Differential Calculus 201-NYA-05 Vincent Carrier Derivative of the Sine and Cosine Functions 1) A Very Important Limit For t > 0, y 6 1 sin t ≤ t ≤ tan t sin t ≤ t ≤ sin t cos t 1 ≤ t sin t ≤ 1 cos t 1 ≥ sin t t ≥ cos t cos t ≤ sin t t ≤ 1 tan t 1 t sin t t 1 x lim+ cos t ≤ t→0 cos 0 ≤ lim+ sin t ≤ t lim+ sin t ≤ t 1 lim+ sin t ≤ t 1 t→0 t→0 1 ≤ t→0 lim 1 t→0+ This implies lim+ t→0 sin t = 1. t On the other hand, lim− t→0 sin(−t) − sin t sin t sin t = lim+ = lim+ = lim+ = 1. t→0 t→0 t→0 t −t −t t Therefore, sin t = 1. t→0 t lim 2) Addition Formulas for Sine and Cosine The addition formulas for sine and cosine are sin(s + t) = sin s cos t + cos s sin t, cos(s + t) = cos s cos t − sin s sin t. Proof: y 6 1 r(cos(s + t), sin(s + t)) t 1 a d s b t c 1 x It can be seen by looking at the above illustration that a = sin s cos t, b = cos s sin t, c = cos s cos t, d = sin s sin t. Therefore, sin(s + t) = a + b = sin s cos t + cos s sin t, cos(s + t) = c − d = cos s cos t − sin s sin t. 3) Derivative of Sine: d sin x = cos x. dx Proof: sin(x + h) − sin x d sin x = lim h→0 dx h sin x cos h + cos x sin h − sin x h→0 h = lim sin x(cos h − 1) + cos x sin h h→0 h sin x(cos h − 1) cos x sin h + = lim h→0 h h = lim sin x(cos h − 1) cos x sin h + lim h→0 h→0 h h cos h − 1 cos h + 1 sin h = sin x lim + cos x lim h→0 h→0 h h cos h + 1 = lim cos2 h − 1 + cos x h→0 h(cos h + 1) = sin x lim − sin2 h + cos x h→0 h(cos h + 1) = sin x lim = − sin x lim h→0 sin h cos h + 1 sin h = − sin x lim h→0 cos h + 1 = − sin x = − sin x = cos x. sin 0 cos 0 + 1 0 1+1 sin h h sin h lim h→0 h (1) + cos x (1) + cos x + cos x + cos x 4) Derivative of Cosine: d cos x = − sin x. dx Proof: sin2 x + cos2 x = 1 2 sin x cos x + 2 cos x cos x d cos x dx d cos x dx = 0 = − sin x cos x d cos x = − sin x. dx Graph of sin x: y 6 1 −2π 3π − 2 −π 0 π − 2 π 2 π 3π 2 2π π 2 π 3π 2 2π x −1 Graph of cos x: y 6 1 −2π 3π − 2 −π 0 π − 2 −1 x
© Copyright 2026 Paperzz