Multiplicity Factor MSE 321 Structural Characterization Polarisation Factor Intensity of scattered x-ray scattered by stationary charged particle: μ 4 sin µ0 = 4πx10-7 m∙kg∙C-2 K = 7.94x10-30m2 for electron α = angle between scattered photon & particle sin Coherent scattering… Photon traveling down x but on average so: and since E ≡ A and I ∝ A2 then Collision at O: Iy accelerates e- down y axis: Iz accelerates e- down z axis: …from unpolarised beam ∴ sin 90° sin 90° and 2! cos $2!% cos 2! 2 2 cos 2! 1 cos 2! 2 MSE 321 Structural Characterization Thomson Equation ∴ ∝ 1 cos 2! 2 Lorentz Factor Part 1: Geometrical Factor Crystals can produce non-zero diffracted intensity even for angles not exactly equal to the Brag angle. 1 2 1’ C C D θ1 a D 2’ θ2 A θ2 A B θ1 a B θ2 = θB - ∆θ Na a A B θ1 = θB + ∆θ δ = AD – CB = acosθ2 – acosθ1 = a[cos(θB – ∆θ) – cos(θB + ∆θ)] = 2asinθΒsin∆θ ~ 2a∆θsinθB (sin∆θ ~ ∆θ) λ = 2Na∆θsinθB ∆2θ = λ / (NasinθB) ∝ 1/sinθB I = ½Im∆2θ ∝ ½(1/cosθB)(1/sinθB) = 1/sin2θB (triangular peak shape) Im ∝ 1/cosθB (see Scherrer formula) MSE 321 Structural Characterization Lorentz Factor Part 2: Orientation Factor The number of crystals oriented near Bragg angle is not constant at all angles. Radius of circle is hypotenuse: r sin(90 – θB) Perimeter of strip: 2πr sin(90 – θB) Thickness of strip: r ∆θ (r∆θ) 2πr sin(90 – θB) 4πr2 ∴ I ∝ cosθB MSE 321 Structural Characterization = ∆θcosθB 2 Lorentz Factor Part 3: Diffraction Geometry Factor The detector will see a greater proportion of a diffraction cone when reflections are in forward/backward direction. Circumference of diffraction cone: 2π(r sin2θB) ∴Intensity per length ∝ 1/sin2θB MSE 321 Structural Characterization Lorentz Polarization Factor Lorentz Factor, L = 1 1 cos ! sin2! sin 2! Polarisation Factor, p = '(cos cos ! sin 2! 1 4sin ! cos ! ) Lorentz Polarisation Factor, Lp = MSE 321 Structural Characterization sin ' ) *+, ) '(cos ) '(cos ) ,-. ) *+, )
© Copyright 2026 Paperzz