UC San Diego Integration Review Problems Remarks: The following questions are intended only to provide you with practice problems when studying for the exam. There is no promise that any of these problems will be on the exam. To solve these problems, you will need to use substitution, integration by parts, the method of partial fractions, and trigonometric substitution. Caution: The indefinite integrals in 41–51 require some ingenuity. Z 1. Z √π 11. x sin(x2 ) dx 0 Z 12. √ x 4 − x dx [Hint: If u = 4 − x, what does that make x in terms of u?] Z 13. xex dx (2x + 5)(x2 + 5x)7 dx Z 14. Z 2. x sin x dx (3 − x)10 dx Z 15. 3. Z √ x ln x dx 7x + 9 dx Z 16. Z 4. x3 dx (1 + x4 )1/3 ln x dx Z ln x dx x5 Z x2 e3x dx Z x3 ln(5x) dx Z √ x x + 3 dx Z sin2 (x) dx 17. Z 5. e5x+2 dx 18. Z 6. sin(ln x) dx x Z 7. 8. x2 Z x+2 dx + 4x − 3 3x 2 +1 19. 20. x dx 21. Z 9. Z 10. 1 dx x ln x cos(5x) dx esin(5x) Page 1 of 3 Z 22. x sin(x) cos(x) dx Z 23. x cos(x) dx c 2012 Adam Bowers UC San Diego Z 24. Z 25. Integration Review Problems x2 cos(x) dx ex cos(x) dx Z 37. √ x Z 38. √ [Hint: Do integration by parts twice.] x5 dx x2 + 25 Z Z 1 dx 2 x −4 39. Z x dx 2 x −4 40. 26. 27. Z 28. 1 dx x(x + 1) 1 dx + 1) Z 29. x2 (x Z 30. 31. 32. Z Z 34. 35. 1 + 1) 45. 1 dx 1 − x2 46. x Z 2 x2 p Z √ 4 − x2 dx x (1 + Z 47. dx 1 + ex dx Z Z dx √ e Z 1 dx 1 − 4x2 1 1 dx +1 [Hint: Try multiplying by Z 44. √ x2 dx 1 + x2 ex 42. x+7 dx + 2) Z 2√ 2 x −1 36. 41. 43. x(x2 1 dx + 4x + 5 Z x−1 dx x2 − 16 x2 (x 33. x2 Z 1 dx 9 − x2 √ x)9 dx √ x dx 1 + x3 √ 1 √ dx x+x x √ 1 √ dx x+1+ x Z x sin2 (x) cos(x) dx Z x sin2 (x) dx 48. 49. 0 Page 2 of 3 ex ex .] UC San Diego Z 50. Z 51. Z 52. 53. x tan2 (x) dx √ ln(x + 1) dx x2 0 Z 3 0 55. x ex dx 1 + ex Z 1 1 54. Integration Review Problems x dx 1 dx (x − 2)2 Z ∞ ln x e Z ∞ 56. e Z ∞ 57. x dx 1 dx x(ln x)2 xe−x dx 0 Z ∞ 58. 2 xe−x dx 0 59. Z ∞ arctan x 1 x2 + 1 dx ( Z ∞ 60. f (x) dx, where f (x) = 0 √1 x 1 2 x if x ≤ 1 if x ≥ 1 Page 3 of 3
© Copyright 2026 Paperzz