G3: Genes|Genomes|Genetics Early Online, published on March 3, 2017 as doi:10.1534/g3.117.039883 1 AutomatedphenotypingindicatespupalsizeinDrosophilaisahighlyheritabletrait 2 withanapparentpolygenicbasis 3 4 R.GuyReevesandDiethardTautz 5 6 MaxPlanckInstituteforEvolutionaryBiology,Plön,Germany, 7 1 © The Author(s) 2013. Published by the Genetics Society of America. 8 SHORTRUNNINGTITLE 9 Pupalsizephenotypingandgenetics 10 11 KEYWORDS 12 Automatedphenotyping,Drosophilamelanogaster,pupallength,humanheight,complex 13 trait 14 15 Correspondingauthorscontactdetails 16 GuyReeves,DepartmentofEvolutionaryGenetics,MaxPlanckInstituteforEvolutionary 17 Biology,August-Thienemannstrasse2,24306Plön(Germany) 18 [email protected] 19 office+494522763376 20 lab+494522763296 21 22 2 23 24 ABSTRACT Theintensefocusonstudyinghumanheighthasdonemorethananyothergeneticanalysis 25 toadvanceourunderstandingoftheheritabilityofhighlycomplexphenotypes.Herewe 26 describeindetailthepropertiesofapreviouslyunexploredtraitinDrosophila 27 melanogasterthatsharesmanysalientpropertieswithhumanheight.Thetotallengthof 28 thepupalcasevariesbetween2.8and3.9mmamongnaturalvariantsandwereportthatit 29 isamongthemostheritabletraitsreportedinthisspecies.Wehavedevelopedasimple 30 semi-automaticphenotypingsystemwithwhichasingleoperatorcanreliablyscore>5000 31 individualsinaday.Theprecisionoftheautomatedsystemis0.042mm(±0.030SD).All 32 phenotypedindividualsareavailabletobematedinsubsequentgenerationsoruniquely 33 archivedforfuturemolecularwork.Wereportbothbroadsenseandnarrowsense 34 heritabilityestimatesfortwobiologicallydistinctdatasets.Narrowsenseheritability(h2) 35 rangedfrom0.44-0.50andbroadsenseheritability(H2)rangedfrom0.58to0.61.We 36 presentresultsformappingthetraitin195recombinantinbredlines,whichsuggeststhat 37 therearenolociwith>10%effectsizeinthispanel.Weproposethatpupalsizegeneticsin 38 Drosophilacouldrepresentamodelcomplextraitamenabletodeepgeneticdissection 39 usingtheautomatedsystemdescribed. 40 3 41 INTRODUCTION 42 Elucidatingthegeneticarchitectureofaphenotypictraitfundamentallyrequiresthatit 43 istosomedegreeheritable.Phenotypictraitswithlowheritabilitydonotgenerallyrequire 44 additionalexplanationastowhyquantitativetraitlocicannotberobustlyidentified. 45 However,whiletraitswithhighheritabilityincreasethepowertoidentifycausativeloci, 46 thegeneticarchitectureoftraitsremainsakeyfactorinpredictingsuccessinidentifying 47 quantitativetraitloci.Forexample,ahighlyheritabletraitthatisdependentonalarge 48 numberofinteractingallelesorlocimaystillrequiresubstantialsamplesizesandcomplex 49 analysestoidentifycausativeloci(Visscheretal.2010;Bartonetal.2016).The 50 archetypicalexampleofthisishumanheightwhichbyatleasttwodistinctmeasuresof 51 heritabilityisamongthemostheritableofquantitativehumantraits,h2≈0.4-0.7using 52 regressionoftrios(Galton1886;Hanley2004;Visscheretal.2010)orh2≈0.7usingtwin 53 studies(Poldermanetal.2015).Howevertheidentificationofthelociinvolved,andany 54 interactionsamongthem,hasprovenfarfromtrivialandsuccessestodatehavebeen 55 dependentonutilizingverylargedatasets(upto250,000individuals(Woodetal.2014)). 56 Thecurrentunderstandingbeingthatofthe180-4,000lociimplicatedinimpactinghuman 57 heightoveritstypicalrangeallhaveadditiveeffectsizesofmuchlessthan1mm(Weedon 58 etal.2008;Visscheretal.2010;Woodetal.2014).Althoughstudiesofhumanheight 59 representavaluablemodelwithwhichtotesthowcomplexheritablephenotypescanbe 60 dissectedtheabilitytoexperimentallycontrolallelefrequenciesandenvironmental 61 conditionswouldbeavaluablecapacitythatisnotpossibleinhumanstudies.Whilethisis 62 apossibilityinmodelorganismstherearerelativelyfewmorphologicaltraitsthathave 4 63 beenrobustlydemonstratedtobebothhighlyheritableandamenabletoautomatedhigh 64 throughputphenotyping(thoughseebelow).Hereinwedescribeindetailanew 65 quantitativetrait–lengthofthepupalcase-inDrosophilamelanogasterthatplacesitinthe 66 15-20%mostheritablemorphologicaltraitsdescribedinthisspeciesandisamenableto 67 reliableandautomatedhigh-throughputphenotyping(RoffandMousseau1987). 68 Theutilityofautomatedphenotypingsystemsforawidevarietyoforganismshas 69 increasedgreatlyoverthelast10years.Whiletherehavebeenautomatedmorphological 70 phenotypingsystemsdevelopedforDrosophila,asyetonlyautomationanalysisofimages 71 ofwingshasbeenwidelyemployed(Houleetal.2003).However,acquiringthewing 72 imagesrequiresmanualmanipulationtopositionfliesindividuallyandsoisdifficultto 73 scaleup.Likewiseasystemtomeasureheartbeatfunctionrequiresthateachflybe 74 manipulatedintoposition.Analternativeapproachtophenotypinginaselection 75 experimentforgrossbodysizewasachievedusingaseriesofgraduatedsieves(Turneret 76 al.2011).Morerecentlyasophisticatedplatformcalledthe‘flycatwalk’wasdescribedthat 77 hasthecapacitytoreliablyphenotype700fliesadayforawiderangeofmorphological 78 traitssimultaneously(Medicietal.2015).Thisrequiresnousermanipulationofindividual 79 fliesandisnon-destructive.Whilethecostofconstructingtheequipmentisnotdetailed 80 (https://github.com/IMSB/FlyCatwalk/)itislikelythatitwouldrepresentasignificant 81 investmentoftime,expertiseandresourcesformostlabs. 82 Oursetupusesaninexpensivecamerainalightproofboxandtheopensourceimage 83 analysissoftwareCellprofilerwithwhichasingleusercanphenotype5,000pupaeinaday. 5 84 Pupaearephotographedinsituonflattenedsquaresoftransparentfilmthatlinedthe 85 entireverticalsurfaceofthevials.Wedemonstratehowthesystemcanbeusedto(1) 86 measurepanelsofrecombinantinbredlines(RILs)and(2)generatelargenumbersof 87 parentoffspringtriosthatareparticularlyusefulinexploringcomplextraitsusingartificial 88 selectiontechniques.Furthermore,theincreasedthroughputfacilitatesexploringthe 89 heritabilityoffamilymeansratherthansingleindividualmeasurementsthatareassociated 90 withincreasedmeasurementvariance.Hence,pupalsizecouldbecomeamodelphenotype 91 thatwillallowdeepdissectionofitsgeneticarchitecture,sincetheavailabilityofautomated 92 phenotypingwillallowtoscreenverylargemappingpanelsortodesignnewcomplex 93 mappingstrategies. 94 95 MATERIALSANDMETHODS 96 97 Flystocks 98 Theautomatedphenotypingsystemwasappliedtotwoindependentdatasets. 99 Thefirstdataset,referredtohereas‘8-way’isacollectionof195recombinantinbred 100 lines(RILs)thatarepartoftheDrosophilaSyntheticPopulationResource 101 (http://wfitch.bio.uci.edu/~dspr/).TheseRILsarealloriginallyderivedfromacross 102 between8globalstocksofDrosophilamelanogaster,theirgenerationisdescribedindetail 103 in(Kingetal.2012a;b).Narrowsenseheritabilityh2forthe8-waydatasetwasestimated 104 bymeasuringtheprogenyof67singlepairmatingsbetweenindividualsfrom11different 6 105 RILsthatspannedthefullrangeofphenotypemeasurements(IDsofcrossedstocksare 106 giveninFileS5,6ofthe67crossesareduplicatesalsoindicatedinFileS5).Broadsense 107 heritabilityestimatesH2ofthe8-waydatasetweregeneratedbyrepeatedmeasurementsof 108 RILs(IDsgiveninFileS5). 109 Theseconddatasettermed‘4-way’wasinitiatedbyacrossbetweentwoJapaneseand 110 twoAfricanstocks(SeetableS1).Narrowsenseheritabilityh2wasestimatedbymeasuring 111 theprogenyofsinglepairmatingsfromthe2ndto6thgenerationwherephenotyped 112 parentswererandomlyselectedfromdifferentvialstoformsubsequentgenerations.The 113 followingnumberofsinglepairsweremeasuredineachgeneration[G2,15pairs],[G3,81 114 pairs],[G4,78pairs],[G5,88pairs],[G6,154pairs].Noduplicatevialsweregeneratedfrom 115 thesamematingpair.Notethatunlikethe8-waydataset,levelsofheterozygosityinthe 116 parentsandtheiroffspringarelikelytobesimilar.BroadsenseheritabilityestimatesH2of 117 the4-waydatasetweregeneratedbymeasuring83RILsestablishedfromthe4-waycross 118 bygeneration37(seeFileS5forstockIDs).Detailsofallprogenitorstocksofthe4-wayand 119 8-waydatasetswithestimatesoftheirpupallengtharegiveninTableS1. 120 121 Imageacquisition 122 Fliesweremaintainedonstandardfooddispensedinto28.5mmdiameter,95mm 123 heightvials(GeneseeScientific).Oncethefoodvialshadfullycooled,10cmx10.5cm 124 squaresofoverheadprojectorfilmwereslidintoeachvialliningtheirentireverticalwall 125 (nobo,plainpapercopierfilm,33638237).Amoredetaileddescriptionoftheentire 126 procedureandequipmentsetupisprovidedasFileS1.Acustomprintedsemi-transparent 7 127 labelincludingauniquebarcodewasaffixedtotheoutsideofeachvial.Vialswere 128 incubatedat24°ina12hourlight12hourdarkincubator.Adultswhereremovedafter1-2 129 nightsinvials(sometimes3to4nights,iffertilityappearedtobeloworduetoholidays). 130 Generallybythe10thdayaftertheparentswereinitiallyintroduced,themajorityof 131 offspringinthevialswerepresentaspupaeattachedtothetransparentfilm,fewifany 132 larvaeremainedinthefood.Thefilmfromeachvialwasremovedandplacedintoa 133 purpose-madeplasticframe(thisframecanbe3DprintedusingafileprovidedasFileS2) 134 thatholdsthefilmflatforphotographing.Foodfromthelowerpartofthefilmwasscraped 135 awayandanylarvaeoranywhitepupariumstage(P1)removed.Theframewasthen 136 photographedusingbottomilluminationinalighttightbox.Batchesoftheresultingimages 137 werethenanalyzedusingtheprocedurebelow. 138 139 Automatedimageanalysis 140 ACellprofiler(v2.1.0)pipelinewasdevelopedtosimultaneouslyrecognizepupaeandto 141 measureavarietyofattributesincludinglength.Theoutputsofallmeasurementsare 142 writtento.xlsfilesthatcanthenbeviewedorimportedintoanydatabaseprogram. 143 Cellprofilerisfreeopenaccesssoftwareprovidingasuiteofflexibleimageanalysistools 144 (Lamprechtetal.2007).InbrieftheCellprofilerpipelinefirstidentifies‘primaryobjects’ 145 distinctfromthebackgroundwithoutrestrictionontheirsize(module:identifyprimary 146 objects).Thenapplyingascalablemodelofpupalshapetoallobjectsthosethatare 147 composedofmultipletouchingpupaeareseparatedintodistinctpupae(module:Untangle 148 Worms,(Wählbyetal.2012)).Theresultingputativepupaearetheneachshrunkandthen 8 149 re-propagatedoutwardstomorepreciselyidentifytheedgesofeachpupabasedon 150 boundarychangesinpixelintensity(module:IdentifySecondaryobjects).Finally,pupae 151 arecrudelyfilteredonsizeattributesandtheproximityofneighboringobjectstoplace 152 theminoneofthethreeconfidenceclassesdescribedintheresults.Thedigitaloutlinesof 153 pupaeareoverlaidontoacroppedversionoftheoriginalimagetoallowuserstoeasily 154 visuallyassessquality. 155 Overlaidimagesandfilesofmeasurementswereimportedinbatchesintoadatabase 156 programFileMaker(v14,FileMakerInc.).Auniquebarcodestickeridentifyingthefilmin 157 theimagewasautomaticallyreadbythedatabase.Thisenabledtheimagefilestobe 158 automaticallyrenamedwiththebarcodeastheirnameforarchiving.Inadditiontopupal 159 measurementsa1€centcoin(16.25mmdiameter)presentinallimageswasmeasuredto 160 controlforcamerachangesandallowconversionofmeasurementinpixelstomm.Quality 161 filteringofpupaeandbasicanalyseswereperformedusingthedatabase.Anannotated 162 copyoftheCellprofilerpipelineisprovidedasFileS3. 163 164 Estimatesofheritability 165 BroadsenseheritabilityH2wasestimatedusingSPSSversion22withthe‘variance 166 components’function,withpupallengthasthedependentvariable,andRILnameasa 167 randomfactor.ThiswasdoneusingtheMinimumNormQuadraticUnbiasedmethod 168 (thoughANOVAproducedidenticalresultsto2decimalplaces).Themodelforthesingle 169 factorwasyij=μ+αj+eij.WhereyijisthejthobservationoftheithRIL,μistheoverallmean, 170 αjistherandomfactorandeistheassociatederror. 9 171 Narrowsenseheritabilityh2estimatesweredoneusing‘linearregression’function,with 172 pupallengthasthedependentvariableandparent-midpointsasanindependentvariable. 173 AllotherstatisticalanalysesandgraphswerealsoperformedusingSPSSorFilemaker.All 174 dataforindividualpupaareavailableasFileS4andforvialmeansasFileS5(fieldsusedin 175 eachgraphareindicatedintheassociated‘readme’files). 176 177 Humanheightdata 178 Estimatesofh2forhumanheightdatawasdoneusingthesamemethodsasforpupaewith 179 theoriginaldataofFrancisGaltonfor898individuals,transcribedfromhis1880s 180 laboratorynotebooks((Hanley2004),available 181 http://www.math.uah.edu/stat/data/Galton.html).The760individualsin123families 182 wherefourormoreindividualsweremeasuredwereusedforestimatesoftheh2 183 heritabilityofmeanfamilyheight(femaleswerenottransmutedintomales). 184 185 Genomescanforlocioflargeeffectimpactingpupallengthusing8-wayRILs 186 ScanswereperformedinR(version3.2.2)forthe195DSPRRILsmentionedabove(Kinget 187 al.2012a;b)usingthe‘DSPRscan’commandwithintheDSPRqtl-toolsprocedures 188 describedin(Kingetal.2012a;b).Theseutilize1SNPper10kbthroughoutthegenome 189 reference(withtheexceptionoftheYchromosomeandthemitochondrialgenome). 190 SignificanceLODscorethresholdswereestimatedusingthe‘DSPRperm’commandwith 10 191 1,000replicates.ThedatainputfileisavailableasFileS6.Thisscanwasundertakento 192 asseswhetheroneorfewlocioflargeeffectcontrolpupallengthi.e.thetraitisnot 193 complex.Notethatifthetraitiscontrolledbymanylociofsmallormoderateeffectsize,the 194 scanistoounderpoweredtorealisticallyidentifyindividualloci.Butthegoalofthescanis 195 toshowthatpupalsizeisnotarelativelysimpletraitcontrolledbyonlyafewmajoreffect 196 loci. 197 Dataavailability 198 AllstartingflystocksareavailablefromthesourcesdetailedinTableS1.RILsareavailable 199 fromthewebaddressgivenabove.FilesofrawdataareavailableasFilesS4,S5andS6. 200 201 RESULTS 202 Thelargenumbersofindividualsandvialsmeasuredmadepossiblethroughtheuseof 203 theautomatedmeasuringsystemprovidesrobustinsightsintohowphenotypicvariationis 204 partitionedforpupallength.Whilethemethodautomaticallyidentifiesandmeasures 205 pupaeformultipledifferentparameters(seeFileS1forafulllist),thelengthofthepupaeis 206 theprinciplefocusofthisstudy.Twodistinctsetsofbiologicalmaterialwereusedtodefine 207 thebiologicalpropertiesofpupallength.Thefirstdatasetisallderivedfroman8-waycross 208 (Kingetal.2012a;b).Thesecondisfroma4-waycross.Noneofthefoundingstocksare 209 sharedbetweenthe8-wayandthe4-waydatasets.BroadsenseheritabilityH2(reflecting 210 allpotentiallygeneticcontributionstotraitvariancee.g.,additive,epistatic,dominance, 211 maternalandpaternaleffects)wasestimatedthroughtheanalysisofrepeated 212 measurementsofrecombinantinbredlines(RILs).Narrowsenseh2heritability(reflecting 11 213 onlytheimpactofadditivegeneticeffects)wasmeasuredbyregressionofmid-parent 214 againsttheiroffspringmeasurements.Samplingpropertiesofthe8-wayand4-way 215 datasetsaredetailedinTable1andFigure1(seealsoFigureS1forsummaryofrepeat 216 measurementsofRILs). 217 Dataset Heritability Vial Vialsmeasured=1184,RILs=195 8-way H2 Individuals n=83,402, meanreplicatesperRIL=6.7(±2.4SD, meanpupallength=3.2(±0.21SD) min=4,max=15)) meanvialpupallength=3.2(±0.15SD) rangeof95%ofpupallengths=2.8-3.5mm meannumberofmeasuredpupaepervial=70 (±34SD) crossesmeasured=67 n=3,113, h2 meanvialpupallength=3.5(±0.11SD) meanpupallength=3.4(±018SD) rangeof95%ofpupallengths=3.1-3.5mm meannumberofmeasuredpupaepervial=47 (±15SD) Vialsmeasured=436,RILs=81 n=25,356, 4-way H2 meanreplicatesperRIL=5.54(±0.78SD, meanpupallength=3.6(±0.24SD) min=3,max=6)) meanvialpupallength=3.6(±0.15SD) rangeof95%ofpupallengths=3.4-4.0mm meannumberofmeasuredpupaepervial=59 (±24SD) crossesmeasured=363 n=22,487, h2 meanvialpupallength=3.4(±0.14SD) meanpupallength=3.4(±0.23SD) rangeof95%ofpupallengths=3.1-3.7mm meannumberofmeasuredpupaepervial=62 (±17SD) Table1Summaryofsamplingof8-wayand4waydatasets.Onlyvialswhere≥15pupaeweremeasuredbythe automatedsystemareconsidered.ForH2estimatesonlyRILswhere≥3replicatemeasurementswereavailableare considered. 218 219 220 221 222 12 223 A 5,000.0 Frequency 4,000.0 3,000.0 2,000.0 1,000.0 0.0 2.0 2.5 3.5 4.0 4.5 pupal length (mm) 224 225 3.0 B 400.0 Frequency 300.0 Page 1 200.0 100.0 0.0 2.0 2.5 3.0 3.5 4.0 4.5 vial average pupal length (mm) 226 227 228 229 230 231 232 Figure1.Samplingdistributionsofpupallengthforindividualsandvials.A,distributionsforindividualpupal lengths,4-waydataset(blue)n=47,843,8-waydataset(green)n=86,515.B,Correspondingdistributionsforvialmean pupallengths,4-waydataset(blue)n=799vials,8-waydataset(green)n=1251vials.Onlyvialswhere≥15pupaewere measuredbytheautomatedsystemareconsidered.AstockpossessingtheTb1mutationresultinginthewellknown tubbypupalphenotype(Bloomingtonstock3644)wasmeasuredandfoundtohaveameanpupallengthof2.7mm,which isatthelowerboundsofthesmallestwildtypeindividualsorvialsshownhere. 13 Page 1 233 234 Performanceofautomatedpupalphenotyping. 235 Theautomatedpupalrecognitionpipelineattemptstoidentifytheexternaloutlinesof 236 threeclassesofobjects.Highconfidencepupae:conformtoasetofexpectedpropertiesand 237 thathavenoneighboringpupaewithin20pixels(≈0.7mm,Cellprofilermodule:filter 238 objects).Mediumconfidencepupae:conformtothesamesetofpropertiesbutwithcloser 239 than20pixelneighboringobjects.Thisoftenoccursaslarvaeselectpupationsitestouching 240 eachother,resultinginamorechallengingtargetforimagerecognition.Lowqualityobjects: 241 unlikelytobepupae.ExamplesofthethreeclassesareshowninFigure2,(seeFileS1for 242 furtherdetails). 243 14 244 245 246 247 248 249 250 251 252 Ofthepupaeretainedforanalysis47%and53%werehighandmediumconfidence 253 respectively.Theprobabilityofpupaebeingmanuallyexcludedasaberrantlymeasured 254 was0.02forhighqualitypupaeand0.10formediumconfidencepupae(Figure2).Note 255 thatnotallimagesweremanuallyexamined,assometimesduetotherobustnessofthe 256 automatedestimatesgenerallyonlyvialswithatypicallyhighvarianceofthemeanwere 257 examined. 258 Theprecisionoftheautomatedsystemwasassessedbyre-measuringasubsetoffilmsafter 259 rotatingthemby180°andcomparing516duplicatedmeasurementsofthesamepupae 260 (Figure3).Thedifferencebetweenthetwomeasurementswasanaverageof0.043mm 261 (±0.030SD).Re-measuringpupaeafterdelaysof15or30hoursalsogeneratedsimilar 262 precisionestimates,indicatingthatoncepupaebecomebrownpuparium(P2)thereisno 263 detectablechangeinpupallength.Furthermoretheexuviaofeclosedindividualscanalso 264 bereliablymeasured(datanotshown). 265 266 Thecountofautomaticallymeasuredpupaeisareasonableproxyfordensitywithinvials. 267 Unsurprisinglynotallpupaewerecorrectlycapturedbytheautomatedsystemandbased 268 onasampleof148vialsanaverage20%±11.7SDpupaepervialweremissed,calledaslow 269 confidenceobjectsormanuallyexcluded(Figures4and2).Whilethereisanincreased Figure2.Visualoutputofautomatedphenotypingsystem.Blueoutline=highconfidencepupae,redoutline=medium confidencepupae,yellowoutline=lowqualityobjects.Asmallproportionofpupaeareentirelymissedbytheautomated system(greenarrow).Othersareaberrantlymeasuredduetocloseproximitytootherpupaeresultingintruncationor extensionoftheiroutline.Eventhosewithaahighconfidenceassignmentcanalsoappearmalformed(orangearrow). Theyshouldbemanuallyexcludedfromanalysistoreducenoise(seeFileS1formoreexamplesofaberrantandcanonical pupae).AllobjectsarenumberedinCellprofileroutputfilestopermitnumericalmeasurementstobeeasilyrelatedto images. 15 varianceintheproportionofunmeasuredpupaeinhigherdensityvials(e.g.wherethe 271 automatedcountis>80),evenheretheautomatedcountprovidesareasonableproxyfor 272 densityofindividualsineachvial.Thisassumesthatfewifanylarvaeremainedonthefood 273 surfaceafterfilmtransfer,aswasgenerallythecase(dueinparttotheshortperiodparents 274 remainedinthevials).Inadditionthesmallnumberofpupaeremovedfromfilmsthatwere 275 obscuredbylarvalfoodrepresentsaconstantproportionacrossallvials(seeFileS1). pupal length reverse orientation (mm) 270 4.5 4.0 3.5 3.0 2.5 2.0 276 277 278 279 280 281 2.5 3.0 3.5 4.0 4.5 pupal length normal orientation (mm) Figure3.Precisionofautomatedpupallengthestimates.Comparisonofpupallengthmeasurementsoffilmsinthe normalorientationcomparedtowherethesamefilmwasrotatedby180°Allpupaeisolatedfromothersbyupto15 pixelsinanydirectionwereused(n=516pupae,across10vials).Slope=0.94andR2=0.98.Anx=ylineisshownfor reference. Page 1 16 estimated vial density (automated count photographed pupae) 250 200 150 100 50 0 0 50 100 150 200 250 true vial density (manual count of photographed pupae) 282 283 284 285 286 287 288 Impactofvialdensityonpupallength. 289 OnecommonmajorenvironmentalcovariateofmanyDrosophilatraitsisdensityof 290 individualswithinthevialtheydevelopin.ConsequentlymanyDrosophilaresearchers 291 controlforthisinexperimentsbycollectinglargenumbersofzygotesandplacinga 292 controllednumberineachvial.Thisisafairlylaboriousprocesstoroutinelyperform, Figure4.Comparisonofautomatedcountofpupaepervialversusmanualcounting 148vialsfromacrosstheentirerangeoftheautomateddensitiesobservedweremanuallyrecounted.Whileathigher densitiestheaccuracyoftheautomatedcountdecreasesitremainsareasonableproxyforvialdensityacrosstheentire observedrange.Slope=0.81andR2=0.92.Anx=ylineisshownforreference. Page 1 293 whichisconsiderablycomplicatedwheresinglepaircrossesarerequired. 294 Heredensitywasonlyindirectlycontrolledthroughlimitingthenumberofparentsused 295 pervialandrestrictingthenumberofnightstheyremainedbeforebeingcleared(generally 296 2nightsforsinglepaircrosses,andonenightforsmallgroups(n=10-20)ofRIL 17 297 individuals,seeFileS1).Throughoutallexperimentstwostockswerecontinuallyre- 298 measuredtoactascontrols(stock335and329,seeTableS1).Thelargenumberofrepeat 299 measurementsofthesetwostocksacrossarangeofdensitiespermitstheexaminationof 300 anyrelationshipbetweendensityandpupallength(Figure5).Furthermore,inthesame 301 wayitisalsopossibletoexploretherelationshipbetweendensityandpupallengthusing 302 therepeated8-wayand4-wayRILmeasurements(seeFigureS2).AllRILsandcontrol 303 stocksexhibitauniformlynegativerelationshipbetweendensityandpupallengththeslope 304 variesfrom-0.0006to-0.0041.Thisobservedvariabilitymayreflecteithervariancein 305 estimatingslopesoralsothatRILsexhibitdifferentreactionnorms 306 .Ifthemodeslopeof-0.002(FigureS2)isusedtocorrectthemeanlengthofvials(or 307 individuals)tothatobservedatthemeanobservedvialdensitythiscanbeachievedwith 308 thefollowingequation. 309 Equation1 310 311 312 313 314 M=meanvialdensityacrosswholeexperiment 315 ((D-M)S)+Q=Pupallengthcorrectedforvialdensity 316 317 Applyingthisformulatothe431vialsestablishedassinglepaircrosses>99%ofthem 318 wouldrequireacorrectionoflessthan±0.1mmandofthe1,620vialsestablishedfrom 319 smallgroupsofRILindividuals95%ofthemrequireacorrectionoflessthan±0.118mm 320 (Figure6).Giventhemodestnumberofvialssubjectedtoalargecorrectionand S=slopeofregressionofdensityagainstmeanviallength(-0.002) D=automatedestimateofdensityinvialtobecorrected Q=individuallengthmeasurementorvialmeantobecorrected 18 uncertainlyaboutwhetherthereisatrulyuniversallinearrelationshipbetweendensity 322 andpupallengthnoneofthemeasurementspresentedinthemanuscripthavebeen 323 analyticallycorrectedfordensity.FurthermorewithrespectstorepeatedRIL 324 measurements,reducinganyconfoundingimpactofdensitycanbeachievedbyeither 325 experimentallyincreasingthenumberofreplicatemeasurementsclosertothemean 326 density,oranalyticallybyexcludingorweightingdownvialswithextremedensityvalues. Pupa length vial average (mm) 321 4.5 4.0 3.5 3.0 2.5 20 40 60 80 100 120 Automated estimate of pupal density (count of measured pupae in a vial) 327 328 329 330 331 332 0 Figure5.Relationshipbetweenvialdensityandpupallengthforthetwocontrolstocks.Repeatedmeasurementsof thesamestocks(oneshortonelong)atdifferentdensitiespermitstheslopeandcorrelationoftherelationshiptobe estimated.Whilethereisahighdegreeofcorrelationforthelongerstock-329(redcircles)R2=0.48p=>0.001the correlationfortheshorterstock-335(blacktriangles)isminimalR2=0.07p=0.07 19 Page 1 333 A B 100% Cumulative percentage Cumulative percentage 100% 80% 60% 40% 80% 60% 40% 20% 20% 0% 0% 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Estimate of length correction due to vial density (mm) 0.0 0.1 0.2 0.3 0.4 Estimate of length correction due to vial density (mm) 334 335 336 337 338 339 340 341 342 343 Varianceintheestimatesofvialmeans. 344 AscriptwaswritteninFilemakertoexploretheextenttowhichestimatesofmeanvial Figure6.Magnitudeofpotentialcorrectionofpupallengthforvialdensity,usingequation1. Themoreuniformvialdensitiesfromsinglepairmatings(A)resultedinallbutonevialbeingwithin50pupaeofthe meanobserveddensityof65,correspondingtoamaximumcorrectionfordensityof0.1mm(n=431vials).Theincreased varianceofthevialdensitiesresultingfromestablishingvialsfromsmallgroupsofRILindividuals(B)ledto approximately5%ofvialsbeingcorrectedby>0.1mm(n=1620vials).Acalculatedmeandensity(M)of65wasusedfor allvials.AslopevalueofS=-0.002wasused,ifasteeperslopeisusedthentherewouldbeacorrespondingincreaseinthe magnitudeofthecorrections.Allvialwithadensityof<15wereexcluded. Page 1 Page 1 345 pupallengthbasedonsub-samplesofindividualswithinavialdeviatefromthevialmeans 346 basedonallindividuals.Thisprovidesinsightintoatwhatpointvialswithlowdensities 347 generatemeanestimateswithunacceptablyhighvariance.Figure7indicatesthatwhile 348 selectingsingleindividualstoestimatevialmeansunsurprisinglyresultsinahighdegreeof 349 varianceofupto0.4mm.Whiletheestimatesareunbiasedthisislikelytoprove 350 unacceptablyhighgiventhatthetotalobservedrangeofpupallengthsis1.1mmand0.8- 351 0.9mmwithindatasets.However,forrandomsub-samplesizesequaltoadensityof15or 352 greaterthevarianceisgreatlyreducedtolessthan0.07mmfor95%ofvials(Figure7).On 20 thisbasisonlyvialswithmorethat15measuredpupaewereincludedforanalysisor 354 presentationthroughoutthisstudy. 355 Range of 95% of replicate differences between the mean vial pupal length estimate based on all individuals compared to those based on subsubsamples of individuals (mm) 353 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 1 6 11 16 21 26 31 36 41 46 51 Size of sub-sample (count of individuals) 356 357 358 359 360 361 362 363 364 TheimpactofusingsmallernumbersofvialstoestimateRILmeanlength 365 InmeasuringpanelsofRILsitisusefulforpracticalreasonstominimizethenumberof 366 replicatevialsmeasuredforeachRILtoestimateanRILmeanwithanacceptabledegreeof 367 variance.Using8RILsandthetwocontrollinesallofwhichweremeasure12ormore Page 1 Figure7.Deviationofmeanvialpupallengthofrandomsub-samplescomparedtothatbasedonallindividuals withinavial. Eachvialwasresampledselectingonlyasub-sampleofthepupallengthmeasurementswithinavialtocalculateasubsamplemeanlengththatwasthensubtractedfromthemeanlengthbasedonallsampledindividuals.Eachvialwasresampled100timespersub-samplesize.Whiskersrepresentrangeof95%ofsub-sampledeviationsandcirclesthemean deviationof100replicates.Basedon729vialswithdensitiesrangingfrom51-60measuredpupae. 21 368 timesitispossibletoexploretherelationshipbetweenRILmeansandthenumberof 369 replicatevialmeasurementsused.Figure8indicatesthatsixreplicatedmeasurements 370 generallyresultin95%ofRILestimatesbeinglessthat0.1mmdifferentfromthatbasedon 371 largernumbersofreplicatevialmeasurements.Themeannumberofreplicatevial 372 measurementsperRILinthisstudywas6.4±2.1SD(5.8%theminimum4replicates, 373 18.0%=5replicates,61.2%=6replicatesand15%>6replicates). 374 22 375 376 A Deviation of sub-sample pupal length mean from RIL mean (mm) 0.30 0.25 329 (n=64) 335 (n=31) 11021 (n=12) 11210 (n=13) 11229 (n=12) 0.20 0.15 0.10 11236 (n=14) 11237 (n=15) 11257 (n=12) 11259 (n=12) 11265 (n=12) 0.05 0.00 -0.05 -0.10 -0.15 -0.20 -0.25 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 37 43 49 55 61 63 Size of sub-sample (count of individuals) 377 378 B Deviation of sub-sample pupal length mean from RIL mean (mm) 0.30 0.25 0.20 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 -0.25 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 37 43 49 55 61 63 Size of sub-sample (count of individuals) 379 380 Figure8.DeviationofmeanRILpupallengthutilizingrandomsub-samplesofvialscomparedtothatbasedonall 381 measuredvials.ForalleightRILandtwocontrolstockswith12ormorevialreplicatemeasurementstheRILmeanpupal 382 lengthwasrecalculatedusingarandomsub-sampleofvials.EachRILwasresampled100timespernumberofvialsub- 383 samplesizeused.Whiskersrepresentrangeofsub-samplemeans,circlesrepresenttheoverallmeans.(A)providesthe 384 rangeof95%ofsub-samplesand(B)50%ofsub-samples.TotalnumberofreplicatevialmeasurementsperRILwereas 23 Page 1 385 follows,[RILs11229,11257,11259,11265,11021=12replicates],11210=13replicates,11236=14replicates,11237= 386 15replicates,335=31replicates,and329=64replicates.Noteallpupaeinvialswereusedtocalculateeachviallength 387 mean,onlythenumberofvialmeansineachsub-samplewasvariedinestimatinglengthRILmeans. 388 h2(mid-parent regression) 4-way 8-way Human Height Offspringvialmeans 0.44±0.04SE R2=0.31 Offspringindividual 0.42±0.08SE R2=0.10 Offspringvialmeans 0.50±0.09SE R2=0.33 Offspringindividual 0.54±0.02SE R2=0.14 Offspringfamily(≥4)means 0.68±0.09SE R2=0.31 Offspringindividual 0.68±0.06SE R2=0.11 Vialmeans 0.58 Vialmeans 0.61 Notpossible Vialmeans 0.61 Vialmeans 0.71 - H2 ExpectedH2 assuming additiveonly model. (2h2)/(1+h2)a 389 390 391 392 393 Estimatesofnarrowsenseheritabilityh2. 394 Estimatesoftheadditivegeneticimpactonthevarianceofthetraitcanbegainedfromthe 395 slopeofregressingtheparentalmidpoint((lengthoffather+lengthofmother)/2)against 396 thelengthoftheprogeny(Galton1886).Figure9indicatesthatdespitethe8-way(67 397 crosses)and4-waydatasets(363crosses)havingnooverlapinbiologicalmaterialand 398 havingquitedistinctsamplingpropertiestheybothresultinremarkablysimilarestimates 399 ofh2,whenrepresentingalloffspringofacrossasamean.Ifalloffspringarerepresented 400 individuallythentheestimateofheritabilityislargelyunchangedforbothdatasets(Table 401 2).Thisrobustnessintheestimatesissharedwithhumanheight(Table2and(Hanley 402 2004)).Likewise,regressionsthatuseonlythefatherormothermeasurements,ratherthan a(Mackay2013) Table2Summaryofheritabilityestimatesforpupallengthandhumanheight.DataforbothHumanandDrosophila isuncorrectedforanysexualdimorphism. 24 theirmidpoint,confirmthatpaternalandmaternaleffectsareofequalmagnitudeforboth 404 pupallengthandhumanheight(seeFigureS3). 405 Offspring pupa length vial average (mm) 403 4.5 4.0 3.5 3.0 2.5 2.5 3.0 3.5 4.0 4.5 Parental-midpoint (mm) 406 407 408 409 410 411 412 EstimatesofbroadsenseheritabilityH2 413 Estimatesofallpotentiallygenetic(H2)impactsonthevarianceofthetraitcanbeobtained 414 byestimatingtheproportionofthetotalvarianceinmeanviallengthmeasurements 415 relatedtoRILstock.Table2summarizestheresultswithboththe8-way(195RILs)and4- 416 way(81RILs)datasetsgeneratingverysimilarestimatesofH20.58and0.61respectively. Figure9Estimatesofmeanviallengthnarrowsenseheritabilityh2for8-wayand4-waydatasets. Despitenooverlapinthestocksusedtoinitiatebothdatasetsthereisaremarkablesimilarityintheslope(h2)andthe degreeofcorrelation(R2)amongthem,seeTable2forallparameterestimates.Greenclosedcircles=8-waycrosses,blue opencircles=4-waycrosses, Page 1 25 417 ThesignificanceofANOVAtestsreflectsthestronggeneticsignal8-wayp=2.7x10-140(F= 418 10.86,MeanSquare=0.093,df=194,sumofsq=18.3)4-wayp=8.8x10-50((F=9.026,Mean 419 Square=0.087,df=80,sumofsq=6.9) 420 421 Wholegenomescanforlociimpactingpupallength. 422 Using195RILsfromthe8-waydatasetandtheDSPRtoolsagenomescanforgenomic 423 regionsassociatedwithmeanRILpupallengthwasconducted(un-weightedmeanof 424 replicatevialmeans).Thedensityofmarkersusedintheanalysisis1SNPper10kbacross 425 almosttheentirereferencegenome(excludingthemtDNAandYchromosome).NoSNPsof 426 significancewereidentifiedatα=0.05,thiswasalsothecaseifdensitycorrectedRILmeans 427 wereused(Figure10). 428 429 430 431 Figure10GenomescanofRILpupallengthin8-waydataset(195RILsmeansuncorrectedforvialdensity).No peaksaresignificantatap=0.05thresholdof7.02LOD(estimatedbypermutation). 432 26 433 434 DISCUSSION 435 436 While(Visscheretal.2010)statedthat“Onecouldarguethatheightinhumansisthe 437 equivalentofbristlenumberinDrosophila,intermsofitsroleasamodelphenotype.”we 438 proposethatpupallengthisasgood,ifnotabetteranalogue,basedonitsbiological 439 propertiesdescribedindetailforthefirsttimehere.Thisisinadditiontothecapacityto 440 automatephenotypingusingareliablelowcostsystem.Heritabilityisestimatedusingtwo 441 distinctmeasures,broadsense(H2)andnarrowsense(h2)forbothoftwobiologically 442 independentdatasets.Thisallowstheconsistencyofheritabilityestimatestobeassessed 443 betweentwodatasets,whichlikelyspanmostoftherangeofthetraitwithinDrosophila 444 melanogaster.Furthermorethecontrastbetweenh2(additivegeneticeffectsonly)andH2 445 (additive+non-additiveeffects)permitsthemagnitudeofnon-additiveeffectstobe 446 estimated.Thepropertiesofpupallengthestablishedinthismannerarepotentiallysalient 447 toeffortstodevelopresourceefficientmeanstodissectgeneticallycomplextraitsand 448 similartothosereportedforhumanheight(Table3).Thekeyparameterbeingthehighand 449 consistentheritabilityestimates,whichinpartreflectthereliabilityofautomated 450 measurementsweretheestimatedprecisionofmeasurementsof0.04mmissmallrelative 451 totherangeofthetraitasaspecies(1.1mm)orwithindatasets(0.8-0.9mm).Thereliability 452 ofpupallengthmeasurementsalsolikelycontributestothenormalityofthedistributions 453 observedateveryhierarchicallevelinthedatasets(e.g.Figure1). 27 454 AdultHuman height Drosophilamelanogaster pupallength (basedonthisstudy) Amongthemost Intop80%ofmostheritable heritablereportedin traitsinD.melanogaster Humansh2=0.4-0.7a h2=0.4-0.5b Manual Automated ≈70cm ≈1.1mm ≈1.5cmc 0.042mm(±0.030SD) ≈0.02 ≈0.04 Equal Equal ≈180-4000d Unknown Notpossible Easy Relativeheritabilityoftrait Measurementmethod Typicalrangewithinspecies(ignoring sexualdimorphism) Measurementerror Ratioofmeasurementerror:typical rangeoftraitinspecies Paternalandmaternalimpacton offspringtraitvariance. Numberoflociestimatedtoimpact varianceoftrait Experimentalmanipulationofallele frequencies 455 456 457 458 Table3Salientpropertiesofpupallengthrelativetohumanheight. a(Hanley2004;Visscheretal.2010)correctedforsexualdimorphism,bnotadjustedforsexualdimorphism,c(Vossetal. 1990),d(Aulchenkoetal.2009;Vinkhuyzenetal.2013;Woodetal.2014) 28 459 Theeaseofphenotypinglargenumbersofindividualsatadevelopmentalstagewhere 460 theyareobligatorilystationaryfor2-3dayshasenabledrobustinsightintotheheritability 461 ofpupallengthat24°.Theverysimilarestimates(Table2)ofheritabilityfortwo 462 independentdatasets,providesincreasedconfidencethatthistraitrepresentsanexcellent 463 prospectwithwhichtoattempttoidentifythegenesunderlyingthiscomplextrait. 464 Furthermore,thesimilaritybetweentheobservedbroadsenseheritabilityH2estimates 465 andthoseexpectedbasedonapurelyadditivemodelofinheritance(seelastrowinTable 466 2)indicatesthatepistatic,dominanceandpaternalormaternaleffectsarerelatively 467 modest(Mackay2013).Theobservedsimilarityinthetwoh2estimates(andtheassociated 468 correlationR2)betweenthe4-wayand8-waydatasets(Figure9)couldalsobearguedto 469 reflectamodestrolefordominance.Thisisbecausewhiletheparentsandoffspringofthe 470 4-waycrosseshavesimilarlevelsofheterozygosity,the8-wayparentsareinbredRILs 471 whiletheiroffspringareheterozygous.Undersomeformsofdominanceeffectsboththe 472 slopeandthecorrelationoftheregressioncouldbereducedinthelattercase,whichisnot 473 thecaseforpupallength.Withrespectstomaternalandpaternaleffectsthedatapresented 474 here(FigureS3)provideevidencethatanynon-additivepaternalormaternaleffectsare 475 small,asthesizeoftheeffectmothersandfathersexertontheiroffspringissymmetrical 476 (whichisalsoapropertyofhumanheight(Hanley2004)). 477 Ithasbeendetailedabovethattheimpactofdensitywithinvialsonpupallengthis 478 relativelymodest(mostlylessthan0.1mm,Figures5and6)andcanbeconveniently 479 controlledfor.Whileotherenvironmentalvariableswerenotsystematicallyexplored, 480 limiteddatacollectedforthetwocontrollinesindicatesthatbetween18°and24°pupal 29 481 lengthchangesby0.2-0.4mm(FigureS4),withpupallengthbeinggreateratcooler 482 temperatures.Thecorrelationbetweenadultbodyweightandpupallengthwasalsobriefly 483 examinedandfoundtobeR2=0.6forbothmalesandfemales(seeFigureS5).Any 484 correlationbetweenadultbodylengthandpupallengthwasnotexamined,thoughitis 485 potentiallynoteworthythatindividualspossessingtheTb1mutationresultingina 486 strikinglyshorttubbypupaarenotreadilydistinguishedfromwildtypeasadultsbasedon 487 theirbodylength.Giventhelargenumbersofgenesimpactinghumanheight(Table1)itis 488 unsurprisingthatitcanbecorrelatedwithdisparatetraitsofparticularinterest(e.g.cancer 489 risk,cardiovasculardiseaseandlongevity(Nelsonetal.2015;(NCD-RisC)2016)).Future 490 examinationoftraitscorrelatedwithpupallength(includingtheirreactionnorms)may 491 proveinformativewithrespectstotheirgeneticarchitectureandthatofpupallength. 492 Currentlytheautomatedsystemdoesnotattempttodistinguishmalepupaefrom 493 femalepupaebutitislikelythatitcouldbeextendedtogenerateprobabilisticsex 494 assignmentsbasedonthefactthatmalepupaeareonaverage≈8%smallerthanfemales 495 (datanotshown).Whenhumanheightdataiscorrectedforsexualdimorphism(alsoan8% 496 averagedifferencebetweensexes,(Galton1886;Hanley2004)),thereisacorresponding 497 increaseoftheheritabilityestimateby9%(seeTable1in(Hanley2004)).Thisimpliesthat 498 analyzingsexedpupallengthdatawillgenerateheritabilityestimatesthatexceedthe 499 valuesreportedhereforunsexedpupae(Table2). 500 Theobservationthatanaverage20%±11.7SDofpupaeinavialarenotmeasuredby 501 theautomatedsystem(Figure4)isgenerallynotanissueformostexperiments(evenfor 502 selectandre-sequenceapproaches),asitisoftenonlynecessarythatasubstantial 30 503 proportionofindividualsaremeasuredthatissufficienttoprovidearangeofparentsfor 504 thenextgenerationandtoreducethevarianceofmeanvialestimates(Figure7). 505 Furthermore,parametersprovidedinFigures7and8willprovidefutureresearchersthe 506 capacitytoreadilydesignmaximallyresourceefficientexperimentalstrategies. 507 Theobservationthatthegenomescanusing195RILs(8-waydataset)failedtoidentify 508 anysignificantlociimpactingpupallengthshouldbeconsideredinthelightthatwiththis 509 modestnumberofRILsthepowertodetectSNPsof10%or5%effectsizeisonly≈0.37and 510 ≈0.08respectively(basedonsimulationsincorporatingtheseexactRILs,seefigure9(King 511 etal.2012b)).Consequently,theresultspresentedhereshouldbeviewedasonly 512 potentiallysufficienttoindicatethatfewifanylocioflargeeffectofsizearelikelytoexist 513 forthistraitamongtheRILsused.Itisofcourseconceivablethatphenotypingmoreofthe 514 >1,600RILscurrentlyavailablewouldidentifysignificantloci(Kingetal.2012a;Huanget 515 al.2014),andthereareseveralinFigure10whichareclosetothe0.05significance 516 threshold.Alternativelyanexpandingvarietyofotherapproachescouldbeappliede.g. 517 selectandre-sequence(Turneretal.2011;NuzhdinandTurner2013;Koflerand 518 Schlötterer2014)orcomparisonsbetweenparallelselectedlines(Chanetal.2012).While 519 thisneedstobefurtherexploredinthefuture,itisclearthattheautomatedphenotyping 520 systemwillbeakeytodesigningmappingstrategiesthatshouldallowtheidentificationof 521 manyloweffectsizegenesforthistrait. 522 Theapparatususedtophotographpupaecanberapidlyassembledforapproximately 523 500€(includingacamera)ormayalreadybepresentinmanylabsasgeldocsystems. 524 Furthermorethenecessarysoftwareisopensourceandfreeandrunsonanystandard 31 525 desktopPCorMAC.Thecapacityoftheautomatedsystemtoprovidealargenumberof 526 phenotypedindividualsprovidesincreasedpowertoexaminethegeneticarchitectureof 527 traitsbymostapproaches.Thisislikelytoprovekeytoidentifyinggenesoralleles 528 influencingmeanpupallengthanditsvariance(Woodetal.2014).Thisisinadditionto 529 potentiallyfacilitatingexploringthepoorlyunderstoodgeneticbasisofsexualdimorphism 530 (Rawliketal.2016))andlociwhichimpactthevarianceoftraits(ratherthantheircentral 531 values,(Ayrolesetal.2015)).Inadditionthecapacitytoselectfromlargenumbersof 532 individualsfromwhichtoestablishfuturegenerationshasthepotentialtoenhanceselect 533 andre-sequenceapproaches(Turneretal.2011;NuzhdinandTurner2013;Koflerand 534 Schlötterer2014).Furthermore,thelargenumbersofpowerfulapproachesbasedonsingle 535 pairmatingsdevelopedbyanimalandplantbreeders(GianolaandRosa2015)mayalso 536 becomeamenabletoexaminecomplextraitsinDrosophilathroughtheuseofthissimple 537 lowcostsystem.Aswithhumanheightoveritstypicalrangethegeneticarchitectureof 538 pupallengthisoflimitedpracticalinterest.However,forthelast130yearstheformer 539 continuestoprovidekeyinsightsintothemethodsthroughwhichcomplextraitscanbe 540 bestunderstood,thisisinpartduetotheeaseandreliabilityofhumanheight 541 measurement.Thehighheritabilityofpupallengthandthecapacitytoeasilyautomate 542 phenotypingcombinedwiththesmallandwell-describedgenomeofDrosophila 543 melanogastercouldmakepupallengthasimilarlyvaluablemodeltrait. 544 545 32 546 Bibliography 547 548 AshburnerM.,GolicK.,HawleyR.S.,2011Drosophila:ALaboratoryHandbook.ColdSpringHarborLaboratory Press,ColdSpringHarbor,N.Y. 549 550 551 AulchenkoY.S.,StruchalinM.V,BelonogovaN.M.,AxenovichT.I.,WeedonM.N.,HofmanA.,UitterlindenA.G., KayserM.,OostraB.A.,DuijnC.M.Van,JanssensA.C.J.W.,BorodinP.M.,2009Predictinghuman heightbyVictorianandgenomicmethods.17:1070–1075. 552 553 554 AyrolesJ.F.,BuchananS.M.,O’LearyC.,Skutt-KakariaK.,GrenierJ.K.,ClarkA.G.,HartlD.L.,BivortB.L.de, 2015Behavioralidiosyncrasyrevealsgeneticcontrolofphenotypicvariability.Proc.Natl.Acad.Sci. U.S.A.112:6706–6711. 555 BarronA.B.,2000AnaesthetisingDrosophilaforbehaviouralstudies.J.InsectPhysiol.46:439–442. 556 BartonN.H.,EtheridgeA.M.,VéberA.,2016Theinfinitesimalmodel.bioRxiv:039768. 557 558 GaltonF.,1886RegressionTowardsMediocrityinHereditaryStature.TheJournaloftheAnthropological InstituteofGreatBritainandIreland15:246–263. 559 560 GianolaD.,RosaG.J.M.,2015OneHundredYearsofStatisticalDevelopmentsinAnimalBreeding.Annual ReviewofAnimalBiosciences3:19–56. 561 562 HanleyJ.A.,2004“Transmuting”WomenintoMen:Galton’sFamilyDataonHumanStature.TheAmerican Statistician58:237–243. 563 564 HouleD.,MezeyJ.,GalpernP.,CarterA.,2003AutomatedmeasurementofDrosophilawings.BMC EvolutionaryBiology3:25. 565 566 567 568 569 570 571 572 HuangW.,MassourasA.,InoueY.,PeifferJ.,RamiaM.,TaroneA.M.,TurlapatiL.,ZichnerT.,ZhuD.,LymanR. F.,MagwireM.M.,BlankenburgK.,CarboneM.A.,ChangK.,EllisL.L.,FernandezS.,HanY.,Highnam G.,HjelmenC.E.,JackJ.R.,JavaidM.,JayaseelanJ.,KalraD.,LeeS.,LewisL.,MunidasaM.,OngeriF., PatelS.,PeralesL.,PerezA.,PuL.,RollmannS.M.,RuthR.,SaadaN.,WarnerC.,WilliamsA.,WuY.-Q., YamamotoA.,ZhangY.,ZhuY.,AnholtR.R.H.,KorbelJ.O.,MittelmanD.,MuznyD.M.,GibbsR.A., BarbadillaA.,JohnstonJ.S.,StoneE.A.,RichardsS.,DeplanckeB.,MackayT.F.C.,2014Natural variationingenomearchitectureamong205DrosophilamelanogasterGeneticReferencePanellines. GenomeResearch24:1193–1208. 573 574 575 KingE.G.,MerkesC.M.,McNeilC.L.,HooferS.R.,SenS.,BromanK.W.,LongA.D.,MacdonaldS.J.,2012a GeneticdissectionofamodelcomplextraitusingtheDrosophilaSyntheticPopulationResource. GenomeResearch22:1558–1566. 576 577 KingE.G.,MacdonaldS.J.,LongA.D.,2012bPropertiesandPoweroftheDrosophilaSyntheticPopulation ResourcefortheRoutineDissectionofComplexTraits.Genetics191:935–949. 578 579 KoflerR.,SchlöttererC.,2014Aguideforthedesignofevolveandresequencingstudies.Mol.Biol.Evol.31: 474–483. 33 580 581 LamprechtM.R.,SabatiniD.M.,CarpenterA.E.,2007CellProfiler:free,versatilesoftwareforautomated biologicalimageanalysis.BioTechniques42:71–75. 582 583 MackayT.F.C.,2013Epistasisandquantitativetraits:usingmodelorganismstostudygene–gene interactions.NatureReviewsGenetics15:22–33. 584 585 MediciV.,VoneschS.C.,FryS.N.,HafenE.,2015TheFlyCatwalk :AHigh-ThroughputFeature-BasedSorting SystemforArtificialSelectioninDrosophila.5:317–327. 586 (NCD-RisC)N.R.F.C.,2016Acenturyoftrendsinadulthumanheight.eLife5:e13410. 587 588 589 590 591 592 593 594 595 NelsonC.P.,HambyS.E.,SaleheenD.,HopewellJ.C.,ZengL.,AssimesT.L.,KanoniS.,WillenborgC.,BurgessS., AmouyelP.,AnandS.,BlankenbergS.,BoehmB.O.,ClarkeR.J.,CollinsR.,DedoussisG.,FarrallM., FranksP.W.,GroopL.,HallA.S.,HamstenA.,HengstenbergC.,HovinghG.K.,IngelssonE.,Kathiresan S.,KeeF.,KönigI.R.,KoonerJ.,LehtimäkiT.,MärzW.,McPhersonR.,MetspaluA.,NieminenM.S., O’DonnellC.J.,PalmerC.N.A.,PetersA.,PerolaM.,ReillyM.P.,RipattiS.,RobertsR.,SalomaaV.,Shah S.H.,SchreiberS.,SiegbahnA.,ThorsteinsdottirU.,VeronesiG.,WarehamN.,WillerC.J.,ZallouaP.A., ErdmannJ.,DeloukasP.,WatkinsH.,SchunkertH.,DaneshJ.,ThompsonJ.R.,SamaniN.J.,2015 GeneticallyDeterminedHeightandCoronaryArteryDisease.NewEnglandJournalofMedicine372: 1608–1618. 596 597 NuzhdinS.V.,TurnerT.L.,2013Promisesandlimitationsofhitchhikingmapping.CurrentOpinioninGenetics &Development23:694–699. 598 599 600 PoldermanT.J.C.,BenyaminB.,LeeuwC.A.de,SullivanP.F.,BochovenA.van,VisscherP.M.,PosthumaD., 2015Meta-analysisoftheheritabilityofhumantraitsbasedonfiftyyearsoftwinstudies.Nature Genetics47:702–709. 601 602 RawlikK.,Canela-XandriO.,TenesaA.,2016Evidenceforsex-specificgeneticarchitecturesacrossaspectrum ofhumancomplextraits.GenomeBiology17. 603 604 RoffD.A.,MousseauT.A.,1987QuantitativegeneticsandfitnesslessonsfromDrosophila.Heredity58:103– 118. 605 606 607 TurnerT.L.,StewartA.D.,FieldsA.T.,RiceW.R.,TaroneA.M.,2011Population-BasedResequencingof ExperimentallyEvolvedPopulationsRevealstheGeneticBasisofBodySizeVariationinDrosophila melanogaster(GGibson,Ed.).PLoSGenetics7:e1001336. 608 609 610 VinkhuyzenA.aE.,WrayN.R.,YangJ.,GoddardM.E.,VisscherP.M.,2013Estimationandpartitionof heritabilityinhumanpopulationsusingwhole-genomeanalysismethods.Annualreviewofgenetics 47:75–95. 611 612 VisscherP.M.,McEvoyB.,YangJ.,2010FromGaltontoGWAS:quantitativegeneticsofhumanheight.Genetics Research92:371–379. 613 614 VossL.D.,BaileyB.J.,CummingK.,WilkinT.J.,BettsP.R.,1990Thereliabilityofheightmeasurement(the WessexGrowthStudy).ArchivesofDiseaseinChildhood65:1340–1344. 615 616 617 WählbyC.,KamentskyL.,LiuZ.H.,Riklin-RavivT.,ConeryA.L.,O’RourkeE.J.,SokolnickiK.L.,VisvikisO., LjosaV.,IrazoquiJ.E.,GollandP.,RuvkunG.,AusubelF.M.,CarpenterA.E.,2012Animageanalysis toolboxforhigh-throughputC.elegansassays.NatureMethods9:714–716. 34 618 619 620 621 622 623 624 WeedonM.N.,LangoH.,LindgrenC.M.,WallaceC.,EvansD.M.,ManginoM.,FreathyR.M.,PerryJ.R.B., StevensS.,HallA.S.,SamaniN.J.,ShieldsB.,ProkopenkoI.,FarrallM.,DominiczakA.,JohnsonT., BergmannS.,BeckmannJ.S.,VollenweiderP.,WaterworthD.M.,MooserV.,PalmerC.N.A.,MorrisA. D.,OuwehandW.H.,ZhaoJ.H.,LiS.,LoosR.J.F.,BarrosoI.,DeloukasP.,SandhuM.S.,WheelerE., SoranzoN.,InouyeM.,WarehamN.J.,CaulfieldM.,MunroeP.B.,HattersleyA.T.,McCarthyM.I., FraylingT.M.,2008Genome-wideassociationanalysisidentifies20locithatinfluenceadultheight. NatureGenetics40:575–583. 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 WoodA.R.,EskoT.,YangJ.,VedantamS.,PersT.H.,GustafssonS.,ChuA.Y.,EstradaK.,LuanJ.,KutalikZ., AminN.,BuchkovichM.L.,Croteau-ChonkaD.C.,DayF.R.,DuanY.,FallT.,FehrmannR.,FerreiraT., JacksonA.U.,KarjalainenJ.,LoK.S.,LockeA.E.,MägiR.,MihailovE.,PorcuE.,RandallJ.C.,ScheragA., VinkhuyzenA.A.E.,WestraH.-J.,WinklerT.W.,WorkalemahuT.,ZhaoJ.H.,AbsherD.,AlbrechtE., AndersonD.,BaronJ.,BeekmanM.,DemirkanA.,EhretG.B.,FeenstraB.,FeitosaM.F.,FischerK., FraserR.M.,GoelA.,GongJ.,JusticeA.E.,KanoniS.,KleberM.E.,KristianssonK.,LimU.,LotayV.,Lui J.C.,ManginoM.,LeachI.M.,Medina-GomezC.,NallsM.A.,NyholtD.R.,PalmerC.D.,PaskoD., PechlivanisS.,ProkopenkoI.,RiedJ.S.,RipkeS.,ShunginD.,StancákováA.,StrawbridgeR.J.,SungY.J., TanakaT.,TeumerA.,TrompetS.,LaanS.W.vander,SettenJ.van,Vliet-OstaptchoukJ.V.Van,Wang Z.,YengoL.,ZhangW.,AfzalU.,ÄrnlövJ.,ArscottG.M.,BandinelliS.,BarrettA.,BellisC.,BennettA.J., BerneC.,BlüherM.,BoltonJ.L.,BöttcherY.,BoydH.A.,BruinenbergM.,BuckleyB.M.,BuyskeS., CaspersenI.H.,ChinesP.S.,ClarkeR.,Claudi-BoehmS.,CooperM.,DawE.W.,JongP.A.De,DeelenJ., DelgadoG.,DennyJ.C.,Dhonukshe-RuttenR.,DimitriouM.,DoneyA.S.F.,DörrM.,EklundN.,EuryE., FolkersenL.,GarciaM.E.,GellerF.,GiedraitisV.,GoA.S.,GrallertH.,GrammerT.B.,GräßlerJ., GrönbergH.,GrootL.C.P.G.M.de,GrovesC.J.,HaesslerJ.,HallP.,HallerT.,HallmansG.,Hannemann A.,HartmanC.A.,HassinenM.,HaywardC.,Heard-CostaN.L.,HelmerQ.,HemaniG.,HendersA.K., HillegeH.L.,HlatkyM.A.,HoffmannW.,HoffmannP.,HolmenO.,Houwing-DuistermaatJ.J.,IlligT., IsaacsA.,JamesA.L.,JeffJ.,JohansenB.,JohanssonÅ.,JolleyJ.,JuliusdottirT.,JunttilaJ.,KhoA.N., KinnunenL.,KloppN.,KocherT.,KratzerW.,LichtnerP.,LindL.,LindströmJ.,LobbensS.,Lorentzon M.,LuY.,LyssenkoV.,MagnussonP.K.E.,MahajanA.,MaillardM.,McArdleW.L.,McKenzieC.A., McLachlanS.,McLarenP.J.,MenniC.,MergerS.,MilaniL.,MoayyeriA.,MondaK.L.,MorkenM.A., MüllerG.,Müller-NurasyidM.,MuskA.W.,NarisuN.,NauckM.,NolteI.M.,NöthenM.M.,OozageerL., PilzS.,RaynerN.W.,RenstromF.,RobertsonN.R.,RoseL.M.,RousselR.,SannaS.,ScharnaglH., ScholtensS.,SchumacherF.R.,SchunkertH.,ScottR.A.,SehmiJ.,SeufferleinT.,ShiJ.,SilventoinenK., SmitJ.H.,SmithA.V.,SmolonskaJ.,StantonA.V.,StirrupsK.,StottD.J.,StringhamH.M.,SundströmJ., SwertzM.A.,SyvänenA.-C.,TayoB.O.,ThorleifssonG.,TyrerJ.P.,DijkS.van,SchoorN.M.van,Velde N.vander,HeemstD.van,OortF.V.A.van,VermeulenS.H.,VerweijN.,VonkJ.M.,WaiteL.L., WaldenbergerM.,WennauerR.,WilkensL.R.,WillenborgC.,WilsgaardT.,WojczynskiM.K.,WongA., WrightA.F.,ZhangQ.,ArveilerD.,BakkerS.J.L.,BeilbyJ.,BergmanR.N.,BergmannS.,BiffarR., BlangeroJ.,BoomsmaD.I.,BornsteinS.R.,BovetP.,BrambillaP.,BrownM.J.,CampbellH.,Caulfield M.J.,ChakravartiA.,CollinsR.,CollinsF.S.,CrawfordD.C.,CupplesL.A.,DaneshJ.,FaireU.de,Ruijter H.M.den,ErbelR.,ErdmannJ.,ErikssonJ.G.,FarrallM.,FerranniniE.,FerrièresJ.,FordI.,ForouhiN. G.,ForresterT.,GansevoortR.T.,GejmanP.V.,GiegerC.,GolayA.,GottesmanO.,GudnasonV., GyllenstenU.,HaasD.W.,HallA.S.,HarrisT.B.,HattersleyA.T.,HeathA.C.,HengstenbergC.,HicksA. A.,HindorffL.A.,HingoraniA.D.,HofmanA.,HovinghG.K.,HumphriesS.E.,HuntS.C.,HypponenE., JacobsK.B.,JarvelinM.-R.,JousilahtiP.,JulaA.M.,KaprioJ.,KasteleinJ.J.P.,KayserM.,KeeF., Keinanen-KiukaanniemiS.M.,KiemeneyL.A.,KoonerJ.S.,KooperbergC.,KoskinenS.,KovacsP., KrajaA.T.,KumariM.,KuusistoJ.,LakkaT.A.,LangenbergC.,MarchandL.Le,LehtimäkiT.,LupoliS., MaddenP.A.F.,MännistöS.,ManuntaP.,MaretteA.,MatiseT.C.,McKnightB.,MeitingerT.,MollF.L., MontgomeryG.W.,MorrisA.D.,MorrisA.P.,MurrayJ.C.,NelisM.,OhlssonC.,OldehinkelA.J.,OngK. K.,OuwehandW.H.,PasterkampG.,PetersA.,PramstallerP.P.,PriceJ.F.,QiL.,RaitakariO.T., RankinenT.,RaoD.C.,RiceT.K.,RitchieM.,RudanI.,SalomaaV.,SamaniN.J.,SaramiesJ.,Sarzynski M.A.,SchwarzP.E.H.,SebertS.,SeverP.,ShuldinerA.R.,SinisaloJ.,SteinthorsdottirV.,StolkR.P., TardifJ.-C.,TönjesA.,TremblayA.,TremoliE.,VirtamoJ.,VohlM.-C.,AmouyelP.,AsselbergsF.W., 35 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 AssimesT.L.,BochudM.,BoehmB.O.,BoerwinkleE.,BottingerE.P.,BouchardC.,CauchiS.,Chambers J.C.,ChanockS.J.,CooperR.S.,BakkerP.I.W.de,DedoussisG.,FerrucciL.,FranksP.W.,FroguelP., GroopL.C.,HaimanC.A.,HamstenA.,HayesM.G.,HuiJ.,HunterD.J.,HveemK.,JukemaJ.W.,Kaplan R.C.,KivimakiM.,KuhD.,LaaksoM.,LiuY.,MartinN.G.,MärzW.,MelbyeM.,MoebusS.,MunroeP.B., NjølstadI.,OostraB.A.,PalmerC.N.A.,PedersenN.L.,PerolaM.,PérusseL.,PetersU.,PowellJ.E., PowerC.,QuertermousT.,RauramaaR.,ReinmaaE.,RidkerP.M.,RivadeneiraF.,RotterJ.I.,Saaristo T.E.,SaleheenD.,SchlessingerD.,SlagboomP.E.,SniederH.,SpectorT.D.,StrauchK.,StumvollM., TuomilehtoJ.,UusitupaM.,HarstP.vander,VölzkeH.,WalkerM.,WarehamN.J.,WatkinsH., WichmannH.-E.,WilsonJ.F.,ZanenP.,DeloukasP.,HeidI.M.,LindgrenC.M.,MohlkeK.L.,SpeliotesE. K.,ThorsteinsdottirU.,BarrosoI.,FoxC.S.,NorthK.E.,StrachanD.P.,BeckmannJ.S.,BerndtS.I., BoehnkeM.,BoreckiI.B.,McCarthyM.I.,MetspaluA.,StefanssonK.,UitterlindenA.G.,DuijnC.M.van, FrankeL.,WillerC.J.,PriceA.L.,LettreG.,LoosR.J.F.,WeedonM.N.,IngelssonE.,O’ConnellJ.R., AbecasisG.R.,ChasmanD.I.,GoddardM.E.,VisscherP.M.,HirschhornJ.N.,FraylingT.M.,2014 Definingtheroleofcommonvariationinthegenomicandbiologicalarchitectureofadulthuman height.NatureGenetics46:1173–1186. 685 Acknowledgements 686 Wewouldliketothankthefollowingindividuals.StuartMacdonaldforhishelpwiththe 687 DRSPstocksandtoolsandformaintainingthisvaluablecommonresource.Masayoshi 688 Watadaforhisinvaluableadviceandaccesstohispersonalflystocks.PredragKalajdzicfor 689 karyotypingthefounderlinesofthe4-waycross.OliverHirschforhelpwiththe 690 developmentofthesemi-transparentbarcodestickers.CarolinaWählbyforhelpwith 691 extendingtheuseofthe‘untangleworms’moduleofCellprofiler.AnitaMoellerforher 692 excellenttechnicalhelpandadvicewithconductingthisexperiment. 36
© Copyright 2026 Paperzz