A FIBONACCI-PRIME NUMBER RELATION B . B . SHARPE State University of New York at Buffalo Fibonacci n u m b e r s m a y b e r e l a t e d to p r i m e n u m b e r s as follows: Conjecture. 1. F . + F . will be a p r i m e n u m b e r for at l e a s t one value of i, p r o - vided i + j is a p r i m e n u m b e r . 2. F . - F . will be a p r i m e n u m b e r for at l e a s t one value of i, p r o i J vided i + j is p r i m e and g r e a t e r than 3 (i > j). An initial verification: l+j F.+F. F.-F. i J 1 J 2 F 3 F l+Fl = 2 5 2+Fl = 2 F3+F2 = 3 F 4-Fl = 2 7 F 4+F3 = F 6'F1 = 7 11 F 6 13 V 4 5 6"F5 = F7-F6= 5 5=13 F = 37 17 Fn+F6=97 19 F 23 10+F9 = 89 F12+F11=233 29 F17+F12-1741 31 37 Fl6+F15=1597 F 2 4 + F 1 3 = 46601 41 F 3 0 + F n = 832129 43 F 2 4 + F 1 9 = 50549 47 F 27+F20 53 F 29+F24^560597 = 3 F + F 203183 F - F = 13 *9 8 F - F =: 131 *12 7 F - F == 2579 18 5 F -F *17 12 = 1453 F -F ^ 1 8 r 1 3 = 2351 F - F == 317877 *28 9 F -F *24 17 = 44771 F -F * 24 19 = 42187 r 27~ 20 = 189653 No further verification is p o s s i b l e using L e h m e r ' s F a c t o r Table to 10, 000, 000. xxxxxxxxxxxxxxx 317
© Copyright 2026 Paperzz