微乙小考一 (2016/3/10) 1. (6%) 給定 f (x, y, z) = ln(xy + z). 求 ∂f (1, 2, 1) ∂y 及 ∂f (1, 2, 1). ∂z sol: ∂f 1 (1, 2, 1) = · x(x,y,z)=(1,2,1) = ∂y xy + z ∂f 1 (1, 2, 1) = · 1(x,y,z)=(1,2,1) = ∂z xy + z 1 3 1 3 2. (7%) 求與 z = x2 + y 2 切於點 (1, 4, 17) 之切平面方程式。 sol: ∂z (1, 4) = 2x(x,y)=(1,4) = 2 ∂x ∂z (1, 4) = 2y (x,y)=(1,4) = 8 ∂y ∴ Tangent plane: E : z − 17 = 2(x − 1) + 8(y − 4) ∂z ∂z −1 y 及 ∂v . 3. (7%) 令 z = tan ( x ), x = u + v, y = uv, 求 ∂u u=1,v=1 sol: ∂z ∂u ∂z ∂v = = ∂z ∂x ∂x ∂u ∂z ∂x ∂x ∂v + + ∂z ∂y ∂y ∂u ∂z ∂y ∂y ∂v = = 1 y 2 1+( x ) 1 y 2 1+( x ) ⇒ · · −y x2 −y x2 ·1+ ·1+ 1 y 2 1+( x ) 1 y 2 1+( x ) · · u=1,v=1 1 x ·v = −uv (u+v)2 +(uv)2 + (u+v)v (u+v)2 +(uv)2 1 x ·u= −uv (u+v)2 +(uv)2 + (u+v)u (u+v)2 +(uv)2 1 1 ∂z ∂z = and = u=1,v=1 u=1,v=1 ∂u 5 ∂v 5 1
© Copyright 2026 Paperzz