Solutions to the Quiz 1 (2016) I601 Logic and Discrete Mathematics A1. Let p, q, r denote primitive propositions. Determine whether the statements (p ∨ q) → r and (p → r) ∧ (q → r) are logically equivalent. S o l u t i o n. The truth table for the formula [(p ∨ q) → r] ↔ [(p → r) ∧ (q → r)]: p T T T T F F F F q r T T T F F T F F T T T F F T F F Step: [(p ∨ q) T T T T T T F F 1 → r] T F T F T F T T 2 ↔ T T T T T T T T 6 [(p → r) T F T F T T T T 3 ∧ T F T F T F T T 5 (q → r)] T F T T T F T T 4 The column corresponding to the sixth step shows that the formulae represent logically equivalent propositions. A l t e r n a t i v e s o l u t i o n. Using the laws of logic we obtain: (p ∨ q) → r ≡ ¬(p ∨ q) ∨ r ≡ (¬p ∧ ¬q) ∨ r ≡ (¬p ∨ r) ∧ (¬q ∨ r) ≡ (p → r) ∧ (q → r) implication De Morgan law distributive law implication B1. Let p, q, r denote primitive propositions. Determine whether the statements p → q ∧ r and (p → q) ∧ (p → r) are logically equivalent. S o l u t i o n. The truth table for the formula [p → q ∧ r] ↔ [(p → q) ∧ (p → r)]: p T T T T F F F F q r T T T F F T F F T T T F F T F F Step: p→ T F F F T T T T 1 q∧r T F F F T F F F 2 ↔ T T T T T T T T 6 [(p → q) T T F F T T T T 3 ∧ T F F F T T T T 5 ((p → r)] T F T F T T T T 4 The column corresponding to the sixth step shows that the formulae represent logically equivalent propositions. A l t e r n a t i v e s o l u t i o n. Using the laws of logic we obtain: p→q∧r ≡ ¬p ∨ (q ∧ r) ≡ (¬p ∨ q) ∧ (¬p ∨ r) ≡ (p → q) ∧ (p → r) implication distributive law implication A2. Construct the truth table for the statement (p → q) ∧ (p → ¬q). Propose a simpler statement (containing no more than one connective) that is logically equivalent to this formula. S o l u t i o n. This formula has the following truth table p q T T T F F T F F Step: (p → q) T F T T 2 ∧ F F T T 4 (p → F T T T 3 ¬q) F T F T 1 The column corresponding to the forth step shows that the values of the proposition are just inverse to values of p in the first column. Hence, the formula is logically equivalent to the proposition ¬p. To verify this result, one may transform the statement as follows: (p → q) ∧ (p → ¬q) ≡ (¬p ∨ q) ∧ (¬p ∨ ¬q) ≡ ¬p ∨ (q ∧ ¬q) ≡ ¬p ∨ T ≡ ¬p implication distributive law complement law identity law B2. Construct the truth table for the statement p → ((¬p → q) → ¬q). Propose a simpler statement (containing no more than two connectives) that is logically equivalent to this formula. S o l u t i o n. This formula has the following truth table p q T T T F F T F F Step: p→ F T T T 5 ((¬p F F T T 1 → q) T T T F 2 → F T F T 4 ¬q) F T F T 3 The column corresponding to the fifth step is inverse to the conjunction of p and q. Hence, the proposition is logically equivalent to ¬(p ∧ q). The latter is logically equivalent to ¬p ∨ ¬q or p → ¬q or q → ¬p. To verify this result, one may transform the statement as follows: p → ((¬p → q) → ¬q) ≡ p → ((p ∨ q) → ¬q) ≡ p → (¬(p ∨ q) ∨ ¬q) ≡ p → ((¬p ∧ ¬q) ∨ ¬q) ≡ p → ¬q implication implication De Morgan law absorption law
© Copyright 2026 Paperzz