[SHIVOK SP211] November 1, 2015 CH 16 Waves‐I I. TypesofWaves A. Mechanicalwaves.Thesewaveshavetwocentralfeatures:They aregovernedbyNewton’slaws,andtheycanexistonlywithina materialmedium,suchaswater,air,androck.Commonexamples includewaterwaves,soundwaves,andseismicwaves. B. Electromagneticwaves.Thesewavesrequirenomaterialmedium toexist.Allelectromagneticwavestravelthroughavacuumatthe sameexactspeedc=299,792,458m/s.Commonexamplesinclude visibleandultravioletlight,radioandtelevisionwaves,microwaves,x rays,andradar(WewillcovertheseinPhysicsIIinmoredetail.) C. Matterwaves.Thesewavesareassociatedwithelectrons,protons, andotherfundamentalparticles,andevenatomsandmolecules. Thesewavesarealsocalledmatterwaves(studyinQuantum Mechanics.) II. TransverseandLongitudinalWaves A. Inatransversewave,thedisplacementofeverysuchoscillating elementalongthewaveisperpendiculartothedirectionoftravelof thewave,asindicatedinFig.below. Page1 [SHIVOK SP211] November 1, 2015 B. Inalongitudinalwavethemotionoftheoscillatingparticlesis paralleltothedirectionofthewave’stravel,asshowninFig.below. III. Wavevariables A. TransverseWaveEquation 1. Theamplitudeymofawaveisthemagnitudeofthemaximum displacementoftheelementsfromtheirequilibriumpositionsasthewave passesthroughthem. 2. Thephaseofthewaveistheargument(kx–wt)ofthesinefunction;as thewavesweepsthroughastringelementataparticularpositionx,thephase changeslinearlywithtimet. 3. Thewavelengthofawaveisthedistanceparalleltothedirectionof thewave’stravelbetweenrepetitionsoftheshapeofthewave(orwave shape).Itisrelatedtotheangularwavenumber,k,by 4. TheperiodofoscillationTofawaveisthetimeforanelementtomove throughonefulloscillation.Itisrelatedtotheangularfrequency,w,by 5. Thefrequencyfofawaveisdefinedas1/Tandisrelatedtothe angularfrequencywby 6. Aphaseconstantfinthewavefunction:y=Ymsin(kx–t+f).The valueoffcanbechosensothatthefunctiongivessomeotherdisplacement andslopeatx=0whent=0. Page2 [SHIVOK SP211] November 1, 2015 IV. TheSpeedofaTravelingWave A. AsthewaveinFig.16‐7abovemoves,eachpointofthemoving waveform,suchaspointAmarkedonapeak,retainsitsdisplacement y.(Pointsonthestringdonotretaintheirdisplacement,butpointson thewaveformdo.)IfpointAretainsitsdisplacementasitmoves,the phasegivingitthatdisplacementmustremainaconstant: 1. 2. Takingthederivativeweget 3. Thus Page3 [SHIVOK SP211] November 1, 2015 B. Sampleproblem:TransverseWave 1. Awavetravelingalongastringisdescribedby y(x,t) = 0.00327 sin (72.1x – 2.72t) inwhichthenumericalconstantsareinSIunits(0.00327m,72.1rad/m,and 2.72rad/s). a) Whatistheamplitudeofthiswave? (1) b) ym= Whatisthewavelength,period,andfrequencyofthiswave? c) Whatisthevelocityofthiswave? d) Whatisthedisplacementofthestringatx=22.5cm,andt=18.9s? Page4 [SHIVOK SP211] November 1, 2015 V. WaveSpeedonaStretchedString A. Thespeedofawavealongastretchedidealstringdependsonlyon thetensionandlineardensityofthestringandnotonthefrequency ofthewave. 1. Asmallstringelementoflengthlwithinthepulseisanarcofacircle ofradiusRandsubtendinganangle2atthecenterofthatcircle.Aforcewith amagnitudeequaltothetensioninthestring,,pullstangentiallyonthis elementateachend.Thehorizontalcomponentsoftheseforcescancel,but theverticalcomponentsaddtoformaradialrestoringforce.Forsmallangles, 2. Ifmisthelinearmassdensityofthestring,andmthemassofthe smallelement, 3. Theelementhasacceleration: 4. Therefore, Page5 [SHIVOK SP211] November 1, 2015 VI. EnergyandPowerofaWaveTravelingalongaString A. Transversespeed B. Kineticenergy 1. 2. Thus 3. Finally C. Theaveragepower,whichistheaveragerateatwhichenergyof bothkinds(kineticenergyandelasticpotentialenergy)istransmitted bythewave,is: Page6 [SHIVOK SP211] November 1, 2015 D. Example,TransverseWave: 1. Astringalongwhichwavescantravelis2.70mlongandhasamassof 260g.Thetensioninthestringis36.0N.Whatmustbethefrequencyofthe travelingwavesofamplitude7.70mmfortheaveragepowertobe85.0W? a) Solution: . Page7 [SHIVOK SP211] November 1, 2015 VII. TheWaveEquation A. Derivation 1. Letusstartwithadrawing: 2. Ifdisplacementinthey‐directionisnotabsurdlyhigh,thentensionis equalonbothsidesofthestringsegment.Thus, 3. Then,thenetforceinthey‐directionisFy= 4. ApplyingNSL: 5. Deltamass: 6. Usingtheslopeofthestringsegment: Page8 [SHIVOK SP211] November 1, 2015 7. Puttingittogether: 8. Solutionofthisdifferentialequationtakesform: 9. UnitsoftheConstant? B. Using__________________wefinallygetthewaveequation:Thegeneral differentialequationthatgovernsthetravelofwavesofalltypes Page9 [SHIVOK SP211] November 1, 2015 VIII. TheSuperpositionofWaves A. Thedisplacementofthestringwhenwavesoverlapisthenthe algebraicsum 1. Overlappingwavesalgebraicallyaddtoproducearesultantwave(or netwave). 2. Overlappingwavesdonotinanywayalterthetravelofeachother. Page 10 [SHIVOK SP211] November 1, 2015 IX. InterferenceofWaves A. Iftwosinusoidalwavesofthesameamplitudeandwavelength travelinthesamedirectionalongastretchedstring,theyinterfereto producearesultantsinusoidalwavetravelinginthatdirection. 1. Letusstartwithtwowaves: 2. Theiralgebraicsum: 3. UsingAppendixe,thesumofthesinesoftwoangles: 4. Thustheirdisplacementis: Page 11 [SHIVOK SP211] November 1, 2015 5. Graphicalrepresentation 6. Table: Page 12 [SHIVOK SP211] November 1, 2015 B. Sampleproblem: 1. Twoidenticaltravelingwaves,movinginthesamedirection,areoutof phasebyπ/2rad.Whatistheamplitudeoftheresultantwaveintermsofthe commonamplitudeymofthetwocombiningwaves? a) Solution: Page 13 [SHIVOK SP211] November 1, 2015 X. StandingWaves A. Diagram B. Iftwosinusoidalwavesofthesameamplitudeandwavelength travelinoppositedirectionsalongastretchedstring,their interferencewitheachotherproducesastandingwave. 1. Letusstartwithourtwowaves 2. Theiralgebraicsum: Page 14 [SHIVOK SP211] November 1, 2015 3. UsingAppendixe,thesumofthesinesoftwoangles: 4. Thustheirdisplacementis: 5. Inthestandingwaveequation,theamplitudeiszeroforvaluesofkx thatgive a) Thosevaluesare b) Since , weget , for n =0,1,2, . . . (nodes), asthepositionsofzeroamplitudeorthenodes. Theadjacentnodesarethereforeseparatedby, halfawavelength. 6. Theamplitudeofthestandingwavehasamaximumvalueof , whichoccursforvaluesofkxthatgive a) . Thosevaluesare . b) Thatis, , asthepositionsofmaximumamplitudeortheantinodes.The antinodesareseparatedby betweenpairsofnodes. Page 15 andarelocatedhalfway [SHIVOK SP211] November 1, 2015 XI. StandingWaves,ReflectionsataBoundary A. Diagram B. Rememberinordertotrulysolveadifferentialequationyouneed toapplyyourboundaryconditions. Page 16 [SHIVOK SP211] November 1, 2015 XII. StandingWavesandResonance A. Forcertainfrequencies,theinterferenceproducesastanding wavepattern(oroscillationmode)withnodesandlargeantinodes likethoseinFig.16‐19. 1. Fig.16‐19Stroboscopicphotographsreveal(imperfect)standingwave patternsonastringbeingmadetooscillatebyanoscillatorattheleftend.The patternsoccuratcertainfrequenciesofoscillation.(Richard Megna/FundamentalPhotographs) B. Suchastandingwaveissaidtobeproducedatresonance,andthe stringissaidtoresonateatthesecertainfrequencies,calledresonant frequencies. Page 17 [SHIVOK SP211] November 1, 2015 C. Thefrequenciesassociatedwiththesemodesareoftenlabeledf1, f2,f3,andsoon.Thecollectionofallpossibleoscillationmodesis calledtheharmonicseries,andniscalledtheharmonicnumberofthe nthharmonic. Page 18 [SHIVOK SP211] November 1, 2015 D. Sampleproblems: 1. Astringstretchedbetweentwoclampsismadetooscillateinstanding wavepatterns.Whatisthewavelengthforeachofthestandingpatterns shownbelowifL=100cm?Whatistheharmonicineachcase? λ=________m,_____harmonic λ=________m,_____harmonic 2. StringsAandBhaveidenticallengthsandlineardensities,butstringB isundergreatertensionthanstringA.Figurebelowshowsfoursituations,(a) through(d),inwhichstandingwavepatternsexistonthetwostrings.Inwhich situationsistherethepossibilitythatstringsAandBareoscillatingatthe sameresonantfrequency? a) Answer: Page 19 [SHIVOK SP211] November 1, 2015 3. Anylonguitarstringhasalineardensityof7.20g/mandisundera tensionof150N.ThefixedsupportsaredistanceD=90.0cmapart.Thestring isoscillatinginthestandingwavepatternshowninFig.below.Calculatethe(a) speed,(b)wavelength,and(c)frequencyofthetravelingwaveswhose superpositiongivesthisstandingwave. a) Solution Page 20
© Copyright 2026 Paperzz