N (2, 0.252 ) kN is applied to the bell crank. Assuming that the 1-6. A vertical force of F allowable normal stress at the 10-mm diameter rod CD is Sa1 ~ N(80,2 )MPa , and the allowable shear stress at the 6-mm diameter pin B, subjected to double shear is Sa 2 ~ N(60,2 )MPa . If F , Sa1 and S a 2 are independent, determine the probabilities of failure of rod CD and pin B. D C F B 45o A 400 mm Fig. 1.6 Solution Referring to the free-body diagram of the bell crank shown in Fig. 1.6.1. FCD F By Bx Fig. 1.6.1 M B 0; F (0.4) FCD (0.26sin 45 ) 0; FCD 2.1757 F ; Fx 0; Bx FCD 0; Bx 2.1757 F ; Fy 0; By F 0; By F ; Thus, the force acting on pin B is FB Bx2 By2 2.395F . Since pin B is in double shear, we have VB The cross-section area of rod CD is ACD plane of pin B is AB (0.0062 ) 4 FB 1.198F . 2 (0.012 ) 4 78.540 106 m2 , and the area of the shear 28.274 106 m2 . We obtain the normal stress S1 at rod CD and shear stress S 2 at pin B as follows S1 FCD 2.1757 F 0.0277 106 F , 6 ACD 78.540 10 Set Y1 Sa1 S1 , then Y1 S2 VB 1.198F 0.0153 106 F . 6 AB 78.540 10 N (Y 1 , Y21 )MPa , where Y 1 =S S1 S 0.0277 106 F 80 106 55.4 106 24.6MPa a1 a1 Y 1 S2 S21 (5 106 )2 (0.0277 106 0.25 103 )2 8.541MPa . a1 Thus, the probability of failure of rod CD is p f Pr(Y1 Sa1 S1 0) Pr( Y1 Y 1 Y1 Similarly, set Y2 Sa 2 S2 , then Y2 Y 1 Y1 ) ( Y 1 Y1 ) (2.88) 2 103 . N (Y 2 , Y22 )MPa , where Y 2 =S S 2 S 0.0153 106 F 60 106 30.6 106 29.4MPa a2 a2 Y 2 S2 S22 (6 106 )2 (0.0153 106 0.25 103 ) 2 7.116MPa . a2 Thus, the probability of pin B is p f Pr(Y2 Sa 2 S2 0) Pr( Y2 Y 2 Y 2 Y 2 Y 2 ) ( Y 2 Y 2 ) (4.132) 1.8 105 . Ans.
© Copyright 2026 Paperzz