Math 1152 Assignment 1 (Solutions) Math 1152 Assignment 1 (Solutions) (Due date: Jan. 20, 2017) Page 272: 6. The general antiderivative of fx 2x 3 x 2 5x is Fx 1 x 4 1 x 3 5 x 2 C. 2 3 2 10. The general antiderivative of fx x 2 22 33 x x is Fx 2x 3 2 1 x 3 C. 3 2x 18. The general antiderivative of fx 1 1 3x is Fx 1 ln x 1 C, 3 3 or Fx 1 ln|3x 1| C. 3 20. The general antiderivative of fx e x/2 e x/2 is 1 1 Fx 2e 2 x 2e 2 x C. 26. The general antiderivative of fx cos3x is Fx 1 sin3x C. 3 30. The general antiderivative of fx 3 sin x 4 cos x 3 4 is Page 1 of 4 Math 1152 Assignment 1 (Solutions) 9 cos x 16 sin x C. Fx 3 4 42. The general antiderivative of fx sin 2 a 2 x 1 is Fx 1 x 1 2 sin 2 2a 2 x 2 C. 2 4a 50. The general solution for differential equation dy e 4x , x 0 dx is y 1 e 4x C. 4 60. First we find the general solution for differential equation 2 dy x , x0 3 dx is y 1 x 3 C. 9 Then we use the initial condition: y 2 when x 0 and have C 2. Therefore the solution is y 1 x 3 2. 9 70. First we find the general solution for differential equation dT cost, t 0 dt is 1 sint C. T Then we use the initial condition: T0 3 and have C 3. Therefore the solution is 1 sint 3. Tt Page 291 8. Write the sum in expanded form 3 k1 k2 12 22 32 1 4 9 . 5 2 10 k 1 12 1 22 1 32 1 2 Page 2 of 4 Math 1152 Assignment 1 (Solutions) 10. Write the sum in expanded form 4 kx 0x 1x 2x 3x 4x k0 1x 2x 3x 4x. 16. Write sum in sigma notation 4 1 1 1 1 1 2 3 4 1 . k k1 20. Write sum in sigma notation n 1 1 1 1 1 2 4 2n k0 1 . 2k n 28. Use the algebraic rules and the formula for k1 k 2 , we have n n k1 k1 n k 2k 2 k 2 2 2 n k 22 2 k1 k1 nn 12n 1 4n 6 30. Expand the summation notation, we have 10 1 k 1 0 1 1 1 2 1 3 1 4 1 5 k0 1 6 1 7 1 8 1 9 1 10 1 1 1 1 1 1 1 1 1 1 1 1. 34. For n 5, we have the partition P on interval 1, 1 : 1 1 x x i 0. 4 5 x 0 1, x 1 1 0. 4 0. 6, x 2 0. 6 0. 4 0. 2, x 3 0. 2 0. 4 0. 2, x 4 0. 2 0. 4 0. 6, x 5 1. Use right endpoint we have Page 3 of 4 Math 1152 Assignment 1 (Solutions) c 1 0. 6 1, 0. 6, c 2 0. 2 0. 6, 0. 2, c 3 0. 2 0. 2, 0. 2, c 4 0. 6 0. 2, 0. 6, c 5 1 0. 6, 1. We have the Riemann sum 5 5 k1 k1 fc k x k 0. 4 2 c 2k 0. 42 0. 6 2 2 0. 2 2 2 0. 2 2 2 0. 6 2 2 1 2 0. 4 11. 8 4. 72. Therefore we have 1 1 2 x 2 dx 4. 72 44. If P is a partition of 0, , then n P0 lim k1 1 x ck 1 k 0 1 dx. x1 Page 4 of 4
© Copyright 2026 Paperzz