SECTION 8.1 √ 2. Use the arc length formula with y = 2 − x2 , dy −x =√ . dx 2 − x2 Hence Z 1r dy 1 + ( )2 dx L = dx 0 Z 1r x2 1+ dx = 2 − x2 0 Z 1 √ 2 √ = dx 2 − x2 0 ¯1 √ ¯ −1 x = 2[sin ( √ )]¯ 2 0 √ 2 π. = 4 √ The curve is one-eight of the circle with radius 2, and the length is √ 1 √ 2 .2. 2π = π. 8 4 10. Differentiating the equation implicitly with respect to y, dx 1 = (y 3 − y −3 ). dy 2 Hence Z 2s dx L = 1 + ( )2 dy dy 1 r Z 2 1 1 + (y 6 − 2 + y −6 )dy = 4 1 Z 2r 1 6 = (y + 2 + y −6 )dy 4 1 Z 1 2 3 = (y + y −3 )dy 2 1 1 y 4 y −2 ¯¯2 [ + ]¯ = 2 4 −2 1 33 = . 16 The length of the curve is 33 . 16 2 SECTION 8.1 SECTION 8.1 3
© Copyright 2026 Paperzz