Name Section 3.5 – Continuity and End Behavior Describe the end

Name
Section 3.5 – Continuity and End Behavior
Describe the end behavior of each function.
y = x^3-2x^2+x-1

y




x














y = 4-x^3-2x^4

y




x














y = x^8-x^6+2x^4
y





x














y = -1/x^3+1

y



x











y = -3x^3

y



x















Determine the interval(s) for which the function is increasing and the interval(s) for which the
function is decreasing.
y = 1/2x^2
y




x













y = abs((x-1)^2-3)

y



x











y = x^3-3x+2

y



x















y




x













y = -(x+3)^2+1
 y




   

x


 




Determine whether each function is continuous at the given x-value.
1. y  x3  2; x  1
3.
2 x  1 if x  3
f ( x)  
 x  2 if x  3
x 2
; x  1
x 1
2.
y
4.
4 x  1 if x  2
f  x   2
 x  5 if x  2