Computing generators of the KB ideal of the genus-1 tangle F The Idea: Since the g_{i,e}’s are a basis, we have that F is a linear combination of the g_{i,e}’s. We let Coeff[i,e] denote the coefficient of g_{i,e} in this linear combination (Coeff[i,e] is denoted by c_{i,e} in the paper). Since the graph basis is orthogonal with respect to the doubling pairing < , >_D, we have that Coeff[i,e] = <F, g_{i,e}>_D/ <g_{i,e}, g_{i,e}>_D. To compute Coeff[i,e], we first compute <F, g_{i,e}>_D (denoted by Dpairing[i,e] in this notebook) and then divide by <g_{i,e}, g_{i,e}>_D. A formula for <g_{i,e}, g_{i,e}>_D is given in Theorem 2.4 of the paper. The explicit computation of the formula for we use for Dpairing[i,e] is given in Appendix A of the paper. We have from the second line of this computation, using admissibility, that Dpairing[i,e] = 0 unless i = 1 or i = 3. So in this notebook, we need only compute Coeff[1,0], Coeff[1,2], Coeff[3,2], and Coeff[3,4]. Explicit formulas for these are given below. Preliminaries- Banded colored TrivalentGraph coefficients Most of the code in this section (all except the last four commands) was written by John M. Harris. It is available in Appendix B of his dissertation, which can be found at http://etd.lsu.edu/docs/available/etd - 0701103 - 164728/. We greatly appreciate his allowing us to use it. oddq and evenq evaluate whether a product or sum of two integers is odd or even, respectively. oddq@a_ b_ ; oddq@aD && oddq@bDD := True; oddq@a_ + b_ ; Hoddq@aD && evenq@bDL ÈÈ Hevenq@aD && oddq@bDLD := True; oddq@a_D := OddQ@aD; evenq@a_ b_ ; Hevenq@aD && IntegerQ@bDL ÈÈ Hevenq@bD && IntegerQ@aDLD := True; evenq@a_ + b_ ; Hevenq@aD && evenq@bDL ÈÈ Hoddq@aD && oddq@bDLD := True; evenq@a_D := EvenQ@aD; qi[n] is the nth quantum integer; qif[n] is qi[n]! (factorial). Quantum integers and their factorials are left unevaluated. delta[n] is the nth Chebyshev polynomial. adm[a1,b1,c1] returns “ True”if the triple (a1,b1,c1) is admissible, and “ False”if the triple is not admissible. Lambda[a,b,c] is the coefficient that comes from removing a twist as in Formula 2.2 in the paper. theta[a,b,c] is the evaluation of a theta graph labelled (a,b,c). (Lambdas, thetas, and tets are evaluated as in Kauffman-Lins.) 2 computinggeneratorsforKBidealofF.nb qi@0D = 0; qi@1D = 1; qif@0D = 1; qif@n_ ; n ³ 1D := qif@n - 1D qi@nD; qif@n_ + x_ ; n ³ 1D := qif@n + x - 1D qi@n + xD; qi@n_D := Sum@A ^ i, 8i, 2 - 2 n, 2 n - 2, 4<D; delta@n_D := H- 1L ^ n qi@n + 1D ; adm@a1_, b1_, c1_D := Module@8a = Simplify@a1D, b = Simplify@b1D, c = Simplify@c1D<, Simplify@a ³ 0 && b ³ 0 && c ³ 0 && Abs@a - bD £ c && c £ a + b, givenD && evenq@a + b + cDD; lambda@a_, b_, c_D := H- 1L ^ HHa + b - cL 2L A ^ HHa Ha + 2L + b Hb + 2L - c Hc + 2LL 2L Simplify Expand; theta@a_, b_, c_D := Module@8 m = Ha + b - cL 2 Simplify, n = Hb + c - aL 2 Simplify, p = Ha + c - bL 2 Simplify <, If@adm@a, b, cD, H- 1L ^ Hm + n + pL qif@m + n + p + 1D qif@mD qif@nD qif@pD qif@m + nD qif@n + pD qif@m + pD Simplify, 0D D; admtet[a,b,c,d,e,f] tests to see if (a,b,c,d,e,f) is an admissible coloring of a tet graph. The colors correspond to the labelling of the tet graph pictured in Section 2 of the paper. tet[a,b,c,d,e,f] is the evaluation of a tet graph colored by (a,b,c,d,e,f) as in the paper. In the notation of the paper, tet[a,b,c,d,e,f] corresponds to the Tet coefficient with first row a, b, e and second row c, d, f. computinggeneratorsforKBidealofF.nb 3 admtet@a_, b_, c_, d_, e_, f_D := adm@a, d, eD && adm@b, c, eD && adm@a, b, fD && adm@c, d, fD; tet@a_, b_, c_, d_, e_, f_D := Module@8 a1 = Ha + d + eL 2 Simplify, a2 = Hb + c + eL 2 Simplify, a3 = Ha + b + fL 2 Simplify, a4 = Hc + d + fL 2 Simplify, av, b1 = Hb + d + e + fL 2 Simplify, b2 = Ha + c + e + fL 2 Simplify, b3 = Ha + b + c + dL 2 Simplify, bv, m, M, cv, s <, av = 8a1, a2, a3, a4<; bv = 8b1, b2, b3<; m = Max@a1, a2, a3, a4D; M = Min@b1, b2, b3D; If@admtet@a, b, c, d, e, fD, intfac = Product@qif@bv@@jDD - av@@iDDD, 8i, 1, 4<, 8j, 1, 3<D; extfac = qif@aD qif@bD qif@cD qif@dD qif@eD qif@fD; cv = Intersection@av, bvD; Hintfac extfacL If@Length@cvD > 0, s = cv@@1DD; H- 1L ^ s qif@s + 1D Product@qif@s - av@@iDDD, 8i, 1, 4<D Product@qif@bv@@jDD - sD, 8j, 1, 3<D, Sum@H- 1L ^ s qif@s + 1D Product@qif@s - av@@iDDD, 8i, 1, 4<D Product@qif@bv@@jDD - sD, 8j, 1, 3<D, 8s, m, M<DD Simplify, 0D D; Fusion[c] is the coefficient that comes from performing fusion on two strands both colored 1, where c is the new color you get from fusion. (Theorem 2.2 in the paper) Fusion@c_D := If@adm@1, 1, cD, delta@cD theta@1, 1, cD, 0D TetR[a,b,c,d,e,f] is the coefficient that comes from reducing a tetrahedron in a graph, where a, d, and e are the colors of the edges leading into the tet. (Formula 2.3 in the paper) TetR@a_, b_, c_, d_, e_, f_D := If@admtet@a, b, c, d, e, fD, tet@a, b, c, d, e, fD theta@a, d, eD, 0D SixJ[a,b,c,d,e,f] is the 6j-coefficient that comes from changing an “ H”in a graph to an “ I.”(Formula 2.4 in the paper) SixJ@a_, b_, c_, d_, e_, f_D := If@admtet@a, b, c, d, e, fD, tet@a, b, c, d, e, fD delta@eD theta@a, d, eD theta@b, c, eD, 0D Phi[i] is the coefficient that comes from removing a loop from a strand colored i. Phi@i_D := - A ^ H2 i + 2L - A ^ H- 2 i - 2L 4 computinggeneratorsforKBidealofF.nb Formulas for the Dpairing[i,e] and coefficientsof the linear combination Dpairing[i,e] gives the evaluation of the doubling pairing of the genus-1 tangle F with the graph basis element g_{i,e}. (See Appendix A of the paper for computation of this formula.) Dpairing@i_, e_D := Sum@ If@adm@1, i, jD && adm@1, e, rD && adm@q, r, iD, Hdelta@jD theta@1, 1, jD theta@1, i, jDL * lambda@1, 1, jD ^ 2 Fusion@kD TetR@j, i, 1, k, e, 1D lambda@1, 1, kD ^ - 3 Fusion@lD lambda@1, 1, lD ^ - 2 TetR@i, j, 1, l, 1, 1D Fusion@mD lambda@1, 1, mD TetR@1, l, 1, m, i, 1D Fusion@nD lambda@1, 1, nD ^ - 1 TetR@1, 1, 1, i, n, mD Fusion@pD lambda@1, 1, pD ^ - 1 Fusion@qD lambda@1, 1, qD ^ - 1 TetR@n, 1, 1, q, p, 1D SixJ@q, 1, e, i, r, 1D TetR@1, n, q, r, p, iD TetR@1, k, e, r, j, 1D tet@1, p, 1, j, 1, rD, 0D, 8j, 0, 2, 2<, 8k, 0, 2, 2<, 8l, 0, 2, 2<, 8m, 0, 2, 2<, 8n, 0, 2, 2<, 8p, 0, 2, 2<, 8q, 0, 2, 2<, 8r, i - 2, i + 2<D Simplify Coeff[i,e] gives the coefficient of g_{i,e} in the linear combination. Coeff[i,e] = <F, g_{i,e}>_D/ <g_{i,e}, g_{i,e}>_D. (See Theorem 2.4 for the formula for <g_{i,e}, g_{i,e}>_D.) Coeff@i_, e_D := Dpairing@i, eD Htheta@i, 1, eD ^ 2 delta@iD delta@eDL Simplify Computingcoefficientsof the linear combination Coeff@1, 0D 0 Coeff@1, 2D I- 1 + 2 A 4 - 4 A 8 + 4 A 12 - 3 A 16 + 2 A 20 + A 24 - 4 A 28 + 4 A 32 - 4 A 36 + 2 A 40 - A 44 M IA 21 I1 + A 4 + A 8 MM Coeff@3, 2D 1 - A 4 + A 8 - A 16 + A 20 A 7 + A 11 + A 15 + A 19 Coeff@3, 4D A3 Computinggeneratorsof the KB ideal Generators are: <F,x_i>/delta = <Coeff[1,2] g_{1,2} + Coeff[3,2] g_{3,2} + Coeff[3,4] g_{3,4},x_i>/delta = (Coeff[1,2]<g_{1,2},x_i> + Coeff[3,2]<g_{3,2},x_i> + Coeff[3,4]<g_{3,4},x_i>)/delta; and <F,y_i>/delta. Here, i is at most 3, and the pairing is the relative Hopf pairing. Formulas for <g_{j,e},x_i> and <g_{j,e},y_i> are given in Proposition 4.2 in the paper. The generators are rescaled by the minimum power of A necessary to make the lowest degree term a constant. Before rescaling, they’re labelled as follows: g1hat = <F,x_0>/delta g2hat = <F,x_1>/delta g3hat = <F,x_2>/delta g4hat = <F,x_3>/delta Generators are: <F,x_i>/delta = <Coeff[1,2] g_{1,2} + Coeff[3,2] g_{3,2} + Coeff[3,4] g_{3,4},x_i>/delta = computinggeneratorsforKBidealofF.nb 5 (Coeff[1,2]<g_{1,2},x_i> + Coeff[3,2]<g_{3,2},x_i> + Coeff[3,4]<g_{3,4},x_i>)/delta; and <F,y_i>/delta. Here, i is at most 3, and the pairing is the relative Hopf pairing. Formulas for <g_{j,e},x_i> and <g_{j,e},y_i> are given in Proposition 4.2 in the paper. The generators are rescaled by the minimum power of A necessary to make the lowest degree term a constant. Before rescaling, they’re labelled as follows: g1hat = <F,x_0>/delta g2hat = <F,x_1>/delta g3hat = <F,x_2>/delta g4hat = <F,x_3>/delta g5hat = <F,y_0>/delta g6hat = <F,y_1>/delta g7hat = <F,y_2>/delta g8hat = <F,y_3>/delta After rescaling, they’re labelled g1,...,g8. del := - A ^ 2 - A ^ - 2 g1hat = HCoeff@1, 2D theta@1, 2, 1D + Coeff@3, 2D theta@1, 2, 3D + Coeff@3, 4D theta@1, 4, 3DL del Simplify Expand 1 3 - A 23 7 + A 19 - A 15 10 + A 11 12 - A7 14 + 12 A - 10 A 5 + 6 A 9 - 3 A 13 + A 17 A3 g1 = g1hat * A ^ 23 Simplify 1 - 3 A 4 + 7 A 8 - 10 A 12 + 12 A 16 - 14 A 20 + 12 A 24 - 10 A 28 + 6 A 32 - 3 A 36 + A 40 g2hat = HCoeff@1, 2D theta@1, 2, 1D HPhi@1D - Phi@0DL + Coeff@3, 2D theta@1, 2, 3D HPhi@3D - Phi@0DL + Coeff@3, 4D theta@1, 4, 3D HPhi@3D - Phi@0DLL del Simplify Expand - 1 1 + 3 + 2 - 9 - 4 + + 16 3 - - 23 + 2 + 30 - 2 A 27 A 25 A 23 A 21 A 19 A 17 A 15 A 13 A 11 A 9 A 7 A 5 31 2 - + 30 A + 2 A 3 - 24 A 5 - 4 A 7 + 17 A 9 + 3 A 11 - 9 A 13 - 2 A 15 + 4 A 17 + A 19 - A 21 3 A A g2 = g2hat * A ^ 27 Simplify Expand - 1 + A 2 + 3 A 4 - 2 A 6 - 9 A 8 + 4 A 10 + 16 A 12 - 3 A 14 - 23 A 16 + 2 A 18 + 30 A 20 - 2 A 22 31 A 24 - 2 A 26 + 30 A 28 + 2 A 30 - 24 A 32 - 4 A 34 + 17 A 36 + 3 A 38 - 9 A 40 - 2 A 42 + 4 A 44 + A 46 - A 48 g3hat = HCoeff@3, 2D theta@1, 2, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DL + Coeff@3, 4D theta@1, 4, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DLL del Simplify Expand 1 - A 27 10 A3 3 - A 23 - 1 1 A 21 + 4 A 19 + 2 A 17 - 6 A 15 - 1 A 13 8 + A 11 + 2 A9 - 9 A7 - 1 + A5 - 10 A + 9 A 5 - 2 A 7 - 7 A 9 + 2 A 11 + 6 A 13 - A 15 - 4 A 17 + A 19 + 2 A 21 - A 25 A g3 = g3hat * A ^ 27 Simplify Expand 1 - 3 A 4 - A 6 + 4 A 8 + 2 A 10 - 6 A 12 - A 14 + 8 A 16 + 2 A 18 - 9 A 20 - A 22 + 10 A 24 A 26 - 10 A 28 + 9 A 32 - 2 A 34 - 7 A 36 + 2 A 38 + 6 A 40 - A 42 - 4 A 44 + A 46 + 2 A 48 - A 52 6 computinggeneratorsforKBidealofF.nb g4hat = HCoeff@3, 2D theta@1, 2, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DL HPhi@3D - Phi@2DL + Coeff@3, 4D theta@1, 4, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DL HPhi@3D - Phi@2DLL del Simplify Expand - 1 1 + 3 2 - 5 - 2 + 8 + 4 - - 10 3 + + 13 A 31 A 29 A 27 A 25 A 23 A 21 A 19 A 17 A 15 3 14 1 15 + + + 13 A + 2 A 3 - 15 A 5 - 2 A 7 + 13 A 9 + 4 A 11 13 11 9 7 5 A A A A A A3 12 A 13 - 3 A 15 + 10 A 17 + 3 A 19 - 7 A 21 - 3 A 23 + 5 A 25 + A 27 - 2 A 29 - A 31 + A 33 A 35 3 + A 33 13 g4 = g4hat * A ^ 35 Simplify Expand - 1 + A 2 + 3 A 4 - 2 A 6 - 5 A 8 + 2 A 10 + 8 A 12 - 4 A 14 - 10 A 16 + 3 A 18 + 13 A 20 3 A 22 - 13 A 24 + 3 A 26 + 14 A 28 - A 30 - 15 A 32 + 13 A 36 + 2 A 38 - 15 A 40 - 2 A 42 + 13 A 44 + 4 A 46 - 12 A 48 - 3 A 50 + 10 A 52 + 3 A 54 - 7 A 56 - 3 A 58 + 5 A 60 + A 62 - 2 A 64 - A 66 + A 68 g5hat = HCoeff@1, 2D lambda@1, 1, 2D ^ - 2 theta@1, 2, 1D + Coeff@3, 2D lambda@1, 3, 2D ^ - 1 lambda@3, 1, 2D ^ - 1 theta@1, 2, 3D + Coeff@3, 4D lambda@1, 3, 4D ^ - 1 lambda@3, 1, 4D ^ - 1 theta@1, 4, 3DL del Simplify Expand 2 5 - A 21 + A 17 10 - A 13 14 + A9 16 - 17 A5 + 15 A 3 - 12 A 7 + 7 A 11 - 4 A 15 + A 19 A g5 = g5hat * A ^ 21 Simplify Expand 2 - 5 A 4 + 10 A 8 - 14 A 12 + 16 A 16 - 17 A 20 + 15 A 24 - 12 A 28 + 7 A 32 - 4 A 36 + A 40 g6hat = HCoeff@1, 2D lambda@1, 1, 2D ^ - 2 theta@1, 2, 1D HPhi@1D - Phi@0DL + Coeff@3, 2D lambda@1, 3, 2D ^ - 1 lambda@3, 1, 2D ^ - 1 theta@1, 2, 3D HPhi@3D - Phi@0DL + Coeff@3, 4D lambda@1, 3, 4D ^ - 1 lambda@3, 1, 4D ^ - 1 theta@1, 4, 3D HPhi@3D - Phi@0DLL del Simplify Expand 1 - 1 + A 29 25 2 + A 25 3 - A 23 5 - A 19 5 + A 17 + A 15 11 4 - A 13 - A 11 18 + A9 2 + A7 24 1 - A5 - A3 - 2 A + 25 A 3 + 3 A 5 - 20 A 7 - 5 A 9 + 14 A 11 + 3 A 13 - 7 A 15 - 3 A 17 + 3 A 19 + A 21 A g6 = g6hat * A ^ 29 Simplify Expand - 1 + A 4 + 2 A 6 - 3 A 10 - 5 A 12 + 5 A 14 + 11 A 16 - 4 A 18 - 18 A 20 + 2 A 22 + 24 A 24 - A 26 25 A 28 - 2 A 30 + 25 A 32 + 3 A 34 - 20 A 36 - 5 A 38 + 14 A 40 + 3 A 42 - 7 A 44 - 3 A 46 + 3 A 48 + A 50 g7hat = HCoeff@3, 2D lambda@1, 3, 2D ^ - 1 lambda@3, 1, 2D ^ - 1 theta@1, 2, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DL + Coeff@3, 4D lambda@1, 3, 4D ^ - 1 lambda@3, 1, 4D ^ - 1 theta@1, 4, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DLL del Simplify Expand 1 - A 37 12 A5 3 - A 33 - 1 A3 1 + A 31 - 10 5 A 29 + 2 A 27 - 7 A 25 - 2 A 23 + 9 A 21 + 2 A 19 - 11 A 17 - 1 A 15 + 12 A 13 - 13 A9 + 1 + A7 + 2 A + 9 A 3 - 2 A 5 - 7 A 7 + 5 A 11 - A 13 - 3 A 15 + 2 A 19 - A 23 + A 25 + A 27 - A 31 A g7 = g7hat * A ^ 37 Simplify Expand 1 - 3 A 4 - A 6 + 5 A 8 + 2 A 10 - 7 A 12 - 2 A 14 + 9 A 16 + 2 A 18 - 11 A 20 - A 22 + 12 A 24 - 13 A 28 + A 30 + 12 A 32 - A 34 - 10 A 36 + 2 A 38 + 9 A 40 - 2 A 42 - 7 A 44 + 5 A 48 - A 50 - 3 A 52 + 2 A 56 - A 60 + A 62 + A 64 - A 68 computinggeneratorsforKBidealofF.nb 7 g8hat = HCoeff@3, 2D lambda@1, 3, 2D ^ - 1 lambda@3, 1, 2D ^ - 1 theta@1, 2, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DL HPhi@3D - Phi@2DL + Coeff@3, 4D lambda@1, 3, 4D ^ - 1 lambda@3, 1, 4D ^ - 1 theta@1, 4, 3D HPhi@3D - Phi@0DL HPhi@3D - Phi@1DL HPhi@3D - Phi@2DLL del Simplify Expand - 1 + A 45 3 1 + A 43 18 3 - A 41 3 2 - A 39 18 6 19 3 + A 37 1 9 + A 35 - A 33 19 4 - A 31 2 12 A 29 + 4 A 27 + 15 A 25 - 4 A 23 - 16 + A 21 19 + 4 A - 18 A 3 - 3 A 5 + 14 A 7 + 4 A 9 A A 19 A 17 A 15 A 13 A 9 A 7 A 5 A 3 13 A 11 - 3 A 13 + 8 A 15 + 3 A 17 - 6 A 19 - A 21 + 4 A 23 + A 25 - 2 A 27 - A 29 + 2 A 31 - A 35 - A 37 + A 39 + - - + + - - + g8 = g8hat * A ^ 45 Simplify Expand - 1 + A 2 + 3 A 4 - 2 A 6 - 6 A 8 + 3 A 10 + 9 A 12 - 4 A 14 - 12 A 16 + 4 A 18 + 15 A 20 - 4 A 22 - 16 A 24 + 3 A 26 + 18 A 28 - 3 A 30 - 18 A 32 + 19 A 36 + A 38 - 19 A 40 - 2 A 42 + 19 A 44 + 4 A 46 - 18 A 48 - 3 A 50 + 14 A 52 + 4 A 54 - 13 A 56 - 3 A 58 + 8 A 60 + 3 A 62 - 6 A 64 - A 66 + 4 A 68 + A 70 - 2 A 72 - A 74 + 2 A 76 - A 80 - A 82 + A 84 The ideal of Z[A] generatedby g1,...,g8 We use the GroebnerBasis command to find an easier-to-analyze generating set for the ideal over Z[A] generated by g1,...,g8. GroebnerBasis@8g1, g2, g3, g4, g5, g6, g7, g8<, A, CoefficientDomain ® IntegersD 911, 4 - A 4 = We prove in the paper that I_F = <11,4-A^4> as ideals in Z[A,A^-1] and that this ideal is non-trivial. (Theorem 1.3, proved in Section 5)
© Copyright 2025 Paperzz