An evaluation of eight computer models of mammalian inner hair-cell function MichaelJ. Hewittand Ray Meddis Department ofHumanSciences, University of Technology, Loughborough LE113TU, UnitedKingdom (Received10July 1990;revised5 December1990;accepted29 March 1991) Eightcomputermodelsof auditoryinnerhaircellshavebeenevaluated. Froman extensive literatureon mammalianspecies, a subsetof well-reported auditory-nerve properties in response to tone-burststimuliwereselected andtestedfor in the models.This subsetincluded testsfor: (a) rate-levelfunctionsfor onsetand steady-stateresponses;(b) two-component adaptation;(c) recoveryof spontaneous activity;(d) physiological forwardmasking;(e) additivity;and (f) frequency-limited phaselocking.As modelsof hair-cellfunctioningare increasingly usedasthefrontendof speech-recognition devices, thecomputational efficiency of eachmodelwasalsoconsidered. The evaluationshowsthat no singlemodelcompletely replicates thesubset of tests.Reasons aregivenfor ourfavoringtheMeddismodel[R. Meddis, J. Acoust.Soc.Am. 83, 1056-1063(1988) ] bothin termsof its goodagreementwith physiological dataanditscomputational efficiency. It is concluded that thismodelis well suitedto providethe primaryinputto speechrecognition devicesandmodelsof central auditoryprocessing. PACS numbers:43.64.Ld, 43.64.Pg,43.64.Bt INTRODUCTION During recentdecades,the input/output characteristics of the mammalianhair cell/primary-fibercomplexhave beenthe focusof extensiveresearch.In response manycomputationalmodelsof the variouspropertiesof the junction havebeenproposed.The modelsprovidea convenientenvironmentfor evaluatinganddevelopingtheoriesof spikegeneration.Furthermore,theyareanintegralpartof manyperipheralauditorymodelsandspeechrecognitionsystems.The problemfacingthedesignerof suchsystems liesin thechoice of whichsynapse modelto incorporateintohis/her composite model. A review of the literature finds many possible candidates(Siebert, 1965; Weiss, 1966; Eggermont,1973, 1985; Schroederand Hall, 1974; Oono and Sujaku, 1974, sultsarecomparedto datafromelectrophysiological studies for the followingproperties:(a) onsetandsteady-state rateintensityfunctions;(b) two-componentadaptation;(c) exponentialrecoveryof spontaneous activity after stimulus offset;(d) recoveryof functionto respondto a secondstimulus after offsetof a first; (e) additivity;and (f) low-frequency phaselocking. This is the samesubsetof testsusedby Meddis (1988) to evaluate his model; however, two additional methodsof analysisare introduced.Johnson's(1980) synchronization index is introducedto analyzechangesin maximumsynchronyacrossfrequency.Second,the computational efficiencyof eachmodelis considered.For this purpose,comparativetimesto processa 1-stoneburstare presented. 1975; Geisler et al., 1979; Ross, 1982; Schwid and Geisler, 1982;Smith and Brachman, 1982;Allen, 1983;Cooke, 1986; Meddis, 1986b, 1988; Westermanand Smith, 1988;Meddis et al., 1990). Hair-cell modelscan be thoughtof as variationson a basicproto-modelconsistingof reservoirsof a transmitter The modelshaveappearedovera substantial periodof time and each lays claim to simulatea differentsubsetof data. Moreover,many importantempiricalfindingshave beenpublishedsincetheappearance of someof the models. As a result,it is difficultto makemeaningfulcomparisons betweenthe variousproposals andit istimelyto reviewtheir performancein the light of recentdevelopments. The choiceof anappropriatemodelof synaptic-primary auditory-nerve(AN) modelsdoesnot only affectour theoreticalperspective. It couldbe crucialto otherfuturemodeling effortswherethe modeloutputswill serveas inputsto. simulationsof morecentralprocesses. Modelingthe central auditorysystemcanbecomemassively complex;in suchsystemsinaccuracies at the input stagewill rapidly propagate throughoutthe system. This paperreportsa comparativeinvestigationof eight many featuresincluded in hair-cell simulations.No model computationalmodelsof hair-cell function. The model re904 substance that is released across the cell membrane into the synapticcleft.Figure1showsa generalized representation of containsall of the featuresasshownin the diagram,but the transmitterflowpathsof almostall the modelscanbe representedby a reducedversionof the proto-model.Early attemptsmodeleda single-reservoir systemwith lossand replenishmentof transmitter quanta. Later models added extra reservoirsor complicatedthe principlesof transmitter flow control. A reservoirrepresents a storeof transmittermostprobably locatednear to the baseof the hair cell. This feature is consistent with knownphysiological and anatomicalstructures which are ubiquitousamongreceptor-synapticsystems.Releaseof transmitterin quantaor discretepacketsis anotherwell-reportedsynapticmechanism. The introductionof multiple-reservoir andmultiple-site modelswas stimulatedby the empiricalfindingsof Furukawaandhiscolleagues(Furukawa etal., 1978;Furukawa J. Acoust.Soc. Am. 90 (2), Pt. 1, August1991 0001-4966/91/080904-14500.80 @ 1991 AcousticalSociety of America 904 INNER HAIR CELL Schroederand Hall (1974) proposedone of the first hair-cellmodelsto meetour criteria.A singlereservoirreleasedquantaof transmitterin amountsproportionalto a IMMEDIATE s'rORES SYNAPTIC stimulus-relatedpermeabilityfunction and the number of quanta availablefor release.Transmitter releasedfrom the cell stimulatedthe post-synapticafferentfiber. Once released,transmitterquanta were irretreviablylost from the system. A fixed-rate replenishment scheme wasusedto supply the reservoirwith new transmitter. Oonoand Sujaku's( 1974, 1975) modelshowedcertain structuralsimilarities to theSchroeder andHall proposal. A singlereservoirof transmitterwasusedtogetherwith a stimulus-relatedpermeabilityfunction.Unlike the Schroeder and Hall model,however,only a fractionof the total transmitterwasreleased pertimeunitwhenthecellwasactivated. Replenishment waseffectedaccordingto the formula. IMEMBRANE SMI'I-rER KE CELL MEMBRANE FIG. I. Generalizedrepresentation of hair-cellmodels.Redrawnfrom Meddis (1986a). andMatsuura,1978;FurukawaetaL, 1982)workingon the AN fibersof goldfish.They recordedthestrengths of successiveexcitatorypost-synaptic potentials(EPSPs) following onset of tone bursts imposed on pedestaltones. The strengths of the EPSPs(m) were,accordingto Furukawa, determinedby the productof two independent parameters (n and p). After a stimulusincrement,parametern increasedand parameterp remained relatively unchanged. Furukawa and Matsuura designatedn to be the amount of transmitteravailablefor releaseandp, the probabilitythat an availablequantumwouldbe released. Theseconclusions havebeenrepresented in morerecent modelsby increasing the numberof reservoirs andmaking theiravailabilitydependent uponstimulusintensity.In such models, the transmitter lies in reservoirs or sitesclose to the dq(t)/dt • q(t) [ 1 -- q(t) ]/•, ( 1) where dq(t)/dt isthe rateof transmitterflowinto the reservoir,q(t) istheamountof transmitterin thereservoirat time t, and •- is a time constant. SchwidandGeisler(1982) represented theconclusions of Furukawa and Matsuura (1978) with a model that con- sistedof sixindependentreservoirsof synapticmaterial.The reservoirswere ordered by increasingthresholdsuch that transmitterwasreleasedfromonlyonereservoirat low stimulus levelsand from all six at very high stimuluslevels. Transmitterreleasefrom an individualreservoirwas governedby a permeabilityfunctionrelatedto thestimulusamplitude. Each reservoirreleaseda constantfractionof its contentsper time unit when activated.Replenishmentof transmitterwas a sequentialprocessfrom the least-to the presynaptic membrane.The sitesare orderedby increasing most-sensitive reservoir. The flow of new transmitter casthreshold.If thestimulusamplitudeissufficientto activatea cadeddownthe reservoirchain,eachhigherthresholdresergivensite,a fixedproportionpertime unit of that reservoirs voir being filled until the availablereplacementstore was transmitter is released. exhausted. Meddis (1986b), however,has offereda reinterpreta- Ross(1982) in an attemptto replicateshort-and longtermadaptationphenomena describes a modelconstructed of physicaland mathematicalelements.Four reservoirsare senting the amount of transmitter available for release, chainedtogetherin series.MetabolicenergyflowsunidirecMeddisdesignatedp asthe probabilitythat a givenquantum tionallythroughthe seriesdeterminedby concentrationdifwill successfully traversethe cleft (and be invariant with ferencesand fixedpermeabilities. Energyfrom the finalresstimuluslevel), and n as the numberof quantain the cleft ervoirwasfed into a Poissongeneratorat a rate governedby (whichwouldvarywith stimuluslevel). Empiricaldatacol- its concentrationand two permeabilities,one of which is lectedto date and known conceptsof synapticphysiology fixed,the other relatedto the instantaneous signalamplicannotresolvethedifferences betweentheseinterpretations, tude.The Poissongeneratoremittedunitary chargesat an and the matter remains controversial. averagerateproportionalto theenergyflowintothe generator.Thesechargeswerefedto a leakyintegratorwhichfired I. THE MODELS whenthesummedinputreacheda threshold.After firingthe Below, we studyeight modelsof hair-cell functioning. integratorwas dischargedand a refractoryperiod introducedwherebyinputsto the unit wereinhibitedfor 0.5 ms. They werechosenfor studybecausethey were capableof accepting an arbitrary• inputsignalanddelivering, asout- Rossmodeledeightunitseachwith a differentspontaneous firing rate. For this study, we selectedunit 297-43 (Ross put, AN eventprobabilities.We restrictedour attentionto 1982,TableI), whichhad a spontaneous rateof 60.6 spikes thosemodelsthat involvedintermediateprocessing which tionofFurukawa's data.Insteadofprepresenting theprobability that a quantumof transmitteris releasedand n repre- resembledknown physiologicalmechanisms.We also used only thosemodelsthat had beendevelopedfor useon digital computersbecausethisisthe mostlikely mediumfor modelers in the immediate future. The main features of each model are outlined below. 905 d. Acoust.Sec. Am., Vol. 90, No. 2, Pt. 1, August1991 per second. Brachman (1980) and Smith and Brachman (1982) de- velopeda synapsemodel specificallyto replicatetwo-componentadaptationand additivity. Half-wave-rectifiedstimulusenvelopeswereusedas inputsto the modelto simulate M.J. Hewittand R. Meddis:Hair-cellmodelsevaluation 905 high-frequency tonebursts.Transductionof the input to an electricalsignalwassimulatedby applyinga modifiedversionof Zwislocki's(1973) generalizedrate-intensityfunction for sensoryreceptors.The final shapeof the function was similar to the unadaptedrate-intensitycurve determinedin empiricalstudies.The receptorpotentialwasthen low-passfiltered.This stagewasascribedto the functioning tic body seenin electronmicrographsof mammalianhair of the hair-cell membrane on the basis that all membranes the membrane fluctuated as a function of the instantaneous haveintrinsicresistance andcapacitance that enablethemto act aslow-passfilters.The filteredreceptorpotentialevoked amplitudeof theacousticstimulus.A smallfractionof transmitter releasedinto the synapticgapwaslostthroughdiffusion. A further fraction was actively transferredback into thecellfromthecleft.The remainingtransmitterisleftin the cleft to stimulatethe post-synaptie afferentfiber.The transmittertakenbackintothecellisheldin a reprocessing reservoir for a shorttime beforebeingtransferredback into the freetransmitterpoolfor later release. release of transmitter. In Brachman's model, transmitter available for release wasstoredin 512 independent immediatesites.Duringany one time frame, the numberof sitescontributingto the response(total transmitterreleasedintothesynapticgap) was determinedby the corresponding filteredreceptorpotential. Eachsitereleased a constantfractionof itscontentspertime unit whenactivated.Theseimmediatesiteswerereplenished by a localstoreof transmitter,andthis,in turn, wasreplenishedat a slowerrate by a global reservoirof transmitter. Flow of' transmitterwas driven by diffusiongradients between the stores. cells. Meddis( 1986b,1988) proposeda three-reservoir model incorporatinga noveltransmitterreuptakeand resynthe- sis processloop. The hair cell manufactureda chemical transmitterthat wasdeliveredto a site adjacentto the cell's membrane(the freetransmitterpool). The permeabilityof Allen (1983) combined a variable resistance model of the generationof the receptorpotentialwith an activelinear transformto producethe neuralresponse. The variable-resistancemodeldescribes the receptorpotentialasa function of ciliadisplacement. In Allen'smodelthereceptorpotential wascalculatedfrom the instantaneous signalamplitude.A linear transformwas appliedto the receptorpotentialto computethe current.The final stagewasto low-passfilter the current.The low-passfilter wasascribedto the diffusion The implementationused in this study is Payton's (1988) modifiedversionof Brachman'soriginalmodel.Essentially,Paytonrenderedthe modelsuitablefor input of arbitrarystimuli.Thesemodifications enhanced theperfor- of calcium ions from the cell membrane to the site of vesicle mance of the model, and so it will be referred to as the Brach- release. man-Payton model. Cooke's(1986) peripheralauditory modelincludesa two-stagehair-cellsimulationthat transformedthe mechan- ical inputsignalintoAN event-rateoutput.The firststage simulatedtransductionof soundpressureto the hair-cellreceptorpotentialusingan asymmetricsquare-root function. His state-partitionmodel (SPM} simulatedtransmitterreleasefromthehaircellin response to thereceptorpotential. Followingthe hypothesized modelproposedby Furukawa andMatsuura(1978), Cooke'sconceptual modelconsists of manyreleasesitesspatiallyorderedby increasing threshold. Moreover, each site releasesa constant fraction of its avail- abletransmitterper time unit whenactivated.However,in orderto achievecomputational efficiency, theworkingmodel groupedmanyreleasesitesinto threeseparatecompartments. As a result only two variables(total volume and numberofsitesactive)wererequiredto describe eachgroup of sites. Sites in the first or "immediate" state have thresholds belowthatof theinstantaneous signalamplitudeandrelease II. MODEL EVALUATION All models were programmed in FORTRAN77 on a Masscomp5450computer.To ensure,asfar aspossible, correctimplementation of the models,we firstreplicatedall of the figuresin the eightoriginalpublications. For the purposeof evaluation,simulations wererun usinga samplestepof 0.05ms (samplerate = 20 kHz). Stimuli were generatedwith a 2.5-ms rise time and were 1-kHz sine-phase toneburstsexceptwherestated.All modelswere programmedasdeterministicsystems,individualspikesusingpseudorandom numberswerenotgenerated. The output of eachmodelisexpressed in termsof a firingrateandrepresentsthe averagesynapticdrive during a test period.The synaptic drive or "excitation function" (Gaumond et al., 1983) wasusedby Westerman(1985) for reportinganimal data and by Meddis (1988) reportingmodeloutputs.This practicedisregardedany post-synapticmechanisms(e.g., refractoryeffects)includedin certain models. transmitter. The second or "relax" state consists of sites that have beendepletedin the recentpast and are beingreplen- ished.The finalstatelabeled"reserve"containsfullyreplenished sites.Each site can be instantaneously transferred betweenstatesindependently of the numberof sitesin a particular state. This differs from other n-reservoir models where the transfer of sites occurs as a result of concentration gradientsbetweensites.The replenishment rate of any one site was inverselyproportionalto the physicaldistance betweenthesiteandthereplacement transmitterpool,modeledasa pointsource.The biologicalcorrelateof thereplacementtransmitterstorewaspostulatedto bethedensesynap906 J. Acoust.Sec. Am., VoL 90, No. 2, Pt. 1, August1991 A. Rate-intensity functions A steady-staterate-intensity function (RIF) derived from typicalAN data is shownin Fig. 2. The spontaneous rateisa measureof thefiber'sactivityin theabsence of sound stimulation.Spontaneous activityin AN fibershasa trimodal distribution(Liberman, 1978). The majority of fibers (> 60%) fire with a spontaneousrate of greater than 18 spikesper second(knownashigh spontaneous-rate fibers). All of the modelsimplementedin thisstudywereproposed to replicatethe response properties characteristic of this groupof fibers.Modelsof low andmediumspontaneous-rate M.J. Hewittand R. Meddis:Hair-cellmodelsevaluation 906 stimulusintensitycontinueto influence the onsetresponse. Asintensityincreases thesynchrony of onsetresponse within thefirstbinalsoincreases. Smithandcolleagues conclude that the underlyingsynapticdrive to the fiberat stimulus onsetcontinues to growwithincreases in stimulus intensity, evenwhenthefiringrateislimitedby refractoryeffects. Methodsto uncovertheprobability of spikeoccurrence disregarding refractoryeffectshavebeendeveloped (e.g., o Onset 800- 4oo Steadystate Sponlaneous---• firing 0 rate Gray, 1967; Gaumond et al., 1983; Westerman, 1985). ß •) Whenappliedto post-stimulus time-histogram responses, theeffects of neuralrefractoriness areshownto beparticularly strongat onsetwherefiringratesare highest;further evidence thatthesynaptic driveat onsetcontinues to grow with increasing intensity,evenwhenthe maximumfiring 2•) 4'0 6'0 8• Level (dB) FIG. 2. Onsetandsteady-state rate-levelfunctions for an auditory-nerve rate has been reached. fiberstimulated by a toneat thefiber'scharacteristic frequency. For each model we have determined a reference sound fibershavebeenproposed(e.g.,Geisler,198I, 1990;Meddis et al., 1990) but are not evaluated here. Electrophysiological studiesdistinguish a secondrateintensityfunction.The onsetRIF is a rate measuredover a shortperiodof timefollowingthe onsetof a toneburst.The functionincreases monotonicallywith tonelevelandshows littleor nosignof saturation at highstimulus levels(Fig. 2). The exactshapeof the onset-RIF varieswith the risetimeof thesignalandthedurationof the recordinginterval (Smith, 1988).In all cases,however,therefractorypropertiesof spikegenerationprovidean upperlimit on the onset firing rate. The upperlimit is about 1000 spikes/s,which corresponds to an absoluterefractoryperiodof 1 ms. Smith et al. (1983) have shown that even when the on- set firing rate is limited by refractory effects,increasesin pressurelevelcorresponding to the rate-intensitythreshold. Usingthe methodof Smithand Zwislocki(1975), we define zerodB asthe levelat whichstraightlinespassthroughthe steepest portionsof theonsetandsteady-state RIFs intersect a horizontallinedrawnat an ordinatecorresponding to the rateof spontaneous activity(Fig. 2). Following the methods of Westerman and Smith (1984), onsetand steady-state RIFs wereobtainedfor each modelin responseto 300-mstonebursts.The onsetfunction represents the firingrateaveragedoverthe first (or highest, if not the first) msof the response andthe steady-state function represents the firingrateaveragedoverthe last20 msof response. The resultsare presentedin Fig. 3. The empiricaldata obtainedfrom gerbil (Westerman,1985) are shownin the top-left panel. This format is commonto all figureswhere modeledoutputsare comparedto animaldata. All models Onse/ • 9001 gerbil data 9001 9001 Allen•,•. • Steady state 0/ Meddis ß13 0/ 0 o O3 • 20 40 900 Cooke O1 o 2'0 40 0 20 40 0 20 40 9ooJ Schwid & 900] Oono Sujaku 0/Geisle.•• O/ • & 0 20 40 0 20 40 20 40 Payton 0 20 40 0 20 40 0 Level(dB) FIG.3.Comparison ofrate-level functions between themodels andWesterman's ( 1985 ) gerbil data.Theonset function represents thefiringrateduring the first(or highest) msaftertoneonset. Thesteady-state function represents theaverage firingrateoverthelast20msofa 300-ms toneburst. 907 J. Acoust.SOC.Am.,Vol. 90, No. 2, Pt. 1, August1991 M.J. Hewittand R. Meddis:Hair-cellmodelsevaluation 907 A 0 • O0 200 0 '1O0 200 0 • O0 200 900t b.Cooke 9001 Schwid &900] Oono & 01•r • 0 100 01-• 200 0 • 100 01---• 200 0 9001 Hall • 100 Brachman - 0 200 L 1 O0 200 0 1 O0 200 0 1 O0 200 Time (ms) FIG. 4. Post-stimulus timeexcitation histograms forthemodels compared toWesterman's (1985)gerbildataforstimulus presentation levels of l0 and40 dB. The response of the Schroeder andHall modelshowsan onsetpeak that is far too largeat mediumand high signal levels.This givesan adaptationresponse that failsto match the two-component functionreportedin the literature.Allen'smodelalsofails to producea two-component adaptation response. The remaining modelsshow two-componentadaptaB. Two-component adaptation tion;however,onlythe Meddismodeldemonstrates approximately level-independent short-term time constants aswell Followinga periodof silence,a toneburstwill produce as level-dependent rapid time constants. aninitialpeakof activityfollowedbya declinethatisinitialThe modelsproposedby Ross,and Oono and Sujaku ly rapidthenslower.WestermanandSmith (1984) propose show two-component adaptationonlyat levelsabove10dB. that the adaptationresponse consists of two exponentially Ross highlighted the insufficient onsetpeakingat medium decayingcomponents: stimuluslevelsasa majorfault of the model.Further analyy(t) = ARe-'/• + Asxe - t/•,T+ Ass, (2) sishasshownthat thisdefectwasdue,in part, to the model neuron that Rossincludedin the original simulation.RewhereAR andASTare the magnitudes and •'R and rSTthe decaytimeconstants. of therapidandshort-termadaptation movalof this componenthasshownthat insufficientonset components; Assis a constantrepresenting the steady-state peakingis only a problemat low (below 10 dB) stimulus levels.In contrast,Westerman'sgerbil data (Westerman response. andSmith, 1984;Westerman,1985) showa prominentonset The firstcomponent, knownasrapidadaptation, hasa peakat a stimuluslevelof 8 dB. time constant(rR) of lessthan 10 msand decreases with increasing tonelevelto as low as 1-msfor high-amplitude producethe predicteddichotomybetweenonsetandsteady stateRIFs althoughthepreciseformof thefunctionsvaries betweenmodels.However, it'shouldbe notedthat the onset functionof the Schroederand Hall modelis veryunrealistic. The rategrowsfar toorapidly(spikes/sperdB) at medium and highstimuluslevels. stimuli (Westerman and Smith, 1984;Yates and Robertson, 1980;Yateset al. 1985).The second timeconstant(tsT) is about70-ms(range20-100ms) andis independent of tone C. Recovery of spontaneous activity level (Smith and Zwislocki, 1975; Westermanand Smith, 1984). beforerecovering backto spontaneous rate.The recovery functionis describedby a singleexponential,with a time Post-stimulustime histograms(PSTHs) were constructedfrom modelresponses to 100-mstoneburstsat var- constantbetween40 and 100 ms (Harris and Dallos, 1979; Smith, 1977;Westerman, 1985). Yates et al. (1985) noted iousintensities. Figure4 showstheresultfor eachmodelfor that the amountof depression of firingat toneoffset,and the exactnatureof recovery,depended onthestimuluslevel,and not on the absolutevalueof spontaneous rate. They reporta stimulus levels of 10 and 40 dB above threshold. Time con- stantsof adaptationderivedfrom the responses andtypical AN data (Westerman,1985) are shownin Fig. 5. The method usedfor fittingtheexponentials to themodelresponses is givenin Meddis (1988). 908 J. Acoust.Sec.Am.,Vol.90, No.2, Pt.1, August1991 At the offsetof a tone burst, AN firing briefly ceases "typical"recoverytimeconstantof 20 ms,accompanied by a small amountof slowerrecoveryfollowingthe offsetof more intense stimuli. M.J. HewittandR. Morris:Hair-cellmodelsevaluation 908 TABLE I. Timeconstants ofrecovery tospontaneous rateaftertheoffsetof a 40-dB tone burst. Physiological forwardmaskingparadigmshavefurther helpedour understanding of AN recoveryprocesses. The work of Smith (1977) andHarris andDallos (1979) investigatedthe roeeveryfrom adaptationof singleAN fibersin gerbilandchinchilla,respectively. In brief,it wasestablished that AN recoveryfrom maskingstimuli followeda single exponentialcurve.Both studiesnoted,however,that the responseat stimulusonsetrecoveredat a fasterrate than did the total response. Thisinitial,fastercomponent of recoverywasstudiedin detail by Westerman(1985) usingthe paradigmshownin Fig. 6. The response to the probewasmeasuredasa decrement whencomparedto the response in the absenceof the preceding maskingtone.Usinganalysiswindowsof 1and20 Time constant Model ( ms) Schroeder and Hall 9.2 Oonoand Sujaku 7.9 Allen 2.3 Schwid and Geisler 9.4 Ross 57.6 Brachman-Payton 4.0 Cooke 8. I Meddis 30.4 Chinchilla ( + 20 dB) Harris and Dallo• ( 1979} Gerbil ( -I- 40 dB) Westerman (1985) 37.0 47.0 Guineapig D. Recovery of adaptation functions ms (onset and short-term measures}, Westerman fitted two 20.0 recoverytime constantsto thedata;the fastcomponentwith Yates et al. (1985) a time constant of between 20 and 50 ms and the second, slowercomponentwith a time constantof greaterthan 150 ms. An examination of Table I suggeststhat all but two models (Ross, and Meddis) would fail to mimic the data of acThe time constantsof recoveryto spontaneous-firing Westerman.In mostcases,the recoveryof spontaneous rateswerederivedfrom themodelPSTHs (Fig. 4) andare tivity followingtoneoffsetis far too rapid.Figure7 confirms the poor modelingof recoveryprocesses. The modelsproshownin TableI alongwith data from threespecies. The modelsof MeddisandRossshowthemostrealisticrecovery posedby Rossand Meddisquantitativelypredictthe slower short-termrecoveryrate but alsoincorrectlypredictan onof spontaneous activity.'However, thecomplete cessation of firing at tone offsetis not shownby any model.Moreover, setrecoveryrateof equalslope.It is worth noting,however, the remainingmodelsshowveryunrealistic recoveryprop- that the data pointsbetween0 and 20 ms of Westerman's erties.Quantitatively,the process occursin the modelsat a resultsdoseemto departfroma singleexponentialimprovement, although, he chose to draw a single best-fit line muchfasterratethanthat derivedempirically. gerbildata 10 c o o M 30 50 001 10 Allen 30 50 001 - Cooke 10 30 001 Schwid&• -- : Geisler 50 10 30 & Hall 10 50 30 •001 Brach• Ross* 10 - [ Sujaku * 50 1001 -Schroeder 10ono•t Pg•yton 3O 5O 10 - 3O 5O Level (dB) FIG. 5. Time constantsof adaptationfitted to model responses comparedto Westerman's(1985) data fitted to derivedexcitationfunctions.The twocomponent adaptationresponse equation(2) couldnotbefittedto the responses fromtheSchroeder andHall model,or to Allen'smodel.Asterisksindicate single-component adaptationat 10 dB. 000 J. Acouat. Sea. Am., VoL 00, No. 2, Pt. 1. August 1991 M.J. Hewitt and R. Meddis: Hair-cell models evaluation 909 are required to quantify the exact nature of the recovery functions. Level (dB) E. Additivity Smith and Zwislocki (1975) have establishedthat the 0 processof short-termadaptationis additivein nature.They showedthat the increasein firing rate elicitedby a stimulus amplitudeincrementis independentof the stateof adaptation of the fiber.Similaradditivitywasfoundfor responses to decrementsin intensity applied after adapting tones (Smith, 1977;Abbas, 1979). Later,Smithetal. (1985) studiedadditivitywith analysiswindowsdesignedto emphasizethe propertiesof rapid adaptation.The stimulusparadigmsusedby Smithand his colleagues are shownin Fig. 8. Large-windowanalysis(20ms) confirmedthe earlier findingsthat adaptationwasaddi- 500 tive for stimulus increments and decrements. The effect was alsoshownto bevalidfor small-window(1-ms) responses to Time (ms) stimulusincrements.In contrast, the small-window deereFIG. 6. (a) Forwardmaskingparadigmusedby Westerman(1985) to study recoveryof responseafter adaptation.Masker duration:300 ms; probeduration:30ms;maskerandprobeat43 dB,At variedbetween 0 and 200 ms. (b) Schematicof corresponding AN fiberresponses. mentalresponse decreased withincreasing timedelay,andin proportionto the decrease in firing rate producedby the pedestal.Normalizedmodel responses to the addifivity paradigms areshownin Fig. 9, togetherwith the empirical data of Smith et al. (1985). throughthe points.The samedeviationcan be seenin the onsetresponses of the Meddismodel.The issueis not clearcut, however, as a more detailed examination of Wester- man'sdata showlargevariationsin the recoverytimesmeasuredfromhisfiberpopulation.It seemsthat additionaldata 103 •l) t= • 103 I ] term 0 gerbil data 1 100 200 0 ß• O "-" u} IVieddis1 • 100 200 103 (n '•. •- o) All of the computedresponsesshowed spike-rate changesthat werequantitativelyverydifferentfrom the empiricaldataof Smithetai.; however,it wasevidentthatsome of themodelsshowedthecorrecttrends.The multiple-reservoir modelsproposedby Brachman-Payton,and Schwid and Geislerqualitativelyreproducethe dataof Smithet al. (1985). The small- and large-windowincrementresponse Cooke 11 7',,_ 0 100 $chwid& Geisler 1' 200 0 100 200 rr 103 , •03 t Schroeder o ] 00 •00 o • oo Allen. 0 200 103 t• Oono & 103 t• Brachman Sujaku 0 100 0 100 1I 2oo 100 200 Payto?_ 200 Time after masker (ms) FIG. 7. Recoveryof response components after adaptation.Comparisonof modelsand Westcrman's(1985) data (includinghis "best-fit"lines). The decrement isthedifference betweentheresponse of an unadapted fiberto a 43-dBtoneandtheresponse of a fiberto theprobeaftertheoffsetof a 300-ms,43dB maskingtoneof the samefrequency.The onsetdecrements arebasedon the maximall-ms firingrateafter probeonset.The short-termdecrements are basedon the ratebetween10and 30 msafter the probeonset. 910 J. Acoust.Sec. Am.,VoL90, No. 2, Pt. 1, August1991 M.J. Hewittand R. Moddis:Hair-cellmodelsevaluation 910 1. Changes with frequency Level (dB) 4O 2O I Control 20 ms I 0ms 30 ms I 10 ms 40 ms 0 / ..... • m .• m / o 60 Time(ms) o 60 (b) Control 20 ms o ms 30 ms 10 ms 40 ms Periodhistograms(PHs) showthatAN-fiber responses phase-lock to thepositivehalf-cycleof low-frequency tones. At high signalfrequencies, however,the periodhistogram showsno relationshipto the signal'sphasecharacteristics. Roseetal. (1967) quantifiedthelossof synchrony with the synchronization coefficient(the densityof the mostpopuloushalf of the periodhistogramdividedby total density). Johnson (1980) studied first-order synchronyeffects over a rangeof frequenciesusingthe synchronizationindex (SI). Using the Fourier transformof the periodhistogram, Johnsoncalculatedthe SI by takingthe responsemagnitude at the stimulusfrequencydividedby the magnitudeat dc. Below 1 kHz, the SI is independent of stimulusfrequency. Above 1-kHz, the data are modeledby SI = I -f/6, where f= frequencyin kHz. Johnson'smethodassumes that the periodhistogramis sinusoidal,an assumptionthat is not alwaysjustifiedespeciallyat low frequencies andhighsignallevels.Accordingly, it is helpfulto useboth measures. To measuremodel synchronizationcoefficientsand indices, stimuli of 1, 2, 3, 4, and 5 kHz were used and the Level samplerate increasedto 100 kHz. The resultsare presented in Figs. 10 and 11. Only three modelsshowfrequency-dependentsynchronization measures. The modelsproposedby Meddis and Allen simulate the falloff of synchronization with increasingfrequencyaccurately.One small deviation from the empiricaldata occursin the 5-kHz casewherealmost completelossof synchronization shouldbe evident. The measuresof synchronizationfor the Brachman-Payton (dB) o so Time(ms)o 6o model are similar, but the rate of falloffat 3 kHz and aboveis too shallow. FIG. 8. Schematicrepresentation of the paradigmsfor studyingadditivity. (a) Decrements of 6 dB appliedat varioustimedelaysaftertheonsetera pedestal.(b) Incrementsof 6 dB appliedto a pedestal.In both (a) and (b), thepedestal wasof 60-msdurationand 13dB abovethreshold. The control stimuluswasthe pedestalalone. 2. Changes with level Johnson(1980) alsousedthe SI to monitor synchroni- zationchangeswith level.Doubleordinateplotsof SI and firingratechanges overa rangeof stimulusintensities show themodulationof spontaneous activityby aninputstimulus occurs at intensities below rate threshold. From such data, the modulationthresholdfirst notedby Roseet al. ( 1971) functionsare horizontal(i.e., additive),asis the large-windowdecrementresponse function;finally,thesmall-window decrementfunctiondecreases with increasingdelay. canbederived.Figure12showsthatall modelssuccessfully replicatethiseffect. Cooke's model is additive for stimulus increments but fails to producea large-windowtime-independent decrementalresponse. The modelsproposed by OonoandSujaku, Allen, and Meddissuccessfully replicatethreefunctionsbut the small window incrementalresponseis nonadditiveand discrepantwith the empiricaldata at very shorttime delays ( < 10 ms). The modelsproposedby Schroederand Hall, and Ross predicttime-dependent incrementalresponses for bothlarge and small windowsand are clearly nonadditivein nature. G. Computational efficiency As stated in the Introduction, hair-cell models are in- corporatedinto modelsof speechrecognitionand central auditoryprocessing.: Modelersofsuchsystems haveto consider the trade-offbetweenspeedand accuracyof the haircell modeltheyselect.To completethisstudy,we havemeasuredthe relativecomputationalefficiencyof eachmodel. Comparativetimestakenfor eachmodelto processa 1 s toneburst (includingprecedingandfollowingperiodsof silence) presentedat 40 dB above thresholdare shown in Ta- F. Low-frequency phase locking This section deals with the fine-time structure of AN responsesto single-frequencytonesat different levels and frequencies. 911 J. Acoust.Sec. Am., Vol. 90, No. 2, Pt. 1, August1991 ble II. No attemptwasmadeto optimizethe computercode of any model.An examinationof the resultsshownegligible differences betweenmostmodels.Exceptionsto thisare the multiple-reservoirmodelsproposedby Schwidand Geisler M.J. Howittand R. Moddis:Hair-coilmodelsevaluation 911 •' • o ß LW 0 40 Meddis o 0 Allen 0 40 0 4O SchWid & 0 40 0 Oono & Geisler 0 4O Sujaku 0 4O Hall FIG. 9. Modelresponses andtheemBrachman 0 40 0 0 40 - . . P.a?on. . 0 40 pirical data of Smith eta/. (1985) to theadditivitystimuli.(a) Responses to decrements in level as a function oftimedelay.(b) Responses tostimulus increments as a function of de- Timedelay (ms) lay. The small window (SW) is basedontheresponse duringthefirst msafterthestimulus change, andthe large-window (LW) measure is based on the first 20 ms after the stimulus change. 0 • '-- 0 •O _.c(• • 0 0 gerbil data 40 0 Meddis 40 0 0 Cooke 40 Geisler 40 0 0 Schwid & 0 0 ,•m1.0,• Schroeder & 1.0 • 0 -' 0 .... Sujaku 40 1.0 Brachman - Ross 0 40 Allen 40 0 Payton 0 40 o 40 Timedelay (ms) 1 3 5 50],Meddis 1 3 5 lOO]•• : 3 5 1001, Oono & 50]Geisler 1 3 FIG. 10. Modelsynchronization coefficients as a functionof frequency Schwid & Cooke 1 compared to squirrel monkey data 50JSujaku 5 1 3 from Rose et al. (1967). No syn- 5 chronization data for Cooke's enve- lope model. 1001 100]. Schroeder& 501Hall 3 5 501Ross3 100 •......•....• 1 Brachman- 5 50]Payton 1 3 5 Frequency (kHz) 912 J. Acoust.Soc. Am.,Vol. 90, No, 2, Pt. 1, August1991 M.J. Howitt and R. Mealdis: Hair-cell models evaluation 912 x 1.0 cat dat• & 1.0 i • IOono ISchroeder & 1.01 1.0 Brac•._..•..._ ' .1 1 3 5 1 3 3 5 Schwid & Cooke .lJSujaku .1 Geisler 1 3 5 3 5 1 .1 Ross .1 Hall 1 3 5 1 3 5 .1]Payton 1 3 5 Frequency (kHz) FIG. 11.Modelsynchronization indices asa functionof frequency compared toJohnson's (1980)catdata. (1982) and Brachman-Payton(Payton, 1988), which are relativelyslow. Although one particular implementationof a model may beoptimizedto run fasterthan another,it is clearthat tracking the contents of discrete immediate sites (e.g., Brachman-Payton,Schwidand Geisler) reducescomputational efficiency.The return for the increasedcomputation time requiredto run multiple-sitemodelsis the time-independentresponseto incrementalstimuli. III. DISCUSSION Thispaperhasreporteda detailedcomputational investigationof eight hair-cell models.The propertiesof each model are summarized in Table III. A. Adaptation AN-fiber responses adaptin response to a constant-level stimulus.This propertyis not exclusiveto the hair-cell/AN 1'øt cat data _•' x 0•. • -40 0 40 -40 0 40 -40 0 40 Schwid &j•' Cooke Oono& _,," i1.00 Geisle•_• ß -40 0 40 -40 0 40 0 Payton . -40 0 40 03 -40 0 40 Brachman -40 0 u_ 0 40 Level (dB) FIG. 12.Synchronization indexasa functionof stimulus levelfor modelresponses andempiricaldatafromcat (Johnson, 1980),together withnormalized steady-staterate-levelfunctions. 913 J. Acoust.Soc.Am.,Vol. 90, No. 2, Pt. 1, August1991 M.J. Hewittand R. Meddis:Hair-cellmodelsevaluation 913 TABLE II. Timetakenby eachmodelto process a I-s toneburstpresented at 40 dB. Model Time (s) Schroeder and Hall 2.8 Oono and Sujaku 2.0 Allen Schwid and Geisler 3.2 42.0 Ross 2.0 Brachman-Payton 320.0 Cooke Meddis 1.2 4.0 modelas only a fractionof the availabletransmitterwas released pertimeunitwhenthecellwasactivated. Theprincipleof fractionalreleaseis inferredfromthe workof FurukawaandMatsuura(1978), andwasadoptedinto thelater multiple-reservoir models(SchwidandGeisler,1982;Smith and Brachman,1982;Cooke, 1986). Although both shorttermandrapidtimeconstants canbefittedto thepost-stimulustimehistograms of thesemodels,a morecarefulconsiderationof two-component adaptationwasshownby Meddis (1988), Ross(1982), and Smith and Brachman(1982). The Meddismodelquantitatively simulates Westerman andSmith'srapidadaptation databyfastreuptake of transmitterfromthecleftbythepresynaptic membrane. Thislimits the amount of free transmitter available for release. complex,but is inherentin all sensory-receptor systems. Availableexperimentalevidencesuggests that spikeactivity in AN fibersis initiated by the releaseof a transmitter substancefrom the hair cellinto the cleftthat synapses with the fiber.The hair-cell receptorpotentialthat is likely to cause the releaseof transmittershowsno adaptation(Russelland Sellick, 1978; Goodman et al., 1982). It is, therefore, believedthat adaptationis due tO a progressive rundownof Transmittertakenupfromthecleftissubjectto a reprocessingdelaybeforebeingavailable forrelease again.Thisdelay ta. As the probabilityof releasewasdirectlyrelatedto stimulus intensity,the rate of adaptationvariedwith stimulusintensityin a way not consistentwith neuraldata (e.g., Kiang While muchtime hasbeendevotedto modelingadaptation, the simulationof recoveryprocesses at the offsetof a tonebursthaslargelybeenneglected.The presenceof two differentexponential recoveryfunctionsisnotfoundin any modeledoutputs.However,WestermanandSmith's(1988) analyticalmodelprovides someinteresting insightsto recovery processes. The modelis basedon the configuration of reservoirsproposedby Brachman,but differsin that the process, aswellasglobalreplenishment ofthefreetransmitter store (largely), determines the short-termadaptation time constant.There is no direct evidenceto supportthis detailof themodel;it wassimplyincorporated asa possible explanation. However,no othermodelhasaddressed the issueof whathappens to thetransmitterin thecleft. transmitter substance within the cell. Other available eviThe modelsproposedby Brachman-Payton and Ross dence(e.g., Furukawaand Matsuura, 1978) substantiates simulaterapidadaptation by relyingon smallvolumereserthis viewpoint. voirslyingcloseto thepresynaptic membrane. DuringstimIn general,the modelsevaluatedhereshowan adapta- ulation, thesereservoirs(Brachman'simmediatesitesand tion of responsethat can be explainedby the dynamicsof reservoirv4 of Ross)becomedepletedof their transmitter depletionand replenishment of transmittersubstance. The with a time constantmatchedto that of rapid adaptation. mechanismsby which the specificadaptationcomponents These immediatestoresare replenishedby larger local are modeled, however, deservefurther comment. stores.Short-termadaptationissimulatedby theslowerdeAdaptationin the single-reservoir modelproposedby pletionof the localstores. Schroederand Hall (1974) is producedby the depletionof transmitterquantafromthereservoir; theprocess continues B. Recovery until thelossof quantaisbalancedby the replacement quan- et al., 1965). The proposalof Oono and Sujaku (1974) assumeda single-reservoirmodel with transmitter-releaseproperties similar to those of the Schroeder and Hall model. However, more realisticadaptationpropertiesare producedby the TABLE IlL Summaryof theeightmodelsresponse properties. Number Number Accept of of arbitrary reservoirs parametersstimulus Model Two- Additive Physiological Low- component(to stimulusforwardmasking frequency adaptation increments)response phase locking Computationally efficient Schroeder and Hall 1 3 yes no no no no yes OonoandSujaku Allen 1 I 3 10 yes yes yes no no no no yes no no yes yes 6 4 15 9 yes yes yes yes yes no no no no no no yes 19 6 8 yes no yes yes yes yes yes yes no no no no yes no yes no yes yes Schwid and Geisler Ross Brachman- Payton Cooke Meddis 914 1024 3 3 J. Acoust.Sec.Am.,Vol.90, No.2, Pt.1, August1991 M.J. HewittandR. Meddis:Hair-cellmodelsevaluation 914 model parameterswere determineddirectly from experimental data (see Westerman and Smith, 1988, for details). Their analysissuggests that two-component recoverycanbe simulatedby the Brachmanconfiguration if the ratesof re- plenishment to thelocalandimmediate storesareapproximatelyequal.Thisimpliesthatreplenishment of transmitter is not preferentialto onestore. C. Additivity An importantconstraint onmostmodelsisthefailureto replicateadditivityphenomena. The mostcrucialassumption madeby modelswith additivepropertiesis the existence of manyreleasesitesspatiallyorderedby increasing threshold (cf. Furukawa and Matsuura, 1978). All other model configurations evaluatedin thisstudycouldnot mimicthe main additivity data. response becamesmallin comparisonwith the dc response. The attenuationof the ac responsewas ascribedto the capacitanceof the cell membrane.Later, Palmerand Russell (1986) establishedfrom direct measurementsof the membranetime constantand the ac/dc ratiosthat phaselocking did indeeddeclinedirectlyin proportionto thedeclinein the innerhair cells'ac/dc ratio,suggesting that the limitingfactor for phaselockingis thehair-celltimeconstant. E. Analytical models of hair cell-functioning Our studyhasconfineditselfto modelsthat wereimplemented by their authors on digital computers. However, someanalyticmodelsdeservesomecomment.For example, Eggermont's(1985) model, which features processes knownto operateat theneuromuscular junction,showsrealisticadaptationand recoveryproperties. Transmitteris releasedfrom an hypothesized hair cellat a rateproportional to the amount of transmitter available for release and a stim- D. Synchronization Anotherfailurecommonto manymodelsis the absence of reduced responsesynchronizationto high-frequency stimuli. Only the modelsproposedby Meddis, Allen, and Brachman-Paytonshowthe effect. In the Meddismodel,phaselockingis affectedby the rate at which transmitter can be clearedfrom the synaptic cleft. The ratesof transmitterlossand re-uptakefrom the cleftare independentof stimulusfrequency.When the stimulusfrequencyis highrelativeto theseratesthe ability of the systemto reflect the waveform'sfine structure is thus reduced. Allen used a low-pass filter in his model to reduce synchronyat high frequencies.The sourceof the filter was ascribed to the diffusion of calcium ions from the cell wall to thesynapticregionof thecellwheretransmittervesicles reside. The Brachmanmodeluseda low-passfilter to simulate the intrinsicresistance and capacitance of cell membranes. Payton (1988) examinedthe synchronyresponsesof the Brachmanmodelbeforeand after adaptationcomparingthe resultsto Johnson'ssynchronizationdata. The low-passfilter implemented produced results that showed excellent agreementwith the empiricallyderivedSI = 1 -f/6. However, the adaptationresponseimposedchangesthat were characteristicof high-passfiltering,which resultedin the lossof well-matchedindices.To regainappropriatesynchronization data, Payton introduceda second-orderlow-pass filter after the adaptationstageof the model. Excellentre- ulus (envelope)amplituderelatedpermeabilityfunction. Transmitterquantain the cleftbind with freereceptorsites on thepost-synaptic afferent-nerve fiber.After activationof sitesby quanta,thereceptorsitesareconvertedto an inactive or occupiedstate.Inactivation occursat a rate that depends on thenumberofreceptorsthat canbeoccupiedaswellason the numberthat are occupied.Enzymaticactionon the receptor-transmitter complexfreesreceptorsites.The receptor siteis only freeto combinewith transmitterquantaafter a periodof recovery.The numberof receptor-transmitter complexes represents thepost-synaptic excitatorypotential. Eggermont's modeldiffersfrom otherproposals in that it considerstwo adaptationmechanisms, the first locatedin the hair-cell/synapse and the secondin the auditorynerve. In brief, it has the following properties:(i) additive responses to stimulusincrements; (ii) short-termadaptation time constants independent of stimuluslevel;and (iii) forwardmaskingresponses similarto thosefoundin theempirical studiesof Harris and Dallos (1979) and Smith (1977). A differentapproachto modelingAN datawastakenby Westermanand Smith (1988). Usingexperimentaldata on gerbilAN responses, theywereableto derivemodelparameterssuitedto a three-stagesynapticmodelsuchas the one proposedby Brachman. To accurately model two-stage adaptationin accordance with empiricaldata,theypropose that both the volumeand membranepermeabilityof the reservoirsshould be stimuluslevel dependent.This differs fromall previoussynapticmodelswhereit isconsidered that only onefunctionis requiredto be leveldependent. sults were obtained with the time constant of the second- order filter setto 0.05 ms. Payton removedthe secondfilter from her final implementationdue to lack of physiological evidence for such a filter. It does, however, raise further questions aboutthe natureof the filteringrequiredto simulate synchronydata. A numberof factorshavebeenproposedto accountfor thelossof synchronization in AN discharges with increasing frequency. Anderson( 1973) presented a quantitative model basedonthe premiseof temporaljitter withinthe periphery. Russelland Sellick (1978) noted from their inner hair-cell recordings that phaselockingdisappeared whenthe cell'sac 915 J. Acoust. Soc. Am., Vol. 90, No. 2, Pt. 1, August 1991 F. Biological correlates Many of the modelsevaluatedin this studycould be describedas phenomenological. The modelshavebeendesignedto replicatecertainresponse propertiesof AN fibers and then the processing stepsare correlatedwith known physiological processes. Thisapproachhasresultedin models that are computationally convenientand alreadywell suitedto applicationssuchasspeechrecognitiondevicesthat usemodelsof the peripheralauditorysystemas input devices.However,the modelsdo not representthe biological processes accuratelyenoughto suggest crucialexperimental M.d. Hewitt and R. Meddis: Hair-cell models evaluation 915 designsto evaluatetheoriesof AN spikegeneration.Future hair-cell/AN modelswill needto consider,for example,the role of intracellularcalcium;potassium,and calcium-activated potassiumchannels;transmitterre-uptakeand postsynapticmechanisms.Even though suchmodelswould be complexand computationallyexpensive,they will providea meansof assessing the relativemeritsof any theoryof AN spikegeneration. Eventhough it maynothavebeentheintention oftheauthors whoproposedthe models,most,if not all, of the simulationsevaluatedherehave beenusedto providethe primaryinput to largersystems(e.g., Payton, 1988). Abbas,P. J. (1979). "Effectsof stimulusfrequencyon adaptationin auditory-nervefibers,"J. Acoust. Soe.Am. 65, 162-165. Allen, J. (1983). "A hair cell modelof neuralresponse,"in Proceedings of theIUTAM/ICA Symposium, editedby E. deBoerandM. A. Viergever (Martinus,The Hague,and Delft U. P., Delft, The Netherlands),pp. 193-202. G. Nonlinearity It is well known that the release of transmitter at the Anderson,D. J. (1973). "Quantitativemodel for the effectsof stimulus frequencyuponsynchronization of auditorydischarges," J. Acoust.Soc. Am. 54, 361-364. hair-cell/synapse is precededby a numberof nonlinearities. Brachman,M. L. (1980). "Dynamicresponsecharacteristics of singleauFor example,input-outputfunctionsfor basilarmembrane ditory-nervefibers," SpecialRep. ISR-S-19, Institute for SensoryResearch,SyracuseUniversity,Syracuse,NY 13210. vibrationshowsaturationof response at the bestfrequency Cooke,M.P. (1986). "A computermodelof peripheralauditoryprocessfor levelsas low as 30 dB SPL (Sellick et al., 1982;Yates et ing," SpeechCommun.$, 261-281. el., 1990). The nonlinearpreprocessing would havehad an Eggermont,J. J. (1973). "Analoguemodellingof cochlearadaptation," important role in shapingthe neural responses reportedin Kybernetic14, 117-126. the literature, and, will have to be accountedfor in future hair-cellmodelingefforts.All existingmodelsappearto assumethat the basilarmembraneresponse is linear.Nonlinear permeabilityfunctions,however,may concealeffects thatmightbebetterattributedto mechanicalprocesses prior to the hair-cell transduction. IV. CONCLUSIONS Eggermont,J. J. (1985). "Peripheralauditoryadaptationand fatigue:A model orientated review," Hear. Res. 18, 57-71. Furukawa,T., Hayashida,U., and Matsuura,S.S. (1978). "Quantalanalysisof the sizeof post-synapticpotentialsat synapses betweenhair cells and afferentnervefibersin goldfish,"J. Physiol.(Lond.) 276, 211-226. Furukawa,T., and Matsuura,S.S. (1978). "Adaptiverundownof excitatory post-synaptic potentialsat synapses betweenhair cellsand eighth nervein the goldfish,"J. Physiol. (Lond.) 276, 193-209. Furukawa, T., Mikuki, K., and Matsuura, S. (1982). "Quantal analysisof a decrementalresponse at hair cell-afferentfiber synapsein the goldfish sacculus,"J. Physiol.(Lond.)322, 181-195. We haveexaminedthe relativemeritsof eightcomputa- Gaumond,R. P., Kim, D. O., and Molnar, C. E. (1983). "ResponSe of tionalhair-cellmodelsby comparingtheoutputswith mamcochlearnervefibersto briefacousticstimuli:Role of discharge-history effects,"J. Acoust. Soe. Am. 74, 1392-1398. malian auditory-nervedata. The evaluationshowsthat the Geisler, C. D. (1981). "A modelfor discharge patternsof auditory-nerve Meddismodelshowsonly minordiscrepancies with the emfibers,"Brain Res.212, !98-201. piricaldata.The Meddismodelis alsooneof the mostcomGeisler,C. D. (1990). "Evidencefor expansive powerfunctions in thegenputationallyefficientand is well suitedto providethe prierationof the discharges of 'low- and medium-spontaneous' auditorymary input to larger systemssuch as speech-recognition nerve fiber," Hear. Res. 44, 1-12. Geisler, C. D., Le, S., and Schwid, H. (1979). "Further studies on the devicesand modelsof central-auditoryprocessing. Schroeder-Hall hair-cell model," J. Acoust. Soc. Am. 65, 985-990. One important constrainton the Meddis model is the Goodman, D. A., Smith, R. L., and Chamberlain, S.C. (1982). "Intracellufailure to replicatethe additivity effectfor onsetresponses. lar andextracellularresponses in the organof Corti of the gerbil,"Hear. Res. 7, 161-179. This problemcouldbe overcomeby introducingmultiplerelease sites in accordance with Furukawa and Matsuura's conceptualmodel.However,this would havea detrimental effecton the model'srelativelyfast run time. In thispaperwe havenot considered the response characteristics of low spontaneous-rate fibers,or, themodelsthat have been proposedto replicate their properties. Both Geisler (1981, 1990) and Meddiset el. (1990) have published,preliminaryfindingson the responsepropertiesof their low spontaneous-rate models.Work is currently in progressin our laboratoryto makea moredetailedstudyof the response propertiesof the modelsandwill bethe subject of a future paper. ACKNOWLEDGMENTS We are indebted to Jont Allen, Martin Cooke, Dan Geisler,and Karen Payton for generouslysupplyingprogramlistingsand/or modelparameters.We are gratefulto Bob Smith for helpfuldiscussions. We thank Trevor Shackleton, StrangeRoss, and an anonymousreviewerfor valuablecommentson an earlierversionof this paper. •Oneexception to thisisCooke's modelwhichrequires theinputof halfwave-rectified stimulusenvelopes. 916 J. Acoust.Soc. Am., Vol. 90, No. 2, Pt. 1, August1991 Gray, P. R. (1967). "Conditionalprobabilityanalysesof the spikeactivity of singleneurons,"Biophys.J. 7, 759-777. Harris,D. M., andDallos,P. (1979)."Forward masking ofauditory nerve fiberresponses," J. Neurophysiol.42, 1083-1107. Johnson,D. H. (1980). "The relationship betweenspikerate andsynchronyin responses ofauditory-nerve fibersto singletones,"J.Acoust.Soe. Am. 68, 1115-1122. Kiang, N. Y.-S., Watanabe,T., Thomas, E. C., and Clark, L. F. (1965). "Dischargepatternsof singlefibersin the cat's auditory nerve," Res. Monogr.No. 35, MITP, Cambridge,MA. Liberman,M. C. (1978). "Auditory-nerveresponse from catsraisedin a low-noisechamber," J. Acoust. Soc. Am. 63, 442-455. Meddis,R. (1986a). "Exploitingphysiologicalcodesin ASR," Proc. Inst. Acoust. 8, 581-588. Meddis, R. (1986b). "Simulation of mechanical to neural transduction in the auditoryreceptor,"J. Acoust.Soc.Am. 79, 702-711. Mealdis,R. (1988). "Simulation of auditory-neuraltransduction:Further studies,"J. Acoust. Soc. Am. 83, 1056-1063. Meddis,R., Hewitt,M. J.,andShackleton, T. M. (1990). "Implementation detailsof a computationalmodelof the inner hair-cell/auditory-nerve synapse,"J. Acoust.Soc.Am. 87, 1813-1816. Oono,Y., andSujaku,Y. (1974). "A probabilistic modelfor discharge patternsof auditorynervefibers,"Trans.Inst. Elect.Comm.Eng. (Japan) 57, 35-36. Oono, Y., and Sujaku,Y. (1975). "A modelfor automaticgain control observedin the firingof primaryauditoryneurons,"Trans. Inst. Elect. Comm. Eng. 58, 61-62. Palmer,A. R., and Russell,I. J. (1986). "Phase-locking in the cochlearnerveof the guineapig and its relationto the receptorpotentialof inner M.J. Hewitt and R. Meddis:Hair-cell models evaluation 916 hair cells," Hear. Res. 24, 1-15. Payton, K. L. (1988)."Vowelprocessing byamodel oftheauditory periphery: A comparison to eight-nerveresponses," J. Acoust.Soc.Am. 83, 145-162. Rose,J. E., Brugge,J. F., Anderson,D. J., andHind,J. E. (1967). "Phaselockingresponse tolow-frequency tonesin singleauditorynervefibersof thesquirrelmonkey,"J. Neurophysiol. 30, 769-793. Rose,J. E., Hind, J. E., Anderson,D. J., andBrugge,J. F. (1971). "Some effectsof stimulusintensityon response of auditorynervefibersin the squirrelmonkey,"J. Neurophysiol.34, 685-699. Ross,S. (1982). "A modelof the hair cell-primaryfiber complex,"J. Acoust. Soc. Am. 71,926-941. Russell,I. J., and Sellick, P.M. (1978). "Intracellular studiesof hair cellsin the mammaliancochlea,"J. Physiol.(Lond.) 264, 261-290. Schroeder,M. R., and Hall, J. L. (1974). "Model for mechanicalto neural transduction in the auditoryreceptor,"J. Acoust.Soc.Am. 55, 10551060. Smith,R. L., Brachman, M. L., andGoodman,D. A. (1983). "Intensity functionsand dynamicresponses from the cochleato the cochlearnu- cleus,"in Hearing--Physiological Bases andPsychophysics, editedby R. KlinkeandR. Hartmann(Springer-Verlag, NewYork), pp. 112-118. Smith,R. L., Brachman, M. L., andFrisina,R. D. (1985)."Sensitivity of auditorynervefiberstochanges in intensity: A dichotomy between decrementsand increments,"J. Acoust. Soc.Am. 78, 1310-1316. Smith,R. L., andZwislocki, J.J. (1975)."Short-term adaptation andincrementalresponses of singleauditory-nerve fibers,"Biol.Cybernet.17, 169-182. Weiss,T. F. (1966). "A modelof theperipheral auditorysystem," Kybernetic 3, 153-157. Westerman, L. A. (1985). "Adaptationandrecoveryof auditorynerveresponses," SpecialRep. ISR-S-24.Institutefor SensoryResearch, SyracuseUniversity,Syracuse,NY. Westerman, L. A., andSmith,R. L. (1984.)."Rapidandshort-term adaptation in auditorynerveresponses," Hear. Res.15, 249-260. Schwid,H. A., and Geisler,C. D. (1982). "Multiple reservoirmodelof neurotransmitterreleaseby cochlearinner hair cell," J. Acoust.Soc.Am. 72, 1435-1440. Westerman, L. A., and Smith, R. L. (1988). "A diffusionmodel of the tran- sientresponse of the cochlearinnerhair cell synapse," J. Acoust.Soc. Am. 83, 2266-2276. Sellick, P.M., Patuzzi, R., and Johnstone,B. M. (1982). "Measurement of Yates,G. K., andRobertson, D. (1980). "Very rapidadaptationin audi- basilarmembranemotion in the guineapig usingthe M•3ssbauer technique,"J. Acoust.Soc.Am. 72, 131-141. Sicbert,W. M. (1965). "Someimplicationsof the stochasticbehaviorof primary auditoryneurons,"Kybernetic2, 206-215. tory ganglioncell," in Psychophysical, PhysiologicalandBehavioralStudiesin Hearing,editedby G. vanden Brink and F. A. Bilsen(Delft U. P., Delft, The Netherlands). Smith,R. L. (1977). "Short-termadaptationin singleauditory-nerve fibers:somepost-stimulatory effects,"J. Neurophysiol. 40, 1098-1112. Smith,R. L. (1988). "Encodingofsoundintensitybyauditoryneurons," in Neurobiological Basisof Hearing,editedby G. M. Edelman,W. E. Gall, and W. M. Cowan(Wiley, New York), pp. 243-274. Smith,R. L., andBrachman,M. L. (1982). "Adaptationin auditorynerve fibers:A revisedmodel,"Biol. Cybern.44, 107-129. 917 J. Acoust. •oc. Am.,Vol.gO,No.2, Pt.1, August1991 Yates,G. K., Robertson, D., andJohnstone, B. M. (1985). "Very rapid adaptationin theguineapigauditorynerve,"Hear. Res.17, 1-12. Yates,G. K., Winter, I. M., and Robertson,D. (1990). "Basilarmembrane nonlinearitydeterminesauditory nerve rate-intensityfunctionsand cochleardynamicrange,"Hear. Res.45, 203-222. Zwislocki,J. J. (1973). "On intensitycharacteristics of sensory receptors: A generalized function,"Kybernetic12, 169-183. M.J. HewittandR. Meddis: Hair-•ellmodelsevaluation 917
© Copyright 2026 Paperzz