Intramolecular Diels-Alder Reactions Rebecca Wilson MacMillan Group Meeting January 24, 2001 I. Introduction II. Simple Diastereoselectivity III. Transfer of Stereochemistry IV. Heteroatoms V. Removable Tethers VI. Chiral Auxiliaries VII. Enantioselective Catalysis Introduction: Intramolecular Diels Alder Type I vs. Type II Type II: Tether is attached at 3- position of diene. Type I: Tether is attached at 4- position of diene. R R + H cis fused trans fused Type II IMDA's always cyclize to syn product. References for Type II IMDA: bridged Bridged products rarely observed (tether must be >9 atoms). Shea, KJ Tetrahedron Lett. 1994, 35, 7311. Shea, KJ J. Am. Chem. Soc. 1988,110, 860. Fused products usually have 3 or 4 atom tethers Syn vs. Anti Transition State Representative Transition States for E- diene R R' R R R R' R' R' 7 H H anti TS trans fused products 4 syn TS cis fused products With E- diene, anti TS is sterically favored. Syn TS experiences nonbonding interactions between C4-C7. A combination of steric and electronic factors determine IMDA stereochemistry. Diastereoselectivity in the IMDA: Z - Dienes Representative Transition State for Z -Diene. R' R' R R anti TS cis fused product R R' H Regardless of the length or nature of the tether, Z - dienes always cyclize to give cis- fused products CO2Me AcO 230°C, 32 hr O Me O OAc 80 % yield OAc CO2Me O O + O Me CO2Me O Reaction time for corresponding E,E-diene is 0.5 h Due to steric congestion, Z - dienes often cyclize more slowly than E - dienes. Boeckman, RK J. Am. Chem. Soc. 1982, 104, 3216. Diastereoselectivity in the IMDA: Unactivated trienes 250°C, 1-5h + 95% 27% 73% 220°C, C6H12 + 7 h , 90% 55% 45% In both nonatriene and decatriene systems, there is a some preference for cis fused cycloadducts Product ratios can be enhanced or reversed through the use of substituents on the triene Concept of Asynchronous Transition State and Twist Asynchronicity Although the IMDA is concerted, bond formation is asynchronous in the transtion state Internal bond formation is more advanced in the TS anti TS, trans product External bond formation is more advanced in the TS syn TS, cis product R' R R R' 7 H H Effects of asynchronicity are less pronounced for decatriene systems anti TS 4 syn TS Houk, KN, Tetrahedron Lett., 1985, 26, 2269. Diastereoselectivity in the IMDA Terminally Activated Dienophiles- [4.3.0] Bicycles E- dienophiles CO2Me CO2Me O CO2Me + MeO anti TS trans 150°C, 24 hrs. EtAlCl2, 23°C, 36 hrs. endo cis 60 : 40 100 : 0 Trans product is favored sterically and electronically with terminally activated E-dienophiles. Z- dienophiles O CO2Me CO2Me OMe + anti TS exo CO2Me trans cis 150°C, 24 hrs. 65 : 35 EtAlCl2, 23°C, 36 hrs. 52 : 48 O syn TS endo MeO H H Trans product is favored sterically and cis product is favored electronically with terminally activated Z-dienophiles. Roush, WR J. Am. Chem. Soc. 1982, 104, 2269 Diastereoselectivity in the IMDA Terminally Activated Dienophiles- [4.4.0] Bicycles E- dienophiles CO2Me CO2Me + MeO2C CO2Me trans cis 150°C, 24 hrs. 50 : 50 EtAlCl2, 23°C, 36 hrs. 88 : 12 anti TS, endo trans Z- dienophiles CO2Me CO2Me CO2Me CO2Me + trans 150°C, 24 hrs. EtAlCl2, 23°C, 36 hrs. 55 : cis 45 8 : 92 syn TS, endo cis Lewis Acid- promoted terminally activated [6.4.0] IMDA's give endo product. Roush, W.R. J. Org. Chem., 1982, 47, 4825. Diastereoselectivity in the IMDA Internally Activated Dienophiles- [4.3.0] Bicycles 180°C, 51% + O O O 13 : 87 Unless other steric factors intervene, internally activated trienes give cis-fused products. Roush, W.R. J. Am. Chem. Soc. 1981, 103, 6696 Internally Activated Dienophiles- [4.4.0] Bicycles: Carbonyl Coplanarity Effect MeO O O O O 23°C, 60% + CO2Me CO2Me : 86 14 O MeO2C syn boat major product H syn chair O H MeO2C minor product Decatrienes with internal carbonyls adjacent to dienophile cyclize through boat TS to give cis-fused products. Zschiesche, R. Angew. Chem. Int. Ed. Engl. 1986, 25,1086. Diastereoselectivity in the IMDA Internally Substituted Dienes- [4.3.0] Bicycles 150°C, 3 h O O 92% O O O O + O O : O 0 O syn TS 100 cis O H O H O O Sakamura, S. J. Am. Chem. Soc. 1980,102, 6353. Internally Substituted Dienes- [4.4.0] Bicycles 160°C, + Me 95% Me 0 syn TS H Me trans anti TS O cis Me 100 : Me anti TS trans H Internally substituted dienes give trans fused products for steric reasons. Wilson, S.R. J. Am. Chem. Soc. 1978,100, 6289 Diastereoselectivity in the IMDA Substitution adjacent to diene- [4.4.0] Bicycles Me O MeO O OMe O 60% Me Me Me 150°C, 100h Me CO2Me Me O O anti TS trans products carbonyl coplanar with diene MeO H OMe OMe Me 150°C, 19h O Me Me Me CO2Me CO2Me Me MeO 71 % MeO OMe Me MeO syn TS cis product alleviate nonbonding interaction If oxygenation is desired adjacent to diene, alter product stereochemistry by choosing between ketal and ketone. Roush, WR J. Am. Chem. Soc. 1981, 103, 5200. Diastereoselectivity in the IMDA Disubstitution on tether- [4.3.0] Bicycles !"Disubstitution PhMe, 170 C MeO OMe OMe OMe 24 hr.; 98% OMe OMe anti TS 72:28 trans alleviate nonbonding interaction Nonbonding interactions in syn TS give predominantly trans product Jung, M.E. Tetrahedron Lett. 1981, 22, 3929. #"Disubstitution MeO2C O O CO2Me CO2Me O 155 C, 10 hr. O Me Me 85 % yield O O trans only Dialkyl Substitution on tether- [4.4.0] Bicycles Oppolzer W. Helv. Chim. Acta. 1981, 64, 2002. CO2Me CO2Me toluene, 100 C CO2Me CO2Me CO2Me CO2Me trans only Trost, B.M. J. Am. Chem. Soc.usually trans. Thorpe-Ingold effect: Dialkyl Substitution gives enhanced reaction rates. IMDA products 1985, 106, 7641. Relay of Stereochemistry in the IMDA Stereocenters adjacent to dienophile Me Me CO2Me PhMe, 240C CO2Me CO2Me Me Me OBn 11h, 67% OBn + 40% Me Me Me 10h, 80% OBn 30% 30% CO2Me PhMe, 220C Me cis fused products OBn + OBn CO2Me + cis fused products OBn O 80% OMeH 20% A1,3 - minimized anti TS Allylic strain dictates orientation of tether. Z- Dienophile experiences A1,3 strain---products obtained with good diastereocontrol Roush, WR J. Am Chem. Soc. 1981, 103, 6696. Stereocenters adjacent to diene Me Me O2N SO2Ph Me H 25h, 77% SO2Ph H + PhMe, 90C NO2 H NO2 NO2 PhO2S PhO2S 10% 90% A1,3 - minimized anti TS Oppolzer, W. Helv. Chim. Acta 1975, 587. Relay of Stereochemistry in the IMDA Stereocenters adjacent to diene: [4.4.0] R Me TMS OTBS CHO R OTBS 180°C, 24h OHC 89% Me CHO TMS TMS H A1,3-minimized anti TS TBSO only product Minimize A1,3 strain in both syn and anti transition states Boeckman, RK J. Org. Chem. 1985, 50, 3241. Nonallylic tether stereocenters: [4.4.0] OH Me H PhCH3, 190°C Me HO 69% Me Me Me OH 82:19 Me Me Taber, DF Tetrahedron Lett. 1982, 23, 2361. St Bu O Me Me O O O StBu LiClO4, 25°C, 18h 70% Me Me Me O StBu Zn O Me Place stereocenter equatorial in chair transition state when not in conjugation 90% de Me Dixon, D.J. Org. Lett. 2000,2, 3611. Heteroatoms in Diene Most substrates with diene heteroatoms cyclize according to the same rules of diastereoselectivity as all-carbon dienes. Enone Diene Me Me O 100 ºC O O Me 65 % Me Me Me O O O Me only product substituent in 3-position of diene promotes anti TS stereocenter placed equatorial in chair-like TS Jung, ME J. Org. Chem. 1982,47, 1084 Oxazole Diene- Total Synthesis of (-)-Stemoamide O O N MeO Me DEB 182ºC O MeO Me N O O O Retro N Me Me N [4+2] O MeO N N O O 53% yield Oxazoles are very reactive dienes. Retro [4+2]- eliminate MeCN and form furan Jacobi, P.A. J.Am.Chem.Soc. 2000, 122, 4295. Heteroatoms in Dienophile Substrates with dienophile heteroatoms often have different electronic properties than all-carbon dienophiles. This can have large effects on stereoselectivity of IMDA Acyl-amine IMDA AcO MeO2C CO2Me O O H N O 200°C MeO2C N O syn TS N one diastereomer O ester exo O opposite diastereomer as when all-carbon triene is used Weinreb, SM J. Am. Chem. Soc. 1981, 103, 7573 Imino IMDA Me Me H2O 70°C Me N N Me 48 hrs; 80% H one diastereomer N Me Me Grieco, P.A. J.Org.Chem. 1999, 64, 6041-8. Acylnitroso IMDA BnO N O O H2O/ DMF (50:1) 0°C; 90% OMOM BnO R O OBn O H N N H O 5.5:1 dr O OMOM Kibayashi, C. Org. Lett. 2000, 19, 2955-8. Heteroatoms in Tether- Esters Amines, ethers, and thioethers in the linker: Usually react to produce IMDA adducts with stereoselectivities similar to those seen in all-carbon tethers. Ester conjugated to dienophile: [4.4.0] Me O O 150°C ; 10 days O O i Pr 76% iPr Me Me Me Me O O H Me i Pr syn boat TS Carbonyl coplanarity effect: Ester reacts through boat TS to give [4.4.0] bicycles Jung, M.E. Org. Lett. 2000, 2, 1835-7. Kurth, M.J. Org. Lett. 2000, 2 , 1831-4. Ester conjugated to dienophile: [4.3.0] R OTBS R O R toluene, BHT, 250°C, 55 hr. O O O O H O TBSO OTBS Me anti TS Sterically favored trans product predominates White, J.D. Org. Lett. 2000, 2, 3313-6 Esters not in conjugation with dienophile: Often exhibit low reactivity due to poor overlap of nonbonding ethereal electrons with carbonyl in TS Heteroatoms in Tether- Amides Amide conjugated to diene: [4.4.0] Me O Me Ph 190°C Me Me H Ph 81% N Ph N Me O Me Ph O N Me O N Me trans only Carbonyl coplanarity: Amide reacts through chair TS when in conjugation with diene to give trans products Diastereoselectivity of IMDA for [4.4.0] Amides varies greatly, depending upon position/ orientation on chain. Handa, S. J. Chem. Soc. Chem. Commun. 1985, 1362. Amide conjugated to diene: [4.3.0] Amide conjugated to dienophile: [4.3.0] Ar Ar Ph Ph 80°C O 190°C H 80% NMe NMe 84% N O cis only 88:12 Sterically favored trans product predominates N MeO2C MeO2C H anti TS Ester and C7-H experience eclipsing intrxns in anti TS MeO2C N Gschwend, HW Angew. Chem. Int. Ed. Engl. 1975, 11, 294. Oppolzer, W. Helv. Chim. Acta. 1975,58, 590. Removable Tethers for IMDA: Vinyl Sulfonates O 13 kbar, CH2Cl2 O S O Me 25°C, 79% Me SO2 O H S anti- selective because of substitution on 3- position of diene. R anti TS 13 kbar, CH2Cl2 O S O O O H R' 3.6:1 (anti) O O SO2 25°C, 88% O H 2.3: 1 (syn) Me O O H O 13 kbar, CH2Cl2 S O S R O H O R' 25°C, 92% O S O O highly syn- selective because bridgehead methylenes experience nonbonding interactions in anti TS. syn TS Me Metz, P. Tetrahedron 2000, 56, 873-9. Metz, P. Tetrahedron Lett. 1996, 22, 3841-4. 54.6:1 (syn) Removal of sulfonate tether: TBAF 1. n-BuLi Me3Si O S O 2. I O Me SiMe3 65% O S 70% O O HO Me Me Removable Tethers for IMDA: Boron Alkenyl Boronate Tethers (C-B-O) Me Ph B(OiPr)2 1. Me Me OH Me3N(O), C6H6,80 C, 24 hrs; Ph PhMe; 5 mol% BHT, 190 B 3 hrs OiPr Ph H2O, 60 C, 0.5 hrs. O OH HO 90:10 (trans:cis) 83% yield When three-atom linker is used, trans fused product formed OH 1. Ph Ph B(OiPr)2 PhMe; 5 mol% BHT, 190 3 hrs B OiPr Me3N(O), C6H6,80 C, 24 hrs; Ph H2O, 60 C, 0.5 hrs. OH O OH When four-atom linker is used, cis fused product formed 80:20 (cis:trans) 85% yield Batey,R.A. J. Am. Chem. Soc. 1999, 121, 450-1. Removable Tethers for IMDA: Magnesium and Silicon Magnesium Tethers (C-Mg-O) OH O Me Mg 1. nBuLi (-78°C ) OH 2. 130 C, 3 hrs Me Me MgBr 60% yield 4:1 dr Me Me Me OH 1. nBuLi (-78°C ) Me 130 C, 2 hrs O OH 60% yield 9:1 dr Mg 2. Me MgBr Me Me Me Me Stereochemistry of Diels-Alder adducts dependent upon geometry of vinyl magnesium bromide. Stork, G. J. Am. Chem. Soc. 1995, 117, 6595-6. Silicon Tethers (C-Si-O) O EtO2C Me OH SiMe2 SiMe2Cl TBAF OH OH Et3N CO2Et 160 C; 3.5 hrs. Me H2O2 Tamao Oxidation 80% yield CO2Et Me trans only IMDA of silyl ethers gives trans fused products Stork, G. J. Am. Chem. Soc. 1992, 114, 7578-9. Removable Tethers for IMDA: Silicon N N HH (+)-aloperine Silicon Tethers (C-Si-N) First example of a diastereoselective nitrogen-silicon tethered IMDA CO2Me TfOMe2Si N H H Et3N, CH2Cl2 Me N Ts N N Si Me Si Me N Ts Me MeO2C Co2Me SiMe2F 1.HF-pyridine 2. mesitylene, reflux OH KF, KHCO3, H2O2 N N HH O H N Ts MeOH, THF, reflux (+)-aloperine N N HH O 63% yield (major) 5:1 dr Overman, L.E. J. Am. Chem. Soc. 1999, 121, 700-9 Internal Chiral Auxiliaries: Chiral Amides Phenylglycinol-Derived Carboxylic Amides OH Ph O Me N Me 1. BuMgBr 2. ! 3. H+ Me Me OH O N OH O N O O Ph Ph O Me Me 88% 12% Rationale for observed stereoinduction: Magnesium chelates alcohol and amide carbonyl O M O Me N Me Furan approaches top face of dienophile to avoid steric interactions with phenyl O Removal of Chiral Auxiliary OH O N Me Me O Na, NH3 O HN Ph Me Me Me Me 1. NaNO2/AcOH 2. KOH/EtOH EtO2C 3. H+ HO O O Mukaiyama, T. Chem. Lett. 1981, 29-32. External Chiral Auxiliaries: "-Hydroxy Ketones n O O O OH ZnCl2, CH2Cl2 Xc Xc 0-23 C, 24 hrs. n=1 70% yield endo only 94% de n=2 82% yield endo only 92% de Stereochemical Rationale: Zinc chelates hydroxy ketones Tether wraps around to bottom face of dienophile to avoid steric interaction with cyclohexyl. R O O Zn Endo TS yields trans fused product Drawback of hydroxyketone is the harsh conditions required to remove the auxiliary. O O NaIO4 OH OH Masamune, S. J. Org. Chem.. 1983, 48, 1137-9. Roush, Comprehensive Organic Synthesis; Trost, B.M, Fleming, I.,Eds.; Pergamon Press: Oxford,1991; v.5, Chapter 4.4. External Chiral Auxiliaries: Acyl Sultams N-Acyl sultam gives trans-fused (endo) adducts with excellent diastereoselectivity and good yields. Me Me O O 1. Cl NH SO2 Me n Me Xc O 2. EtAlCl2, -20C, 4hrs. n N SO2 n O O n=1 75% yield endo only 95% de Xc n=2 53% yield 97:3 endo: exo 91% de Xc Stereochemical Rationale: Me Me Aluminum chelates sulfonyl and carbonyl. R N O S Tether wraps around to bottom face of dienophile to avoid steric interaction with camphor. O O Endo TS yields fused product Al Oppolzer, W. Tetrahedron Lett. 1985, 26, 5437-40. External Chiral Auxiliaries: Oxazolidinones Trienes with oxazolidinone auxiliary exhibit high reactivity and endo:exo selectivity O O Xc O Xc O N Me2AlCl (1.4 eq.) O >100:1 endo: exo 73 % yield 90% de CH2Cl2, -30°C, 5h. : 95 Ph O O O 5 Xc O Xc Me2AlCl (1.4 eq.) N >30:1 endo: exo 88 % yield 94% de O CH2Cl2, -30°C, 5h. Ph : 97 3 Rationale for observed stereoinduction: Aluminum chelates imide carbonyls. Al O O N O Pi- stacking interactions believed to exist with phenyl ring and dienophile. Diene approaches from top face to avoid steric interactions with phenyl Endo transition state yields trans fused products Evans, D.A., Tetrahedron Lett. 1984, 25, 4071-4. Evans, D.A., J. Am. Chem. Soc. 1988, 110, 1238-56. Evans, D.A., J. Am. Chem. Soc. 1984, 106, 4261-3. Enantioselective Catalysis: Ti-TADDOL Ph Narasaka's Titanium TADDOL Catalyst O n N 30 mol%cat., 4A mol. sieves O Ph O O Me O O Ti O O Ph Ph X Ph Catalyst CH2Cl2, 25C, 256 hrs n O O 87 % yield endo only 87% ee X X no reaction O S O S O N n X 10 mol%cat., 4A mol. sieves O CH2Cl2, 25C, 68-120 hrs n S S O O X 62 % yield endo only 95% ee X S S S 64 % yield endo only 86% ee S Moderate reactivity: Geminal dialkyl substituents required for [6.4.0] bicycles. Narasaka, K. Chem. Lett.. 1989, 62, 1947-50 Narasaka, K. Tetrahedron: Asymm 1991, 12, 1305-18. Enantioselective Catalysis: Bis(oxazoline) O Evans' C2- symmetric Cu(II) tert-butylbis(oxazoline) catalyst: N [4.3.0] systems readily synthesized, but unactivated [4.4.0] substrates are unreactive. O n R O N R 2+ 2SbF6 O Cu N O 5-10 mol% cat. O X CH2Cl2 Catalyst n Ph O O X 86 % yield endo only 92% ee (5 hrs) Ph X O O 89 % yield endo only 86% ee (24 hrs) X X 97% yield 84:16 dr 97% ee (24 hrs) no reaction Application towards the total synthesis of (-)-Isopulo'upone TBSO O X O Me O O 5 mol% cat., 25 CTBSO N N CH2Cl2, 24 hrs 81% yield endo only 96% ee (-)-Isopulo'upone Evans, D.A. J. Org. Chem. 1997, 62, 786-7. Application of Asymmetric IMDA: Evans Oxazolidinone O Total synthesis of (-)-Stenine Me O S S S Me S O 1.3 eq. Me2AlCl -20ºC, 72h, 85% O N Me O O MPMO (-)-stenine O N O N endo only 10:1 dr Ph Me MPMO Ph Morimoto, Y. Ang. Chem. Int. Ed. Engl. 1996, 35, 904. Total synthesis of (+)-Lepicidin A OH OTIPS O OTIPS Et OTES Et Me H O O OTES O O Et 4.6 eq. Me2AlCl N O Bn O Me 0ºC, 74% endo only 10:1 dr O O O H Me H O H Xc H OH (+)-lepidicin aglycone OTBS H OTBS Able to overcome inherent stereochemical bias for opposite endo stereosisomer Evans, D.A.. J. Am. Chem. Soc. 1993, 115, 4497 Enantioselective Catalysis: Chiral Acyloxyborane (CAB) Me O 84% yield 99:1 dr (endo) 92% ee First Generation Catalyst requires !-Substituent on dienophile O O OMe H CH2Cl2, -40°C Me O O 10 mol% cat.I H CO2H O OMe O Yamamoto's First Generation CAB Catalyst: B H Catalyst I Yamamoto, H. Tetrahedron Lett. 1989, 30, 7231-2. O O CF3 30 mol% cat. II H CH2Cl2, -40°C H 95% yield 99:1 dr (endo) 80% ee O O Second Generation Catalyst allows cycloaddition of non-substituted dienophiles. B CF3 HO Proposed Mode of Stereoinduction: F3C CF3 Catalyst II Aldehyde coordinates with boron. O B O O O Dienophile rests over phenyl, forcing chain to wrap around to top face. Anti TS Trans Product Yamamoto, H. J. Am. Chem. Soc. 1996, 118 , 3049-50. Enantioselective Catalysis in the IMDA: MacMillan Imidazolidinone Catalyst R CHO R CHO n O Me 20 mol % cat. N 4-25°C; 5% H2O N H n X Stereochemical Rationale: catalyst O Me N Iminium ion forms cis to benzyl group. N R Tether wraps around to top face of dienophile to avoid steric interactions with pheny. Reaction is endo -selective. R Ph CHO CHO n n Challenges: Diels-Alder adducts can epimerize under reaction conditions. Less reactive substrates can polymerize or undergo amine-catalyzed intermolecular Diels-Alder/aromatization sequence. CHO When R=Ph, the olefin can isomerize into conjugation with phenyl. Enantioselective Catalysis in the IMDA: MacMillan Imidazolidinone Catalyst 20 mol% cat. II-TFA Ph CHO CHO Ph 94% ee 16:1 dr 90% yield -10°C, nBuOH; 5% H2O O Me N CHO Ph O 20 mol% cat. I-HClO4 CHO Ph O -20°C, nBuOH; 5% H2O OHC Ph 30 mol % cat. I-HCl CHO Ph N H HX catalyst I Me 95% ee 20:1 dr 90% conv. 25°C, CH3CN; 2% H2O Me 94% ee >100:1 dr 79% yield CHO Me 20 mol % cat.I-HClO4 CHO Me 89% ee 20:1 dr 50-60% conv. -20°C, nBuOH; 5% H2O CHO 20 mol % cat.I-HClO4 CHO CHO Ph CHO 20 mol% cat. I-HClO4 4°C, nBuOH; 5% H2O Ph N N H HX 93% ee 7:1 dr 50-60% conv. 4°C, CH3CN; 5% H2O O Me 98% ee 100:1 dr 50-60% conv. catalyst II
© Copyright 2026 Paperzz