterols Glycerolipids Prenols Saccharolipids Phospholipids Polyketides Sphingolipids Phospholipids Glycerol O O O P O- O H Sphingolipids Polar head group OR R = choline (PC), ethanolamine (PE), serine (PS), glycerol (PG), inositol (PI), etc. O Nonpolar fatty acyls O O H OH O P O NH H OO Nonpolar fatty acyls N+ Choline Glycerol Sphingomyelin Comprehensive Lipidomic Approach GC/FID MS Imaging Hexane/MeOH/H2O CHCl3/MeOH/H2O Nonpolar lipid extract Total lipid extract MALDI-Orbitrap 1D HILIC-LC/MS 2D RP-LC/MS SFC/MS NARP-LC/MS RP-LC/MS Ag-LC/MS NP-LC/MS Chiral-LC/MS Data processing Statistical evaluation 2 Sample Preparation – Extraction Techniques • Folch – CHCl3: MeOH (2:1, v/v) (J.Biol.Chem. 226 (1957) 497) • Bligh & Dyer – CHCl3: MeOH (1:1, v/v) (J.Bioch.Physiol. 37 (1959) 911) • Shevchenko – MTBE : MeOH (5:1.5, v/v) (J.Lip.Res. 49 (2008) 1137) • Nonpolar lipids - hexane : MeOH : water (2:1:0.1, v/v/v) (J.Lip.Res. 53 (2012)1690) LC/MS in Lipidomic Analysis Lipid class approach • HILIC-LC/ESI-MS - for polar lipid classes, Si, NH2 or diol columns, mobile phases with acetonitrile, methanol, 2-propanol, hexane and ≥ 2.5% water • NP-LC/APCI-MS - nonpolar lipid classes, Si or NH2 columns, mobile phases with hexane, 2-propanol, chloroform, heptane, etc. • SFC/MS – all lipid classes, C18 or Si columns, mobile phase supercritical CO2 with polar organic modifiers (typically methanol) Lipid species approach • RP-LC/ESI-MS – all lipid species, C18 and C8 columns, mobile phases aqueous mixtures of acetonitrile, methanol or 2-propanol, often with volatile buffers • NARP-LC/APCI-MS – nonpolar lipid species, C18 columns, mobile phases 2propanol, acetonitrile, aceton, dichlormethane, etc. • Ag-LC/APCI-MS – nonpolar lipid species, ion-exchange column with Ag+, mobile phases with hexane – acetonitrile (+2-propanol) or dichlormethane – acetonitrile • Chiral-LC/APCI-MS – nonpolar lipid species, chiral columns, normal phase mobile system with hexane and 2-propanol • SFC/MS – all lipid species, C18 columns, supercritical CO2 with polar modifiers 3 Comprehensive Lipidomic Approach Lipid extract 1D • HILIC-LC/MS Separation of lipid classes Optimization of HILIC-LC/ESI-MS • Optimized parameters: column type (9 columns), mobile phase composition (mainly organic solvent and concentration of water), gradient steepness, pH, salt content, etc. Effect of ammonium acetate 5 mM 0 mM Effect of pH value pH = 7 pH = 4.5 Conditions: column Spherisorb Silica (250*4.6 mm, 5 μm, Waters), ESI-MS detection, separation temperature 40°C, gradient of acetonitrile / aqueous ammonium acetate 4 HILIC-LC/ESI-MS Separation of Lipid Classes Standards containing oleoyl acyls ∆9–C18:1 • Separation of 16 lipid classes + 3 regioisomeric pairs of lysophospholipids. • Individual fractions are collected for off-line 2D-LC/MS characterization Conditions: column Spherisorb Silica (250*4.6 mm, 5 μm, Waters), ESI-MS detection, separation temperature 40°C, gradient of acetonitrile / aqueous ammonium acetate M. Lísa, E. Cífková, M. Holčapek, J. Chromatogr. A, 1218 (2011) 5146 Nontargeted Quantitation of Lipid Classes 1 Sphingosyl PE (d17:1/12:0) Lipid class tR [min] a b r2 Response factor (RF) PI 8.5 45.7 -23.8 0.9995 1.272 PG 4.7 183.1 14.6 0.9996 0.318 LPG 8.4 271.8 23.1 0.9993 0.214 PE 24.8 196.6 2.2 0.9991 0.296 IS 33.9 58.1 -0.6 0.9998 1.000 LPE 36.1 112.7 -1.1 0.9984 0.516 PS 37.3 43.9 25.2 0.9994 1.325 PC 39.8 550.7 9.5 0.9997 0.106 SM 45.3 857.6 3.8 1.0000 0.068 LPC 51.2 488.6 2.8 0.9998 0.119 E. Cífková, M. Holčapek, M. Lísa, et al., Anal. Chem. 84 (2012) 10064 5 Comprehensive Lipidomic Approach Lipid extract 1D • NP-LC/MS HILIC-LC/MS Separation of lipid classes NP-LC/APCI-MS of Nonpolar Lipid Classes Standards containing nonadecanoyl acyls (C19:0) • Separation of 6 nonpolar lipid classes and 2 regioisomers of diacylglycerols Conditions: column Acquity UPLC BEH HILIC (50*2.1 mm, 1.7 μm, Waters), APCI-MS detection, 30°C, gradient of hexane / acetonitrile / 2-propanol 6 NP-UHPLC Analysis of Plasma of CVD Patients • NP-UHPLC/APCI-MS measurement of plasma extract of nonpolar lipids • Conditions: column HILIC - Acquity UPLC (2.1×50 mm, 1.7 µm, Waters), flow rate 1 mL/min, separation temperature 30°C, gradient hexane/2-propanol/acetonitrile Comprehensive Lipidomic Approach Lipid extract 1D • HILIC-LC/MS SFC/MS NP-LC/MS Separation of lipid classes 7 SFC/MS of Polar Lipid Classes Mixture of lipids standards from Avanti 1.00x108 PC 7.50x107 Intensity SM LPC 5.00x107 PE PG 2.50x107 LPE 10 minutes CER 0.00 0.00 1.20 2.40 3.60 4.80 6.00 Minutes 7.20 8.40 9.60 10.80 12.00 Conditions: column Acquity UPC2 BEH, methanol gradient, additive ammonium formate, ESIMS detection Data courtesy: Giorgis Isaac (Waters) Comprehensive Lipidomic Approach Lipid extract 1D • • HILIC-LC/MS SFC/MS RP-LC/MS NP-LC/MS Separation of lipid classes Separation of lipid species 8 RP-LC/ESI-MS of Total Lipid Extract Blood plasma K. Sandra et al., J. Chromatogr. A 1217 (2010) 4087 LC-MS Feature Maps of Plasma ESI+ ESI- K. Sandra et al., J. Chromatogr. A 1217 (2010) 4087 9 RP-LC/ESI-MS of Total Lipid Extract • both polar and nonpolar lipids are separated in one chromatographic run using the coupling of two columns Conditions: ACQUITY UPLC BEH C18 column (150 and 150 x 2.1 x 1.7 mm); flow rate 0.18 mL/min, separation temperature 40°C, 5 mM aqueous ammonium acetate/5 mM ammonium acetate in acetonitrile:2-propanol (1:2) gradient. RP-LC/ESI-MS of Total Lipid Extract 13 FA and 6 LPC EIC 184 34 TG 27 PC andEIC 12 369 SM 15 CE Conditions: ACQUITY UPLC BEH C18 column (150 and 150 x 2.1 x 1.7 mm); flow rate 0.18 mL/min, separation temperature 40°C, 5 mM aqueous ammonium acetate/5 mM ammonium acetate in acetonitrile:2-propanol (1:2) gradient. 10 Comprehensive Lipidomic Approach Lipid extract 1D HILIC-LC/MS 2D • • SFC/MS RP-LC/MS NP-LC/MS RP-LC/MS Separation of lipid classes Separation of lipid species Off-line 2D HILIC x RP-LC/ESI-MS of Polar Species 1D: HILIC sepation 16:0/18:1-PC 2D: RP-LC separation PC Conditions: column Kinetex C18 (150*2.1 mm, 2.6 μm, Phenomenex), ESI-MS detection, separation temperature 40°C, acetonitrile / 2-propanol / aqueous ammonium acetate gradient. M. Lísa, E. Cífková, M. Holčapek, J. Chromatogr. A, 1218 (2011) 5146 11 Off-line 2D HILIC x RP-LC/ESI-MS of Polar Species 1D: HILIC separation 16:0/18:1-PE 2D: RP-LC separation PE+pPE Conditions: column Kinetex C18 (150*2.1 mm, 2.6 μm, Phenomenex), ESI-MS detection, separation temperature 40°C, acetonitrile / 2-propanol / aqueous ammonium acetate gradient. Off-line 2D HILIC x RP-LC/ESI-MS of Polar Species 1D: HILIC separation d18:1/16:0-Cer d18:1/16:0-HexCer 2D: RP-LC separation HexCer + Cer Conditions: column Kinetex C18 (150*2.1 mm, 2.6 μm, Phenomenex), ESI-MS detection, separation temperature 40°C, acetonitrile / 2-propanol / aqueous ammonium acetate gradient. 12 Orthogonality of Offline 2D-LC/MS of Lipids M. Lísa, E. Cífková, M. Holčapek, J. Chromatogr. A 1218 (2011) 5146 Stop-Flow 2D HILIC x RP-LC/MS of Polar Lipids PE in cow´s milk P. Dugo et al., J. Chromatogr. A 1278 (2013) 46 13 Stop-Flow 2D HILIC x RP-LC/MS of Polar Lipids PC in plasma P. Dugo et al., J. Chromatogr. A 1278 (2013) 46 Comprehensive Lipidomic Approach Lipid extract 1D 2D • • SFC/MS HILIC-LC/MS RP-LC/MS RP-LC/MS NP-LC/MS NARP-LC/MS Individual lipid classes Individual lipid species 14 NARP-LC/APCI-MS of Nonpolar Lipids • Nonpolar lipids - TGs, DGs, wax esters, cholesterol and its esters • Separation of TGs according to ECN and also inside ECN groups • Equivalent carbon number (ECN) = CN – 2*DB (CN - carbon number in all acyl chains, DB - double bond number) • Our optimized LC/MS method >400 TGs containing 36 FAs with acyl lengths from 6 to 28 carbon atoms and from 0 to 6 DBs) identified in more than 200 different materials (plant oils, animal fats, fish oils, body fluids) and statistically evaluated by PCA CH 2 O COR 1 sn-1 Triacylglycerol sn-2 R 2CO O CH CH 2 O COR 3 sn-3 M. Lísa, M. Holčapek, J. Chromatogr. A 1998-1999 (2008) 115 M. Holčapek, M. Lísa, P. Jandera, N. Kabátová, J. Sep. Sci., 28 (2005) 1315 M. Holčapek, P. Jandera, P. Zderadička, L. Hrubá, J. Chromatogr. A 1010 (2003) 195 Important Ions in APCI-MS Spectra of TGs [M+H-RiCOOH]+ - fragment ions A (identification of FA) [M+H]+ MW CH2 O COR1 R2CO O CH + H+ CH2 O COR3 -R1COOH -R2COOH -R3COOH B2 CH2 OH 2 CH O R CO + CH2 B1(3) CH2+ R2CO O CH CH2 O COR3 CH2 O COR1 CH CH2 O COR3 + CH2 O COR1 R2CO O CH CH2+ 1(3) CH2 O COR HO CH + CH2 C [RCO]+ 15 Off-line 2D HILIC-NARP-LC/MS of Nonpolar Lipids 1D: HILIC separation • TG are separated according to ECN and also inside ECN groups ECN = CN – 2*DB CN – carbon number in all acyl chains DB – double bond number 2D: NARP-LC separation TG + Chol Conditions: 2 columns NovaPak C18 (300+150*3.9 mm, 4 m, Waters), APCI-MS, temperature 25°C, acetonitrile / 2-propanol gradient Resolution of Isomers Differing in DB Position • Different retention times both in NARP-LC and Ag-LC modes • Different relative abundances of fragment ions NARP-LC/APCI-MS analysis of unusual FA in conifer seed oils -linolenic acids (C18:39,12,15) 15 12 COO H 9 Pinolenic acid (C18:35,9,12) 12 9 5 COOH • 18 carbon atoms and 3 double bonds in different positions 16 NARP-LC/APCI-MS Analysis of Conifer Seed Oils LLPi Fatty acids CN:DB Common ∆9(6) ∆k=0.4 Pinolenic (Pi) 18:2 Linoleic (L) Taxolic (Ta) LLLn ∆k(Pi)=0.4 ∆k(Ta)=0.6 LLL LLTa TaLPi ∆k=0.6 ∆k=0.6 PiLPi LnLPi PiLnPi PiPiPi Linolenic (Ln) Retention factor...k=(tR-tM)/tM ∆k=0.4 ∆k=0.4 Unusual ∆5 18:3 Larch (Larix decidua) APCI-MS Analysis of Unusual TGs LLL [M+H]+ LnLnLn [M+H]+ A / [M+H]+ = 25 / 100% A / [M+H]+ = 42 / 100% A A C C B LLTa B PiPiPi A A [M+H]+ [M+H]+ 100 / 87% 100 / 74% C-H2O C B C-H2O B C 17 NARP-LC/APCI-MS Separation of IsomericTGs cis/trans linear / branched RIC 579 linear / branched • Conditions: Nova-Pak C18 columns (300+150*3.9 mm, 4 m, Waters),1 mL/min, APCI-MS detection, separation temperature 25°C, injection 10 L, acetonitrile / 2-propanol gradient M. Lísa et al., J. Chromatogr. A 1218 (2011) 7499 Enzymatic Hydrolysis of Blackcurrant Oil 1 TG CH2 O COR R CO O CH 3 CH2 O COR DG CH2 O COR 2 R CO O CH CH2 OH 0,75 Native oil TG (83 TGs from 14 FAs) 0,55 AU 0,35 2 0,15 1 -0,05 0 10 20 30 1 MG FA 40 50 60 70 80 90 Time [min] CH2 O COR HO CH CH2 OH 0,95 Enzymatic hydrolysis FA + MG 0,75 i R COOH DG 0,55 AU • Hydrolysis with stereoselective immobilized enzyme Lipozyme in supercritical fluid CO2 extractor 0,35 TG 0,15 -0,05 0 10 20 30 40 50 60 70 80 90 Time [min] 18 Enzymatic Hydrolysis of DG in Blackcurrant Oil Regioselectivity of enzyme is ca. 97% DG 1,3-DG 1,2-DG LLn 3.67 96.33 LLn 1.92 98.08 LL 2.57 97.43 M. Lísa, M. Holčapek, H. Sovová, J. Chromatogr. A 1216 (2009) 8371 UHPLC – Reduction of Analysis Time 0,72 HPLC 0,55 UHPLC Positional DB isomers: Ln (9,12,15-C18:3) γLn (6,9,12-C18:3) 0,52 0,35 0,32 0,15 0,06 HPLC: -0,04 47,5 60 65 70 75 80 50 50min -0,08 85 90 3 95 4 5 6 0,16 -0,04 4,5 7 8 9 5 min 5 γLnγLnLn 55 10 11 12 γLnγLnγLn 50 LnLnLn γLnLnLn 45 γLnγLnLn 40 LnLnLn 35 γLnγLnγLn -0,05 γLnLnLn 0,12 5,5 UHPLC: Acquity BEH C18 column (150*2.1 mm, 1.7 m, Nova-Pak C18 columns (300+150*3.9 mm, 4 m, Waters),1 mL/min, 25°C, injection 10 L, Waters), 0.4 mL/min, 30°C, injection 1 L, acetonitrile / 2-propanol gradient. acetonitrile / 2-propanol gradient. 52,5 19 Comprehensive Lipidomic Approach Lipid extract 1D 2D • • SFC/MS HILIC-LC/MS RP-LC/MS NARP-LC/MS RP-LC/MS NP-LC/MS Ag-LC/MS Separation of lipid classes Separation of lipid species Silver-ion LC/APCI-MS of TGs Regioisomers OOP • Separation mechanism according to the double bond (DB) number • Resolution of cis- / trans-, regio- and DB positional isomers Geometrical isomers 2trans 3trans 1cis 2cis 3cis 4cis POP OPP OPO 1trans [OP]+ 100% [PP]+ 83% [OP]+ 100% [PP]+ 32% Conditions: 3 columns ChromSpher (250*4.6 mm, 5 m, Varian) connected in series, 1 mL/min, 25 °C, injection 1 L, hexane / 2-propanol / acetonitrile gradient M. Lísa et al., Anal. Chem. 81 (2009) 3903 and J. Chromatogr. A 1218 (2011) 7499 20 Randomization Synthesis of TG Regioisomers • Chemical transesterification (random) of fatty acids in TGs • Catalyst sodium methanolate, temperature 75°C, reaction time 30 min • Applied for the synthesis of regioisomeric TG standards Mixture of 2 mono-acid TGs (AAA + BBB) Regioisomers Regioisomers (AAB:ABA=2:1) (BBA:BAB=2:1) M. Lísa et al. Anal. Chem. 81 (2009) 3903 Randomization Mixture of PPP / OOO / LnLnLn Products: initial PPP, OOO, LnLnLn +6 regioisomeric doublets +1 regioisomeric triplet Double bonds 6 2 5 7 3 0 1 4 9 Conditions: 3 columns ChromSpher (250*4.6 mm, 5 m, Varian) connected in series, 1 mL/min, APCI-MS detection, separation temperature 25 °C, injection 1 l, hexane / 2-propanol / acetonitrile gradient 21 Preference of sn-2 Occupation by Silver-ion LC Regioisomers Plant oil Animal fats Sunflower Pork Wild boar Cattle Duck Rabbit POP/OPP 100/0 8/92 10/90 63/37 52/48 51/49 OOP/OPO 98/2 12/88 28/82 94/6 53/47 77/33 PLP/LPP 100/0 1/99 8/92 61/39 56/44 52/48 LLP/LPL 97/3 9/91 9/91 62/38 58/42 54/46 OLP/LOP/OPL 63/36/1 3/12/85 11/14/85 49/36/15 41/36/23 47/35/18 • Plant oils – strong preference of unsaturated fatty acids in sn-2, mainly linoleic acid (L) • Pork and wild boar fats – preference of saturated fatty acids (P) • Other studied animals fats – in between above mentioned two cases M. Lísa et al. Anal. Chem. 81 (2009) 3903 M. Lísa et al., J. Chromatogr. A 1218 (2011) 7499 Silver-ion LC/MS of TGs in Beef Tallow Double bonds 0 1 trans 2 trans 3 trans 1 cis 2 cis 3 cis 4 cis • Clear resolution of cis- / trans- isomers, e.g., 9cis-18:1 (oleic) and 9trans-18:1 (elaidic) containing triacylglycerols 22 OEE+EOE NARP-LC NARP-LC conditions: Nova-Pak C18 columns (300+150*3.9 mm, 4 m, Waters) connected in series, APCI-MS detection, 1 mL/min, 25°C, injection 10 L, acetonitrile / 2-propanol gradient OOE OEE Ag-HPLC Ag-LC conditions: 3 columns ChromSpher (250*4.6 mm, 5 m, Varian) connected in series, APCI-MS detection, 1 mL/min, 25 °C, injection 1 l, hexane / 2-propanol / acetonitrile gradient OOO OEO EOE EEE OOO O – C18:19cis E – C18:19trans EEE OOE+OEO Off-line 2D LC/MS of TGs – Orthogonality • NARP and silver-ion modes provide orthogonal separation, their off-line 2D coupling yields superior resolution including the resolution of regioisomers M. Holčapek et al., J. Sep. Sci. 23 (2009) 3672 Off-line 2D NARP x Ag-LC/APCI-MS of TG 98 ECN 42 LOSt γLnOγLn γLnOLn LLγLn OLnLn LLLn γLnPLn γLnγLnP ECN 44 88 DB 6 LOγLn SLSt LOLn GLγLn OLγLn OLLn LnLnP LLL 78 ECN 46 GLLn γLnLP LnLP DB 5 OOLn OOγLn LOL OLL SLnL GLL γLnOP OOL LnOP DB 4 LLP OLO nd 68 SLL DB 3 58 58 LOP OLP 63 68 73 st 1 dimension (NARP-HPLC) [min] 78 nd 2 dimension (Ag-HPLC) [min] (B) 2 dimension (Ag-HPLC) [min] (A) ECN 40 DB 7 LnOLnOLSt 1st dimension (NARP-HPLC) [min] 23 Schematic Layout of LC x LC Instrumentation E.J.C. van der Klift et al., J. Chromatogr. A 1178 (2008) 43 Online 2D Ag x NARP-LC/APCI-MS of TG ECN = CN – 2*DB E.J.C. van der Klift et al., J. Chromatogr. A 1178 (2008) 43 24 Online 2D Ag x NARP-LC/APCI-MS of TG ECN = CN – 2*DB L. Mondello et al., J. Sep. Sci. 34 (2011) 688 Dual Parallel MS for Lipid Analysis W. C. Byrdwell, J. Chromatogr. A, 1217 (2010) 3992 25 Dual Parallel MS for Lipid Analysis HILIC-LC separation of polar lipids Diverted flow RP-LC separation of nonpolar lipids W. C. Byrdwell, J. Chromatogr. A, 1217 (2010) 3992 Comprehensive Lipidomic Approach Lipid extract 1D HILIC-LC/MS 2D • • RP-LC/MS SFC/MS NARP-LC/MS RP-LC/MS Ag-LC/MS NP-LC/MS SFC/MS Separation of lipid classes Separation of lipid species 26 SFC/MS of Cholesterol Esters 3 TAGs_08022012_025 100 1: TOF MS ES+ BPI 4.15e5 2 % 4 5 Peak Lipid Species 1 18:3 CE 2 3 18:2 CE 17:0 CE and 18:1 CE 4 18:0 CE 5 19:0 CE 6 23:0 CE 1 6 4 minutes 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 Time 3.80 Conditions: ACQUITY UPC2instrument, column Acquity UPC2 HSS C18 SB, methanol gradient, additive ammonium formate, ESI-MS detection Data courtesy: Giorgis Isaac (Waters) SFC/MS of Triacylglycerols Peak 2 TAGs_08022012_029 100 1 Lipid Species 1 6 4 5 % 7 3 1: TOF MS ES+ BPI 2.08e5 2 15:0/15:0/15:0 TG 18:3(∆9,12,15Cis)/18:3(∆9,12,15Cis)/18:3(∆9,12,15 Cis) TG 3 16:0/16:0/16:0 TG 4 18:2(∆9,12Cis)/18:2(∆9,12Cis)/18:2(∆9,12Cis) TG 5 18:1(∆9Cis)/18:1(∆9Cis)/18:1(∆9TCis) TG 6 17:0/17:0/17:0 TG 7 18:1(∆9Tr)/18:1(∆9Tr)/18:1(∆9Tr) TG 8 18:0/18:0/18:0 TG 20:0/20:0/20:0 TG 9 8 9 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 4 minutes 3.80 Time UPC2instrument, column Acquity UPC2 HSS C18 SB, methanol Conditions: ACQUITY gradient, additive ammonium formate, ESI-MS detection Data courtesy: Giorgis Isaac (Waters) 27 Comprehensive Lipidomic Approach Lipid extract 1D 2D • • SFC/MS HILIC-LC/MS RP-LC/MS NARP-LC/MS RP-LC/MS NP-LC/MS Chiral-LC/MS SFC/MS Ag-LC/MS Separation of lipid classes Separation of lipid species Chiral Separation of Triacylglycerols CH 2 O COR 1 sn-1 sn-2 R 2CO O CH CH 2 O COR 3 sn-3 OH O O A A O O H+ A O OH OH A O O = * O O OH A O O A H+ OH O OH A O O A A - C20:0 O - ∆9-C18:1 • Column: cellulose-tris-(3,5-dimethylphenylcarbamate) (2 x 250*4.6 mm, 3 µm, Lux Cellulose-1, Phenomenex) • Gradient: hexane - 2-propanol (0.1% 2-propanol/hour) • Temperature: 35°C M. Lísa, M. Holčapek, Anal. Chem. 85 (2013) 1852 28 Synthesis of Triacylglycerol Isomers Randomization reaction of monoacyl-TGs • random transesterification of fatty acyls in TGs regioisomers R1 R1 + R1 R2 R2 R2 R1 R1 + R1 MeONa 75°C, 30 min R2 R1 R1 R1 R2 R1 R1 R1 + R2 R2 R2 R1 R2 R1 R2 R1 R2 + R2 R2 R2 R2 enantiomers Chiral HPLC/MS of TGs 3 2 4 5 6 Randomization mixture of AAA / OOO / LnLnLn (C20:0 / C18:1 / C18:3) - enantiomers 1 7 - regioisomers 0 9 A (C20:0), O (∆9-C18:1), Ln (∆9,12,15-C18:3 ) 29 APCI Mass Spectra of TG Isomers OAO 15% AOO OOA 43% 40% A (C20:0), O (∆9-C18:1) Stereospecific Synthesis of mixed-acyl TGs 2,3-isopropylidene-sn-glycerol OH O O R1 DMAP, DCC 22°C, 90 min R1 O O TFA -20°C, 30 min R1 OH OH R2 DMAP, DCC 22°C, 90 min R2 + R3 1,2-isopropylidene-sn-glycerol O O OH R1 DMAP, DCC 22°C, 90 min O O R1 TFA -20°C, 30 min OH OH R1 R2 DMAP, DCC 22°C, 90 min R2 + R3 R1 R2 R2 R1 R2 + R2 R1 R2 R3 R1 R3 + R2 R1 R3 R3 R2 R2 R1 R2 R2 + R1 R2 R3 R1 R3 R2 + R1 R3 R3 R1 DMAP - 4-dimethylaminopyridine, DCC - dicyclohexylcarbodiimide, TFA - trifluoroacetic acid M. Lísa, M. Holčapek, Anal.Chem. 85 (2013) 1852 30 Chiral HPLC/MS of TG Enantiomers O O OH OH O O Ri = O O O O O H + OH Ri OH O Ri Ri O O O O H+ O Ri OH OH O Ri Ri R iR iO ORiRi S (C18:0) O (∆9-C18:1) L (∆9,12-C18:2) Ln (∆9,12,15-C18:3) Chiral HPLC/MS of Hazelnut oil • • SSO / SOS / OSS 0 / 100 / 0 PPO / POP / OPP 0 / 100 / 0 SOO / OSO / OOS 39 / 0 / 61 POO / OPO / OOP 54 / 0 / 46 PLO / OLP / POL+LOP / OPL 27 / 29 / 44 / 0 OLO / LOO / OOL 46 / 39 / 15 LPL / PLL+LLP 0 / 100 LLO / OLL / LOL 55 / 23 / 22 unsaturated FAs in sn-2 position more DBs in sn-1 position P (C16:0), S (C18:0), O (∆9-C18:1), L (∆9,12-C18:2 ) 31 Chiral HPLC/MS of Breast Cancer Tumor tissue • PPO / POP / OPP 38 / 62 / 0 SOO / OSO / OOS 100 / 0 / 0 POO / OPO / OOP 94 / 0 / 6 PLP / LPP+PPL 56 / 44 PLO / OLP / POL+LOP / OPL 55 / 0 / 45 / 0 OLO / LOO / OOL 42 / 28 / 30 LPL / LLP+PLL 0 / 100 LLO / OLL / LOL 36 / 41 / 23 more DBs in sn-3 position P (C16:0), S (C18:0), O (∆9-C18:1), L (∆9,12-C18:2 ) Chiral HPLC/MS of DGs and MGs • Column: Lux Cellulose-1 (250*4.6 mm, 3 µm, Phenomenex) • Gradient: hexane - 2-propanol (3% 2-propanol/hour) • Temperature: 35°C Randomization mixture of OOO and glycerol DGs R1 R1 + R1 OH OH OH R1 MeONa 75°C, 30 min R1 + R1 OH R1 R1 R1 OH R1 MGs R1 R1 + OH OH OH R1 OH R1 OH R1 OH OH O (∆9-C18:1) 32 Stereospecific Synthesis of DGs 1-benzylglycerol (2,3-DG) O R1 R1 OH OH R O DMAP, DCC 22°C, 90 min 1 R1 CAN 0°C, 60 min HO R1 3-benzylglycerol (1,2-DG) R1 OH HO O DMAP, DCC 22°C, 90 min 1 R R1 O CAN 0°C, 60 min 1 R1 R OH DMAP - 4-dimethylaminopyridine, DCC - dicyclohexylcarbodiimide, TFA - trifluoroacetic acid, CAN - ammonium cerium(IV) nitrate Chiral HPLC/MS of DGs randomization reaction of OOO and glycerol enantiomers 3-benzylglycerol 1,2-OO OH HO O 33 Stereospecific Synthesis of MGs 2,3-isopropylidene-sn-glycerol (1-MG) TFA -20°C, 30 min R1 OH OH 1,2-isopropylidene-sn-glycerol (3-MG) O O R1 O O DMAP, DCC TFA R1 -20°C, 30 min OH 22°C, 90 min OH OH R1 OH O O R1 DMAP, DCC 22°C, 90 min R1 O O DMAP - 4-dimethylaminopyridine, DCC - dicyclohexylcarbodiimide, TFA - trifluoroacetic acid Chiral HPLC/MS of MGs randomization reaction of OOO and glycerol 1,2-isopropylidene -sn-glycerol enantiomers 3-O O O OH 34 Comprehensive Lipidomic Approach GC/FID MS Imaging Hexane/MeOH/H2O CHCl3/MeOH/H2O Nonpolar lipid extract Total lipid extract MALDI-Orbitrap 1D HILIC-LC/MS 2D RP-LC/MS SFC/MS NARP-LC/MS RP-LC/MS Ag-LC/MS NP-LC/MS Chiral-LC/MS Data processing Statistical evaluation Data processing • Manual interpretation and processing is almost impossible due to the enormous amounts of data, individual peaks, number of samples from clinical studies • Dedicated lipidomic softwares from main manufacturers are available: - LipidView (AB SCIEX) - TransOmics – Metabolomics and Lipidomics (Waters) - Lipid Search (Thermo) • Freewares and open-source tools for all platforms: - LipidXplorer (A. Shevchenko) - https://wiki.mpi-cbg.de/lipidx/ - mMass (M. Strohalm) - http://www.mmass.org/ - Mzmine 2 (T. Pluskal, M. Orešič) - http://mzmine.sourceforge.net/ • Lipid databases and comprehensive internet resources: - http://www.lipidmaps.org/ - http://lipidlibrary.aocs.org/ - http://www.cyberlipid.org/ - http://www.lipidbank.jp/ 35 Principal Component Analysis (PCA) of TG 355 TGs 93 plant oils PCA Loading Plots for Individual TG 0.6 LLL 0.4 OLL LLP p[2] 0.2 0 SLL LLLn OLLn LnLP LnLLn PLPSLO LLyLn SLP ALL BLL GLL LnLnLn LnOLn LLPi SLS ALO yLnLLn LLM LLMa C20:2LL yLnLyLn OLyLn yLnLP SLLn OLPi LgLL LnLnP BLO C24:1LL GLP ALP SOLn GLO ALLn OOyLn yLnOP SLPi yLnLnLn yLnLSt LnOyLn OLSt StLP C20:2LO SLyLn LnLSt LLSt PiLPi yLnyLnP PLPi LLMo C23:0LL ALS BLS PLnP OOPi LLTa SLnLn BLP LgLP LgLO SLM SOyLn ALyLn GyLnP BLnLn SOPi SOLa PPM SPLa SMM BPiPi SyLnP MoOMo C19:0LL MaLP C23:0LnLn OOC15:0 MoOP C21:0LLn C20:2OO C24:1LyLn C22:1OLn C20:2OP GOM C22:1yLnP AOLn BLPi GyLnS BLyLn AOPi ALnP BLLa AOLa SSLa SyLnS SOM C25:0LnLn C23:0LLn C21:0LL SPM APLa MaOP SLMa C23:0LPi GLG C20:2OS GLS C22:1LP C24:1OyLn LgLLn C24:1yLnP BOLn LgLyLn LgLPi BLnP PPoP C22:1LL GOPo BLLn SLnS C22:1LO POM SLnP OLMa SOPo AOPo PPP OOMa GOLa OOTa OLM GLPi OOM PLPo GOLn GOyLn C20:3OO SLLa PLTa PLM PyLnP SOSt PMM LnOMa C19:0LPi OLC15:0 MoLP ALnLn LaLaCo LaCCy LaLaC LaLCy StLnSt MLaCo LaOCy yLnLnSt LnLnSt MMCo PLaCo MLaC PLaLa LnLnMa LnLMo PPiPi SMCy SyLnSt SLaC SLnSt C20:2LLn C20:3LL PoLPo LnLMa ALnS SSM ByLnP BOLa AOM PLaCy MMCy StStP PiPiPi PiLnPi yLnyLnyLn OLCy LaLLa LaOC MOCy PLCy LnLPi yLnOSt PLaC MMC LnLnC15:0 LnLnMo StyLnP SLaCy PMCy StLnP LLLa C20:2LnLn OLC OOCy C20:3LPi MOC POCy TaLPi C20:2LPi LnOPo GLnLn OOC MLM GyLnyLn PLnPo OOSt PLLa SOCy StOP SLSt TaOPi SLnyLn POC SPiPi MoLnMo C22:1yLnC2 C22:1LG SOMa C23:0OLa C21:0LP C19:0OO C23:0OLn C21:0LO C24:1LP C22:1OP C24:1yLnS LgOLn LgLM BLnS LgLnP LgOLa APP BPoP C25:0LL C22:1OG C22:1LC22: C19:0OS C23:0LP C24:1LS C22:1OS C24:1OP AOG LgOPo LgPoP GLLn C20:3LnTa C25:0LO C26:0LO C24:1OS C24:1OG C22:1OC22: C25:0LP C26:0LP ASS LgOG C23:0OS C22:1LyLn C20:2LP POLa MOM POPi SMLa OLMo OLTa PPoPo LaLaCy MLaCy LaLaLa PiOPi MMLa PoPoPo OLLa LLC15:0 SPP yLnLnyLn MLaLa LnOSt MLLa yLnOyLn yLnLnP SLaLa PMLa SyLnyLn C22:1OO GOG C24:1LO BOPo SSP C21:0OO C23:0LO C24:1OO C26:0LL C20:3LO GLyLn LgLS AOA BOS C25:0OO C26:0OO LLPo OOLa MOLa GOS LaOLa SSS C23:0OO BOP LgOP OOMo GOP PoOPo AOS AOP LgOO LnOP OLPo POPo BOO SOS GOO OOLn AOO SOP OOPo POP OLP OLO SOO -0.2 OOP -0.4 OOO -0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 • 355 determined TGs (variables) in 93 plant oils (objects) • TGs with the highest effect on PCA scores: OOO, LLL, OLL, OLO, OOP, LLP, OLP and SOO M. Lísa, M. Holčapek, M. Boháč, J. Agric. Food Chem. 57 (2009) 6888 36 PCA Scatter Plots for Data From 93 Plant Oils 40 30 A 16 B 84 20 3 t[2] 10 0 1 69 43 18 20 92 17 81 91 89 82 77 70 93 90 5 83 6 30 79 37 32 7 85 13 15 86 19 23 12 36 26 4 11 29 25 40 68 -10 34 39 38 87 74 14 21 76 78 75 88 71 C 72 24 33 31 42 9 8 80 -20 D 73 41 2 10 22 35 52 20 10 0 30 t[1] t[2] 0 28 Evening primrose (84) 40 30 Wheat Germ (86) 20 10 27 -30 B Walnut (79) Soya (37) Dog rose (7) Mandarin orange (19) Raspberry (32) Hemp (3) Coffee butter (30) Blackcurrant (18) Kukui nut (85) Blueberry (20) Blackcurrant (17) Redcurrant (81) Norway spruce (92) Fig (89) Borage (82) Kiwi (1) European larch (91) European silver fir (93) Linseed (77) Coconut palm (70) Date (90) Cocoa Butter (83) Grapefruit (15) Lemon (13) Buckwheat (23) Mango (5) Mango (6) Palm (68) -10 Macadamia nut (2) 4 8 12 16 20 Identification of Adulteration of Olive Oils by PCA 40 49 45 5048 46 47 51 44 8 sunflower oils 30 olive oil “adulterated” with sunflower oil t[2] 20 10 10% 5% -10 10 15 olive oils 2% 1% 0 58 61 56 55 66 65 6263 67 53 6064 54 57 59 20 30 t[1] 40 50 • Identification of falsification of expensive plant oil (e.g., virgin olive) by cheaper plant oils (e.g., sunflower) • Clear identification already from 1% of adulterant M. Lísa, M. Holčapek, M. Boháč, J. Agric. Food Chem. 57 (2009) 6888 37 Ion Mobility Spectrometry in Lipidomic Analysis Data courtesy: Fadi Abdi (AB SCIEX) Ion Mobility Spectrometry in Lipidomic Analysis Data courtesy: Fadi Abdi (AB SCIEX) 38 MALDI-Orbitrap MS Imaging of Rat Brain Optical image – before sectioning EIC of m/z 740.5 ± 0.5 EIC of m/z 740.566 ± 0.003 EIC of m/z 740.522 ± 0.003 PE 36:3 GlcA-Cer(d18:1/18:0) Concluding Remarks • Combination of multiple LC/MS, MALDI-MS, MSI and GC/MS methods provides the most comprehensive information on the lipidome (all types of isomers) • Advantage is also a bottleneck of our approach – enormous requirements on the data processing, automation, instrumental time, statistics and bioinformatics • Suitable methods can be selected according to the biological problem to be solved Acknowledgements • Grant projects: 206/11/0022 and 203/09/0139 (Czech Science Foundation) • University of Pardubice: M. Ovčačíková, B. Červená, R. Jirásko, V. Chagovets, H. Dvořáková, P. Česla • Clinical samples: J. Galuszka, J. Vostálová, B. Melichar, D. Vávra (FN Olomouc) • SFC-MS: G. Isaac (Waters, USA) • Statistical evaluation: M. Hill (Prague) • Rat samples: I. Vokřál (Hradec Králové) 39 Our Key References - http://holcapek.upce.cz/ • Chiral HPLC of TGs: Anal. Chem. 85 (2013) 1852 • Nontargeted quantitation of polar lipid classes: Anal. Chem. 84 (2012) 10064 • Silver-ion LC and NARP of TGs in animal fats: J. Chromatogr. A 1218 (2011) 7499 • Off-line 2D-LC/MS of PLs: J. Chromatogr. A 1218 (2011) 5146 • Off-line 2D-LC/MS of TGs: J. Sep. Sci. 32 (2009) 3672 • PCA of TGs: J. Agric. Food Chem. 57 (2009) 6888 • Silver-ion LC of regioisomers: Anal. Chem. 81 (2009) 3903 • NARP of TGs: J. Chromatogr. A 1998-1999 (2008) 115 • Unusual TGs: J. Chromatogr. A 1146 (2007) 67 • CAD quantitation: J. Chromatogr. A 1176 (2007) 135 • APCI-MS quantitation: J. Sep. Sci. 28 (2005) 1315 40
© Copyright 2026 Paperzz