CHAPTER 21 Preparation of Nitriles Reactions of Nitriles O R Br R C R C N N OH R O R R C N NH2 O R C N R R H H R C N R Solutions 21.1. a) IUPAC name = pentanedioic acid Common name = glutaric acid b) IUPAC name = butanoic acid Common name = butyric acid c) IUPAC name = benzene carboxylic acid Common name = benzoic acid d) IUPAC name = butanedioic acid Common name = succinic acid e) IUPAC name = ethanoic acid Common name = acetic acid f) IUPAC name = methanoic acid Common name = formic acid 21.2. O Cl OH a) b) O Cl O OH c) HO O OH NH2 517 518 CHAPTER 21 21.3. a) 3,3,4,4-tetramethylhexanoic acid b) 2-propylpentanoic acid c) (S)-2-amino-3-phenylpropanoic acid 21.4. The compound below is more acidic because its conjugate base is resonance stabilized. The conjugate base of the other compound is not resonance stabilized. O OH H3C 21.5. The conjugate base is resonance stabilized, with the negative charge spread over two oxygen atoms, just like with carboxylic acids: O O O O 21.6. meta-Hydroxyacetophenone should be less acidic than para-hydroxyacetophenone, because in the conjugate base of the former, the negative charge is spread over only one oxygen atoms (and three carbon atoms). In contrast, the conjugate base of parahydroxyacetophenone has the negative charge spread over two oxygen atoms (more stable). 21.7. O H O O H + K OH H formic acid O H2O + K potassium formate 21.8. The conjugate base predominates under these conditions: [conjugate base] [acid] = 10 (pH - pKa) = 10 (5.76 - 4.76) 1 = 10 = 10 21.9. a) 2,3-dichlorobutyric acid is the most acidic and 3,4-dimethylbutyric acid is the least acidic. b) 2,2-dibromopropionic acid is the most acidic and 3-bromopropionic acid is the least acidic. CHAPTER 21 21.10. a) Na2Cr2O7, H2SO4, H2O b) Na2Cr2O7, H2SO4, H2O c) CH3Cl, AlCl3 followed by Na2Cr2O7, H2SO4, H2O d) NaCN, followed by H3O+, heat or Mg, followed by CO2, followed by H3O+ e) Na2Cr2O7, H2SO4, H2O f) Mg, followed by CO2, followed by H3O+ 21.11. 1) Mg 2) CO2 Br OH 3) H3O+ 4) LAH 5) H2O a) 1) Na2Cr2O7, H2SO4, H2O 2) LAH 3) H2O OH 1) NBS, heat 2) NaOH b) 21.12. a) propionic anhydride b) N,N-diphenyl-propionamide c) dimethylsuccinate d) N-ethyl-N-methylcyclobutanecarboxamide e) butyronitrile f) propyl butyrate g) succinic anhydride h) methyl benzoate i) phenyl acetate 21.13. O O O a) O O O O O b) c) N H d) Cl 519 520 CHAPTER 21 21.14. a) H N O O N Cl H Cl - Cl N H O O N N H b) O O H O Me Cl O H O Cl Me H O Me - Cl H O Me O OMe c) O O O O O O - Cl O O Cl Cl d) O NH3 O H - Cl O Cl H N N H Cl O H H H NH3 O NH2 521 CHAPTER 21 e) H H O O O H NH2 H OH H O H NH2 H N H H OH H O H O H OH H N H H O NH4 + O NH3 OH H O H OH H - NH3 OH NH3 OH f) O O O OH O OH OMe OMe H + MeO O + O MeOH g) H H O Me O O OH H OH Me O H OH OH Me O H OH Me O H OH Me O H O Me O H OMe H OH O OMe Me H O H O O H Me 522 CHAPTER 21 21.15. O O Cl OH O Cl - O H Cl O H OH O O 21.16. H H O O O H OH HO HO H OH OH HO O H H O H O O H H O OH O H - H2O O H O O H O H H HO H OH O 21.17. O H N H H O Me H O Me H N H O Me O HO H H N H O Me HO OMe H N H O H O H2N H H O Me OMe H2N MeO O OMe HO H N H Me CHAPTER 21 21.18. O 1) xs LAH Cl a) O OH 2) H2O OH 1) xs PhMgBr Cl b) Ph Ph 2) H2O 1) LiAl(OR)3H O OH 2) H2O Cl 3) EtMgBr 4) H2O c) OH O 1) Et2CuLi Cl d) 2) LAH 3) H2O O O OH Cl O e) O O N H Cl N f) 21.19. OH O 1) Na2Cr2O7, H2SO4, H2O 2) SOCl2 Cl 523 524 CHAPTER 21 21.20. O H H C C H H H Cl Cl O O H H H C C H H H O H O H H H H O H H OH O H H O H 21.21. O O O O OH O O HO + a) O O H N O O N HO O + b) O OH O O O O c) H N O O O O N O + d) O + OH OH 525 CHAPTER 21 21.22. 1) NaOH 2) CH3 O OH O + OEt [H ], EtOH, -H2O 1) SOCl2 2) EtOH 21.23. a) OH 1) NaOH 2) CH3 O Na2Cr2O7 [H+], EtOH, -H2O OH O OEt H2SO4, H2O 1) SOCl2 2) EtOH b) 1) NaOH 2) CH3 O Na2Cr2O7 [H+], EtOH, -H2O OH H2SO4, H2O 1) SOCl2 2) EtOH 21.24. O 1) xs LAH OMe a) O OH + MeOH OH + MeOH 1) xs EtMgBr OMe b) 2) H2O 2) H2O O O c) 1) xs LAH 2) H2O HO OH O OEt 526 CHAPTER 21 O O H3O OEt + OH + EtOH d) O O 1) NaOH OH O 2) Et e) O 1) xs EtMgBr O OH 2) H2O f) OH 21.25. H H O H O O O H H H O H O O HO H O H O H OH HO O H O HO H H O H OH O HO OH 21.26. O 1) excess LAH NH2 a) O Cl NH2 2) H2O O excess NH3 NH2 + NH4Cl b) O O NH2 c) H3O + heat OH + NH4 HO OH H O H O H 527 CHAPTER 21 21.27. O Cl 1) excess NH3 NH2 2) LAH 3) H2O 21.28. a) H O H H O H O N H H H N H O H O HO H H H O H N HO OH H N H O H2N H H O H OH H2N O HO OH b) O H N OH O O H N H O H H O H2N OH H N OH O O H2N O H H O OH H N H H 528 CHAPTER 21 21.29. CN 1) xs LAH NH2 2) H2O a) Br 1) NaCN O 2) MeMgBr 3) H3O b) + O CN c) OH 1) EtMgBr 1) LAH 2) H2O 2) H2O O CN H3O + OH d) 21.30. a) O Cl 1) excess NH3 CN 2) SOCl2 b) 1) NaCN 2) H3O + OH Br O 1) Mg 2) CO2 + 3) H3O CHAPTER 21 21.31. H H O H O H H C N N C N H H O H H H O H H N H H N O H H H O OH H O H N H O 21.32. O OMe a) O Cl 2) SOCl2 1) SOCl2 OH 2) excess NH3 NH2 3) LAH 4) H2O b) O c) O 1) H3O+ O O 1) H2O 2) SOCl2 O Cl H OH H H H N 529 530 CHAPTER 21 1) H3O+ O 2) SOCl2 OEt NH2 3) excess NH3 4) LAH 5) H2O d) O 1) SOCl2 3) SOCl2 e) O f) CN 2) excess NH3 OH H 2O O O O OH O O 1) H2O Cl OEt + 2) [H ], EtOH g) O 1) H3O NH2 + O 2) SOCl2 H 3) LiAl(OR)3H 4) H2O h) CN 1) H3O + OH 2) excess LAH 3) H2O i) 1) Na2Cr2O7, H2SO4, H2O OH j) 2) SOCl2 3) excess NH3 CN 4) SOCl2 21.33. Four steps: 1) oxidize to a carboxylic acid, 2) convert into an acid halide, 3) convert into an amide, and 4) reduce to give an amine. 531 CHAPTER 21 21.34. 1) BH3 THF 2) H2O2, NaOH O Cl 3) Na2Cr2O7, H2SO4, H2O 4) SOCl2 21.35. OH O 1) SOCl2 OH 2) Et2CuLi 3) LAH 4) H2O a) 1) Mg H Br 2) O O H O 3) H2O O 4) Cl b) CN O 1) H3O+ 2) SOCl2 O 3) excess MeMgBr O 4) Cl c) 21.36. O SOCl2 NH2 C N 1) EtMgBr 2) H3O + O [H+] (CH3)2NH -H2O N 532 CHAPTER 21 21.37. a) 1) SOCl2 2) LiAl(OR)3H 3) H2O H3O+ O CH3CN 1) xs LAH OH PBr3 2) H2O OH Br 1) Mg O 2) H 3) H2O OH b) H3O+ O CH3CN 1) xs LAH PBr3 2) H2O OH OH Br 1) Mg Mg 2) CO2 3) H3O+ 1) EtMgBr OH 1) SOCl2 H 2) H2O OH 2) LiAl(OR)3H O O c) 1) SOCl2 2) LiAl(OR)3H 3) H2O H3O+ CH3CN O 1) xs LAH OH PBr3 2) H2O OH 1) SOCl2 2) xs EtMgBr 3) H2O Br 1) Mg O 2) Mg H 3) H2O OH 1) xs EtMgBr 2) H2O O Na2Cr2O7 H2SO4, H2O OH 533 CHAPTER 21 d) H3O+ O CH3CN 1) xs LAH PBr3 2) H2O OH OH Br 1) Mg Mg 2) CO2 3) H3O+ 1) xs EtMgBr 2) H2O OH SOCl2 Cl O OH O 21.38. The signal at 1740 cm-1 indicates that the carbonyl group is not conjugated with the aromatic ring (it would be at a lower wavenumber if it was conjugated), O O OH 1) LAH OH 2) H2O 21.39. a) Increasing acidity COOH O COOH COOH Br H3C O 2N O b) Increasing acidity Br O Br OH O COOH COOH O OH OH Br 534 CHAPTER 21 21.40. a) The second carboxylic acid moiety is electron withdrawing, and stabilizes the conjugate base that is formed when the first proton is removed. b) The carboxylate ion is electron rich and it destabilizes the conjugate base that is formed when the second proton is removed. O O O O . c) d) The number of methylene groups (CH2) separating the carboxylic acid moieties is greater in succinic acid than in malonic acid. Therefore, the inductive effects are not as strong. 21.41. a) cyclopentanecarboxylic acid b) cyclopentanecarboxamide c) benzoyl chloride d) ethyl acetate e) hexanoic acid f) pentanoyl chloride g) hexanamide 21.42. a) acetic anhydride b) benzoic acid c) formic acid d) oxalic acid 21.43. chirality centers O O OH O OH OH hexanoic acid 3-methylpentanoic acid 2-methylpentanoic acid O O OH 4-methylpentanoic acid O OH OH 2,2-dimethylbutanoic acid O 2,3-dimethylbutanoic acid O OH OH 3,3-dimethylbutanoic acid 2-ethylbutanoic acid CHAPTER 21 535 21.44. O O Cl Cl butanoyl chloride 2-methylpropanoyl chloride 21.45. O 1) excess LAH OH a) 2) H2O OH 1) excess LAH O 2) H2O OH b) 3) TsCl, py 4) t-BuOK 1) excess LAH O 2) H2O OH c) OH 3) PBr3 4) NaCN 5) H3O+ O 21.46. O 1) BH3 THF 2) H2O2, NaOH 3) Na2Cr2O7, H2SO4, H2O a) Br b) OH 1) NaCN 2) H3O+ O OH 21.47. As discussed in Chapter 19, the methoxy group is electron donating via resonance, but electron withdrawing via induction. The resonance effect is stronger, but only occurs when the methoxy group is in an ortho or para position. 536 CHAPTER 21 21.48. O a) N H b) OH O O c) O OH d) O O O e) O NH2 f) O g) OH h) 21.49. O O Cl a) ONa OH b) c) a) 1) xs LAH OH 2) H2O O d) 21.50. O O OH CHAPTER 21 O O 1) SOCl2 OH b) O SOCl2 O 1) H3O OMe d) N C NH2 c) N 2) (CH3)2NH, pyridine + O O O 2) CH3COCl, pyridine O O DIBAH OMe H e) O OH O O O O + HO O f) O O H N N Cl pyridine g) O 1) xs LAH O HO OH 2) H2O h) O O N H3O+ heat N OH H i) O O j) O H3O + OH OH 537 538 CHAPTER 21 21.51. O + HO OH a) O + OH b) HO c) CH3CH2CO2H + (CH3)3COH 21.52. OH Na2Cr2O7 H2SO4, H2O O [H+] O OEt EtOH OH DIBAH SOCl2 O 1) LiAl(OR)3H O H 2) H2O Cl xs NH3 O NH2 21.53. a) NaOH, followed by Na2Cr2O7, H2SO4, H2O b) NaCN followed by H3O+ c) NaOH, followed by Na2Cr2O7, H2SO4, H2O, followed by SOCl2 d) NaCN, followed by H3O+, followed by SOCl2, followed by xs NH3 e) NaOH, followed by Na2Cr2O7, H2SO4, H2O, followed by SOCl2, followed by xs NH3 f) NaCN followed by H3O+, followed by [H+], EtOH (with removal of water) CHAPTER 21 21.54. OH 1) Br2, AlBr3 2) Mg O 3) 4) H2O a) 1) Br2, AlBr3 O 2) Mg N 3) CO2 4) H3O+ 5) SOCl2 6) excess (CH3)2NH b) 1) (CH3)2CHCl, AlCl3 OH 2) NBS, heat O 3) Mg 4) CO2 5) H3O c) + H N 1) Cl2, AlCl3 2) NaNH2, NH3 3) O O , pyridine Cl d) 21.55. O Br 1) Mg 2) CO2 a) 3) Et O 539 540 CHAPTER 21 OH O 1) Na2Cr2O7, H2SO4, H2O 2) SOCl2 3) Et2CuLi b) O Br 1) Mg 2) CO2 3) H3O+ O 1) LAH N H 2) H2O O 3) N Cl 4) SOCl2 5) excess CH3NH2 c) Br 1) NaCN O 2) EtMgBr d) 3) H3O+ 21.56. A methoxy group is electron donating, thereby decreasing the electrophilicity of the ester moiety. A nitro group is electron withdrawing, thereby increasing the electrophilicity of the ester group. 21.57. 541 CHAPTER 21 21.58. 1) Mg Br O 2) CO2 3) H3O N + 4) SOCl2 5) excess Et2NH 21.59. O O OH 1) excess MeMgBr + 2) H3O+ O OH 21.60. H H O H O O OH H OH H O H OH OH H O H OH H O H OH H O H O H O H OH H H O H OH O OH H H H O H O H O H H O O H O H O O H H 542 CHAPTER 21 21.61. a) O Cl O H O R Cl Cl H O - Cl Cl O Cl R O R H H O R - Cl O H O H OR O R OR O Cl R Cl H O R O OR RO O O O b) OH Ph c) Ph Ph 21.62. N N N a) S OH CF3 HO b) O H O R O decanoic acid OR CHAPTER 21 21.63. 1) Br2, AlBr3 2) Mg O O 3) H H O O 4) Cl 21.64. H N HO NH2 O H HO O OH O phenylalanine aspartic acid 21.65. a) O Ph O Cl H O Ph Ph O H - Cl O Cl Ph Ph O Ph H N O Ph b) O O O OH OH OH O H O H O H H O HO O O O O OH O Ph 543 544 CHAPTER 21 c) O O O OH O H OH O O O H O H H OH OH OH O O O d) O H2N NH2 Cl Cl O H O Cl N N H H H Cl O O - Cl N H H N H H Cl O N O O O H N N H H N O N N O H H H N N H O Cl H O N H Cl O H N H CHAPTER 21 e) H H C C H H H O O O O O O H H H C C H H H O O H HO O O H O H HO HO 21.66. The three chlorine atoms withdraw electron density via induction. This effect renders the carbonyl group more electrophilic. 21.67. OH H3O+ O O + CO2 heat O OH 21.68 NH2 H N O S N O a) b) Ampicillin O OH 545 546 CHAPTER 21 21.69. OH HO O (glycolic acid) hydroxyacetic acid 21.70. O O O O O O O O 21.71. O Cl O + Cl H2N NH2 21.72. O O HO HO Cl HO Cl O Cl H O HO Cl O O O Cl O O Polymer HO Cl O H Cl O CHAPTER 21 21.73. O 1) SOCl2 O O 2) Et2CuLi OH 3) HOCH2CH2OH, + [H ], -H2O a) 1) H3O+ O 2) SOCl2 3) LiAl(OR)3H NH2 N 4) H2O 5) [H+], CH3NH2, -H2O b) 1) MCPBA O 2) H3O O + 3) SOCl2 N 4) (CH3)2NH c) O 1) H3O OMe + S S H 2) SOCl2 3) LiAl(OR)3H + 4) HSCH2CH2SH, [H ], -H2O d) 1) SOCl2 COOH e) 2) LiAl(OR)3H O 3) HOCH2CH2OH, + [H ], -H2O O OH 1) Na2Cr2O7, H2SO4, H2O OH 3) H3O f) O O g) O 2) MCPBA + 1) excess LAH O 2) H2O O 3) O + [H ], -H2O 547 548 CHAPTER 21 21.74. O OH Cl O OH O 1) Cl2, AlCl3 1) NaOH 2) HNO3, H2SO4 2) HCl, Zn NH2 NO2 H N O 21.75. H H O O O O H H O O O OH OH O O OH OH H H H O H H O OH O H O H - H OH O O OH H O O H H O O H OH O O OH H OH O H H O OH O HO H OH OH O HO HO OH H O H OH HO H H O O HO H O HO H O O HO H OH H O O H O H H HO OH O HO O H 549 CHAPTER 21 21.76. O O xs NH3 Cl NH2 Compound A 21.77. O O O O 21.78. An IR spectrum of butyric acid should have a broad signal between 2500 cm-1 and 3600 cm-1. An IR spectrum of ethyl acetate will not have this signal. 21.79. The 1H NMR spectrum of para-chlorobenzaldehyde should have a signal at approximately 10 ppm corresponding to the aldehydic proton. The 1H NMR spectrum of benzoyl chloride should not have a signal near 10 ppm. 21.80. O MeO OH 21.81. If the oxygen atom of the OH group in the starting material is an isotopic label, then we would expect the label to be incorporated into the ring of the product: O H O S O H O O O HO O HO O O HO O OH O O S O H O O R OH R HO O R O H O S O H O H O R O HO O R R O H O R H H O O O S O H O HO O O R 550 CHAPTER 21 21.82. The lone pair of the nitrogen atom in this case is participating in resonance and is less available to donate electron density to the carbonyl group. As a result, the carbonyl group is more electrophilic than the carbonyl group of a regular amide (where the lone pair contributes significant electron density to the carbonyl group). Also, when this compound functions as an electrophile in a nucleophilic acyl substitution reaction, the leaving group is particularly stable because it is an aromatic anion. With a good leaving group, this compound more closely resembles the reactivity of an acid halide than an amide. 21.83. a) DMF, like most amides, exhibits restricted rotation about the bond between the carbonyl group and the nitrogen atom. This restricted rotation causes the methyl groups to be in different electronic environments. They are not chemically equivalent, and will therefore produce two different signals (in addition to the signal from the other proton in the compound). Upon treatment with excess LAH followed by water, DMF is reduced to an amine that does not exhibit restricted rotation. As such, the methyl groups are now chemically equivalent and will together produce only one signal. b) Restricted rotation causes the methyl groups to be in different electronic environments. As a result, the 13C NMR spectrum of DMF should have three signals.
© Copyright 2026 Paperzz