1112 PART I: Solutions to Odd-Numbered Exercises and Practice Tests Solutions to Odd.Numbered Exercises 1. Y2=4+~ 4 x--1 4 X+2 3o Y2=X--2+~ (x- 2)(x + 2) + 4 4(x- 1)+4 x-1 4x-4+4 x-1 x+2 xZ-4+4 x+2 x+2 = Yl = Yl -21 -17 5. y2 "- x3 -- 4x + 2.2 + 1 (x3 - 4x)(~ + I) + 4x x2+ 1 4 x~ + .P - 4.P - 4x + 4x x~+l x+3) 2x+ 4 2 2x + lOx + 12 (2~+ 6x) 4x +12 - (4~ + 1~) 0 2x2 + lOx + 12 =2x+4 x+3 4x+5) xz- 3x+l 3~ 4x 7x -llx+5 (4.P + 5x~) - 12x2 - 1 lx -(- 12x:~ - 15x) 4x+5 - (4x + 5) 0 4x3 - 7x2 - 1 lx + 5 =x~-3x+ 1 4x + 5 103 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 7 7x+ 3 11o x+2) 13. 3x+5 3+ 2+ 6x l Ox x +8 2x2+Ox+ 1) - (7x + 14) -11 - (6x3 + Ox2 + 3x) lOx2 -- 2X +8 - (lOx~ + Ox +5) 7x + 3 11 -7-~ x+2 x+2 -2x +3 6x3+ l Oxz+x+8 2x-3 =3x+5 2 2x + 1 2x~ + 1 15. x2 + 2x + 4 x2-2x+3) x4+Ox3+3x2 +Ox + 1 + 3X2 + 1 2X -- 11 =X2+2X+4+ X~-- 2X+ 3 .~-- 2X+ 3 X4 -- (x4 -- 2x3 + 3x2) 2x3 + Oxa +Ox -- (2x3 -- 4x2 + 6x) 4x2 --6x + 1 -(4x2 -8x + 12) 2x - 11 2x 17. x2-2x+ 1) 2x3-4x2- 15x +5 -(2x3 -- 4X2 + 2X) --17x +5 2x3-4x2- 15x+5 =2x (x- 1)2 21. 3 67 -1 75 18 6 25 17x-5 (x- 1)2 26 222 1 0 512 -8 64 -512 -8 64 0 x3 + 512 -x~- 8x+ 64 x+8 32 -32 0 - 16 0 9x3 - 18x2 - 16x+ 32 2 =9x - 16 x -- 2 4 4 16 -23 -15 -2 -7 15 14 -30 0 4x3+ 16x2-23x- 15 = 4x2 + 14x - 30 x+½ 29. f(x)=x3 - xa- 14x + 11, k = 4 1 -16 0 9 0 1 -1 9 -18 18 74 248 1 --10 12 --22 12 8 80 3 2 20 58 3X3- IOx2+ 12X--22 58 = 3x2 + 2x + 20 + ~ x-4 x-4 23. 2 6x3 + 7x2 - x + 26 = 6x2 + 25x + 74 248 +~ x-3 x-3 25. -8 19. 4 3 -14 11 4 12 -8 3 -2 3 f(x) = (x- 4)(x2+3x-2) +3 f(4) = (0)(26) + 3 = 3 31. f(x)=x3+3x2-2x- 14, k= 1 3 -2 ~ 2+3-v/’~ 1 3+ v/~ + (3 + + f(-v~) = (0)(4 + 6-V~)- 8 = -8 - 14 6 -8 -8 104 PART I: Solutions to Odd-Numbered Exercises and Practice Tests -6 -12 -4 4 - 4ff~ 10 - 2~/~ 4 4 -2 - 4~/~ -2 - 2~/~ 0 f(x) = (x- 1 + .,/~)[4x2 -(2 + 4~/~)x- (2 + 2x/~)] f(X- ~/~) = 0 35. f(x) = 4x3 - 13x + 10 10 0 -13 (a) 1 4 4 4 -9 4 4 -9 1 =f(1) (c) ½ 40 -13 10 1 -6 2 42 - 12 (b) -2 0 -13 10 -8 16 -6 4 -8 3 4 0 -13 10 32 256 1944 32 243 1954 = f(8) 4 (d) 8 4 _~_4= f(½) 4 = f(-2) 37. h(x)=3x3+5x2- lOx+ 1 (a) 3 [ 3 5 9 I 3 14 - 10 1 42 96 32 5 -6 (c) -2I 3 I 39. 2 1 -8 97 =f(3) -10 1 2 16 3 -1 - 10 1 2 _8 3 5 1 (b) ½ 3 -8 17 =f(-2) 0 -7 6 2 4 -6 1 2 -3 0 x3-7x+6=(x-2)(x~+2x-3) = (x- 2)(x + 3)(x- 1) (d) -5 I 3 I3 - 10 2 -15 27 1 - 199 = f(-5) -10 -7 20 2 -14 2x3- 15x~+27x- 10 = (x - ½)(2x~ - 14x + 20) Zeros: ½, 2, 5 43.-2I 1 2 -2 -4 -2 0 4 0 0 -2 x3 + 2xz - 2x- 4 = (x + 2)(xz - 2) = Zeros: - 2, 40 = (~x- 1)(x- 2)(x- 5) Zeros: 2, -3, 1 1 1 -200 5 -10 - 15 50 10 0 105 45. (a) - 2I 2 I 2 112 -3 2 -1 PART L" Solutions to Odd-Numbered Exercises and Practice Tests 1 -4 -5 6 2 -2 -3 1 0 2 47. (a) 5 I 1 [ 1 1 -1 -411 0 ! -15 5 58 -50 -40 40 1 -10 8 0 1 -4 -10 12 8 -8 -3 2 0 (b) x2 - 3x + 2 = (x-.2)(x- 1), (b) Remaining factor: (2x - 1) Remaining factors: (x - 2), (x - 1) (c) f(x) - (x + 2)(x- 1)(2x- 1) . (c) f(x)’= (x- 5)(x + 4)(x- 2)(x- 1) (d) Real zeros: - 2, 1, ½ (e) -4 5 (d) Real zeros: 5, -4, 2, 1 7 (e) 49° (a) -½ I’ 6 I 41 -3 6 38 -9 - 19 -14 14 -28 0 2 g 6 38 -28 4 28 (b) 6x + 42 Remaining factor (or 6(x + 7)) (c) f(x) = (2x + l)(3x- 2)(x + 7) Note: Use ~(6x + 42) = x + 7 12 (d) Real zeros: -g, g, -7 (e) a20 6 42 0 51. f(x) = x3 + 3x~- x- 3 Possible rational zeros: + 1, +3 Zeros shown on graph: -3, - 1, 1 53. f(x) = 2x4 - 17x3 + 35x2 + 9x - 45 Possible rational zeros: +1,_+3, _+5, _+9, _+15, _+45, 4-1_ +3 +5 +9 4.15 _+.~ --2’ --2’ --2, --2, --~’, Zeros shown of graph: 1, ~, 3, 5 55. f(x) = x~ + x2 - 4x- 4 (a) Possible rational zeros: _+1, +2, +4 (b) 57. f(x) = -4x3 + 15x2 - 8x - 3 (a) Possible rational zeros: _+¼, +!_2, +-~, +1,_:~,+3_ _+3 1 -6~ 6 -7 (c) -2, -1, 2 on graph (c) -¼, 1, 3 on graph 106 PART h Solutions to Odd-Numbered Exercises and Practice Tests 59. f(x) = -2x4 + 13x3 - 21x~ + 2x + 8 (a) Possible rational zeros: (a) Possible rational zeros: +~, +½, -2, +~_±~, 2 _+1, +~, +2,+_~3, +4, +8 +½, +1, +2, +4, +8 (b) 61. f(x) = 6x3 - x~- 13x+8 16 -12 12 (c) Real zeros: 1, 12 (c) -½, 1, 2, 4 on graph If(x) = (x - 1)(6x2 + 5x - 8); Use Quadratic Formula] 63. Z4 -- Z3 -- 2z - 4 = 0 Possible rational zeros: +1, +2, +4 -1I 1 -1 0 -2 1 -1 -2 2 2 -2 -4 -2 2 -4 2 0 0 2 4 0 . I 1 -4 4 0 65. x4- 13xz- 12x=O x(xa- 13x- 12)=0 x = 0 is a solution. Possible rational zeros ofx3 - 13x - 12 = 0 are + 1, +2, +3, :!:4, :1:6 and :!: 12. Using a graphing utility or synthetic division, you find that the zeros are 0, - 1, -3, 4. 1 z4 - z3 -2z - 4 = (z + 1)(z - 2)(z2 + 2) = 0 The on.ly real zeros are -1 and 2. You can verify this by graphing the function f(z) = z4 - z3 - 2z - 4. 67. 2x~ - l lx3 - 6x2 + 64x + 32 = 0 Using a graphing utility, you can see that there are three zeros. Using synthetic division, you can verify that these zeros are -2, -½, 4. 69. f(x) = x3 - 2x~- 5x + 10 (a) Zeros: 2, 2.236, -2.236 (b) 2 I 1 -2 -5 10 I 2 10 y(x) = (x- = (x71. h(t) = t3- 2t~- 7t + 2 (a) zeros: -2, 3.732, 0.268 (b) -2I 1 -2 -7 2 -2 8 -2 t=-2isazero 1 -4 1 0 ~ h(t) = (t + 2)(t - 4t + 1) = (, + 2)[,- (~/~ + 2)][, + (V~- 2)] 0 -5 -10 x=2isazero 0 5) +- 107 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 73. h(x) = x5 - 7x~ + 10xa + 14x2 - 24x (a) h(x) = x(x4 - 7xa + 10x~ + 14x - 24) From the calculator we have x = 0, 3, 4 and x ~- _+ 1.414. 10 (b) 3 1 -7 3 - 12 -2 1 -4 -4 4 0 14 -24 -6 24 0 8 -2 0 -2 75. f(x) = x4 - 4x3 q- 15 (a) 4 1 -4 4 10 0 0 0 4 is an upper bound. 0 1 -4 -1 8 -8 0 0 15 00 0 15 1 -5 5 5 0 -5 -5 15 5 20 - 1 is a lower bound. f(x) = x(x- 3)(x- 4)(x~ - 2) = x(x- 3)(x- 4)(x - ~/~)(x + The exact roots are x = 0, 3, 4, + ~4~. 79. P(x) = x4 - ~x~ + 9 = ¼(4x4 - 25x~ -t- 36) 77. f(x) = x4- 4x3 + 16x- 16 (a) 5 1 -4 1 5 1, 0 16 -16 5 5 25 205 41 189 = ¼(4x~ - 9)(x~ - 4) = ¼(2x + 3)(2x - 3)(x + 2)(x -, 2) The zeros are __.~ and __.2. 5 is anupperbo~nd. (b) -3 1 -4 0 16 -3 21 21 -63 -47 1 -7 -16 141 125 -3 is a lower bound. =¼(4xa-x=-4x+ 1) = ¼[x~(4x-i’)- 1(4x- 1)I = ¼(4x- 1)(x~ - 1) = ¼(4x - l)(x + 1)(x - I) The zeros are ¼ and ¯ 1. f(x) = x3 - x = x(x + 1)(x- 1) Rational zeros: 3 (x = 0, + 1) Irrational zeros: 0 Matches (b). $3. f(x)=x3- 1 =(x- 1)(x~+x+ 1) Rational zeros: 1 (x = 1) Irrational zeros: 0 Matches (d). 108 PART I: Solution.s to Odd-Numbered Exercises a,nd Practice Tests 87. (a) 35 -2 ~7 10 (b) R = 0.01326t3 - 0.06765t2 + 1.2306t + 16.6770 (c) t -2 R 13.86 Model 13.84 0 1 2 3 15.21 16.78 18.10 19.08 19.39 21.62 15.37 16.68 17.85 18.97 20.12 (d) 12 1.01326 -0.06765 0.15912 1.2306 1.09764 16.6770 27.9389 .01326 0.09147 2.3282 44.6159 I 6 7 23.07 24.41 26.48 22.80 24.49 26.52 4 21.37 R(12) ~ 44.62. No. The model will turn sharply upward. (b) V=l, w ¯ h=(15-2x)(9-2x)x = x(9 - 2x)(15 - 2x) Since length, width, and height cannot be negative, we have 0 < x < ~ for the domain. 89. (a) (C) 125 (d) 56 = x(9 - 2x)(15 - 2x) 56 = 135x - 48x~ + 4x3 0 =4x3- 48x~+ 135x - 56 ¢ o The volume is maximum when x ~ 1.82. The dimensions are: length = 15 -2(1.82)= 11.36 width = 9 - 2(1.82) = 5.36 height = x = 1.82 1.82 cm x 5.36 cm x 11.36 cm The zeros of this polynomial are ½, ~, and 8. x cannot equal 8 since it is not in the domain of V. [The length cannot equal - 1 and the width cannot equal -7. The product of (8)(- 1)(-7) = 56 so it showed up as an extraneous solution.] 109 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 91. y = -5.05x3 + 3857x - 38,411.25, 13 <x< 18 (a) 2,0° (b) The second ah’-fuel ratio of 16.89 can be obtained by finding the second point where the curves y and Yl = 2400 intersect. 1~ o (c) Solve -5.05x3 + 3857x- 38,411.25 = 2400 or-5.05x3 + 3857x- 40,811.25 = 0. By synthetic division, 15 -5.05 0 3857 -40,811.25 -75.75 -1136.25 40,811.25 -5.05 -75.75 2720.75 0 (d) The positive zero of the quadratic - 5.05xz - 75.75x + 2720.75 can be found by the Quadratic Formula. x~ 75.75 - ,/(75.75)2 - 4(-5.05)(2720.75) ~ 16.89 2(-5.05) 93. False, -~ is a root off. 95. ½ 6 1 3 64 -92 2 45 -45 184 4 0 92 -48 48 -90 0 184 96 0 True. 97. x2n -Xn+3 x" - 2 )’x3" - 3X2n + 5x~ - 6 x3n -- 2x2n -x~’~ + 5x" - x:z" + 2xn 3xn - 6 3xn - 6 0 3" :zn n x - 3x + 5x - 6 zn n Hence, = x - x + 3. xn-2 101. (a) (fo g)(x) = f(x2 + 1) = 2(x2 + 1) - 5 99. You can check polynomial division by multiplying the quotient by the divisor. This should yield the original dividend if the multiplication was performed correctly. 103. (a) (f o g)(x) = f(4x + x~) -.-. = 2x~- 3 (b) (g of)(x) = g(2x - 5) = (2x- 5)2 + 1 1 4x +xz (b) (g °f)(x) = g@) = 4(¼) + (~)z 4x+l = 4x~ - 20x + 26 105. f(x) = (x- 1)(x + 3)(x- 8) =x~-6x~- 19x+24 x~ [answer not unique] = (x- 2)2 - 3 =xZ-4x+4-3 =x2 - 4x+ 1 [answer not unique]
© Copyright 2026 Paperzz