FINS2624: PORTFOLIO MANAGEMENT NOTES Daniel Quinn UNIVERSITY OF NEW SOUTH WALES FinS2624: Portfolio Management Notes Daniel Quinn TABLE OF CONTENTS Bond Pricing _____________________________________________________________________ 3 Bonds _______________________________________________________________________________ 3 Arbitrage Pricing ______________________________________________________________________ 3 YTM and Bond prices ___________________________________________________________________ 4 Realized Compound Yield _______________________________________________________________ 4 Term Structure of Interest Rates ______________________________________________________ 5 What is the Term Structure? _____________________________________________________________ 5 Inferring the Term Structure _____________________________________________________________ 5 Exploiting Mispricing with Three Bonds (Example) ____________________________________________ 5 Reinvestment Risk _____________________________________________________________________ 6 Forward Rates ________________________________________________________________________ 6 Liquidity Risk _________________________________________________________________________ 6 Market Expectations ___________________________________________________________________ 7 Duration ________________________________________________________________________ 8 Macaulay’s Duration: Measure of Maturity (D) ______________________________________________ 8 Modified Duration: Measure of Yield Sensitivity (D*) __________________________________________ 8 Portfolio Duration ____________________________________________________________________ 10 Immunization________________________________________________________________________ 10 Rebalancing _________________________________________________________________________ 10 Markowitz Portfolio Theory ________________________________________________________ 11 Utility ______________________________________________________________________________ 11 Statistics____________________________________________________________________________ 11 Portfolio Variance ____________________________________________________________________ 11 Diversification _______________________________________________________________________ 12 The Optimal Portfolio _____________________________________________________________ 13 Complete Portfolio ___________________________________________________________________ 13 Separation Theorem __________________________________________________________________ 13 Capital Asset Pricing Model _____________________________________________________________ 15 CAPM__________________________________________________________________________ 16 The Security Market Line _______________________________________________________________ 16 Chapter: Table of Contents Portfolio Selection ____________________________________________________________________ 12 1 FinS2624: Portfolio Management Notes Daniel Quinn Unsystematic Risk ____________________________________________________________________ 16 Systematic Risk ______________________________________________________________________ 17 The SML and the CAL __________________________________________________________________ 17 Portfolio Beta________________________________________________________________________ 17 Assumptions of CAPM _________________________________________________________________ 17 Using the CAPM ______________________________________________________________________ 17 Portfolio Management in Practice ___________________________________________________ 18 Criticisms of CAPM ___________________________________________________________________ 18 The Single Index Model ________________________________________________________________ 18 Exploiting Mispricing __________________________________________________________________ 18 Factor Models _______________________________________________________________________ 19 Behavioural finance and Market Efficiency ____________________________________________ 20 Efficient Market Hypothesis ____________________________________________________________ 20 Behavioural Finance __________________________________________________________________ 20 Performance Measures ____________________________________________________________ 21 Active Investments: Risk Adjusted Performance Measures ____________________________________ 21 Passive Investments __________________________________________________________________ 22 Practical Considerations _______________________________________________________________ 22 Sources of Performance _______________________________________________________________ 22 Performance attribution _______________________________________________________________ 23 Options Strategies ________________________________________________________________ 24 Value of Options _____________________________________________________________________ 24 Options Strategies ____________________________________________________________________ 24 Black-Scholes Formula ____________________________________________________________ 27 Assumptions ________________________________________________________________________ 27 Greeks _____________________________________________________________________________ 27 Chapter: Delta Hedging _______________________________________________________________________ 27 2 FinS2624: Portfolio Management Notes Daniel Quinn BOND PRICING BONDS A claim on fixed future cash flows Typically a “large” cash flow (face value) at maturity (FV) May be series of smaller cash flows before maturity (coupons) Sum of annual coupons are expressed as fraction of FV (coupon rate) Bond’s current yield = Assumptions in the pricing model: o No default risk o No transaction costs o Constant interest rates o Complete markets ARBITRAGE PRICING Arbitrage: set of trades that generate zero cash flows in the future, but a positive, risk free cash flow today Arbitrage pricing: constructing replicating portfolios using assets with known prices to exactly mimic the cash flows of some other asset For example price a bond with coupon rate 5%, FV $100, 2 year maturity, when interest rate is 8% for both lending and borrowing Exploiting mispricing: Buy cheaper instrument, sell expensive instrument riskless profit o T = 0 will result in riskless profit, every other period will have 0 net cash flow Arbitraging increases demand for bond, increases price until no further arbitrage is possible – arbitrage free price Chapter: Bond Pricing 3 FinS2624: Portfolio Management Notes Daniel Quinn PRICING FORMULA Replicate: o One coupon stream of c from 1 to T o One large payment of FV at T PV(FC) = ( PV(Coupon stream) = PV(perpetuity starting at time 1) – PV(perpetuity starting at time T+1) In practice, interest rates are not constant We take P as given and define Y as a yield to maturity (YTM) Holding period return = ) ( ) YTM AND BOND PRICES Bond price decreases with YTM Price is less sensitive to changes in YTM when YTM is high When YTM = C, P = FV o C = YTM P = FV bond trades at par o C < YTM P < FV bond trades at a discount o C > YTM P > FV bond trades at a premium REALIZED COMPOUND YIELD If bond A and B have the same YTM, t2 cash flows will differ However if coupon in B can be reinvested at an interest rate that equals YTM, time two cash flows will be equal Realized compound yield solves for the annualized return useful when reinvestment rate is different from YTM o Collect all cash flows at maturity of bond o Divide by price and solve for annualised return ) o ( Chapter: Bond Pricing 4
© Copyright 2026 Paperzz