TITLE:EvaluatingMulti-ParametricMRIandPI-RADSv2forPredictingIndolentProstateCanceronPostOperativePathology Faina Shtern1, Fiona Fennessy2, Mukesh Harisinghani3, Elmira Hassenzadeh2, Adam S. Kibel2, Quoc-Dien Trinh2, MichelleS.Hirsch2,ZhengZhang4,DavidZurakowski5,andClareM.Tempany2 1AdMeTechFoundation,2BrighamandWomen’sHospital,3MassachusettsGeneralHospital,4BrownUniversity,and 5BostonChildren’sHospital INTRODUCTION. Prostate cancer (PC) is the most common and the second most lethal malignancy in American men.1-4 Extensive studies have demonstrated the value of observation strategy (i.e., active surveillance) for lowrisk,low-volume,indolentPC(GleasonScore,orGS≤6),andtheimportanceofdefinitivetreatmentforclinically significantPC,asdefinedbymoreaggressive(GS≥7)disease,whichismorelikelytoprogress,causemetastases anddeath.1-8Theaccuratedifferentiationofaggressivevs.indolentdiseaseisofparticularimportanceintheeraof prostate specific antigen (PSA), when many men present with GS ≤ 6 and can be safely managed with active surveillance, but unfortunately, are often treated.1-8 While observation strategies are increasingly adopted, postoperative pathology (POP) GS ≤ 6 has been reported in as many as 42% to 62% of men undergoing radical prostatectomy(RP).4,9TheneedtoadvancediagnostictoolsforimprovingpredictionofPOPGSandreducingovertreatmentofindolentdiseasehasbeenwidelyrecognized.1-4 SPECIFIC AIM: The goal of this clinical study is to determine whether multi-parametric (mp) MRI and related standardized Prostate Imaging–Reporting and Data System Version 2 (PI-RADS™ v2) can improve prediction of POPGS≤6andhelpselectmenforactivesurveillancevs.treatment. BACKGROUND AND RATIONALE: Over the last ten years, mpMRI has emerged as one of the most promising diagnostic tools for the detection (and exclusion) of aggressive PC.10,11 The goal of PI-RADS™ v2 scoring is to improveriskstratificationevenfurther,withstandardizedtechniquesforimageacquisitionandreportingcriteria, including qualitative assessment that assigns a score of 1 to 5 based on the degree of clinical suspicion.12 While developed based primarily on international expert consensus, PI-RADS v2 scoring requires validation, including correlationwithPOPoutcomes.Ourstudywasconductedtoaddressthisunmetneed. METHODS AND MATERIALS: This institutional review board-approved, retrospective study accrued 366 men aged40to80yearsoldwhohadabnormalPSA(>4ng/mL)and/orabnormaldigitalrectalexamandunderwent TRUS biopsy and RP at BWH between 2008 and 2014. The two study cohorts included: 1) Patients who had mpMRI,whichwasperformedatleast6weeksafterTRUSbiopsyandwithin6monthspriortoRP(N=190);and2) PatientswhodidnothavempMRIpriortoRP(N=176).MpMRIwasdefinedas“negative”forGP≥4ifPI-RADSv2 scores were 1-3, and “positive” if PI-RADS v2 scores were 4-5. POP served as a reference standard. Odds of POP GS< 6 were analyzed using multivariable logistic regression withSAS software (version 9.3,SAS Institute, Cary, NC).13 Availability of a complete standard diagnostic clinical information (including PSA level, POP reports and TRUS biopsy results) was required for both cohorts. Lesion volume was measured on POP. All mpMRI exams includedinthestudywereacquiredat3Tesla(3T)andmettechnicalstandardsforimageacquisition14andclinical criteria for acceptable image quality. Two readers independently reviewed all mpMRI de-identified studies and assigned PI-RADS v2 score at a patient level, based on the dominant lesion. In cases of disagreement between readers,athirdradiologistservedasanadjudicatoranddeterminedafinaloverallassessment.Allreviewerswere blindedtoclinicalinformation. RESULTS: We compared overall numbers/percentages of POP GS≤6 in the mpMRI cohort (all, “positive” and “negative” PI-RADS™ v2 scores) vs. the control group (no mpMRI). We have also examined the effect of lesion volume,asdefinedbyPOP(≤0.5ccvs.>0.5cc),onmpMRI.Table1showspatientpopulationinbothstudycohorts. Variable MRI(AnyPI-RADS™) (N=190) Age,years,mean±SD 58.7±6.9 Race,no.(%) Caucasian 164(86) AfricanAmerican&Hispanic 20(11) Other/declinedtoanswer 6(3) TNMStage,median(range) 2(1-3) PSA,ng/mL,median(IQR) 5.3(4.2-8.1) *Statisticallysignificant.SD=standarddeviation,IQR=interquartilerange. NoMRI–Controls (N=176) 59.8±6.5 143(81) 10(6) 23(13) 2(1-3) 5.0(4.0-6.8) PValue 0.123 0.002* 0.251 0.069 TABLE 1: Patient populations in the two study cohorts. More patients in the MRI group were African American, andmoremeninthecontrolgroupdeclinedtoidentifytheirraceand/orethnicity. I.BaselineComparisonoftheTwoCohortsandRatesofPOPGS<6With/WithoutmpMRI(Irrespectiveof PI-RADS™v2Scores) MRICohort(AllPI-RADS™v2) Variable (N=190) Age,years,mean±SD 58.7±6.9 TNMStage,median(range) 2(1-3) PSA,ng/mL,median(IQR) 5.3(4.2-8.1) POPGS<6 32(17%) *Statisticallysignificant.SD=standarddeviation,IQR=interquartilerange. NoMRI–Controls (N=176) 59.8±6.5 2(1-3) 5.0(4.0-6.8) 74(42%) PValue 0.123 0.251 0.069 <0.0001* TABLE2.RatesofPOPGS<6were17%withmpMRIand42%withoutmpMRI,resultinginanabsolutereduction of 25% based on the studied cohorts (95% confidence interval (CI): 16% to 34% reduction). Logistic regression indicatedthattheunadjustedoddsofPOPGS<6arereducedby72%withMRI(oddsratio:0.28,95%CI:0.170.45,likelihoodratiotest=28.7,P<0.0001).Multivariablelogisticregressionadjustingforcovariatesincluding age,race,clinicalTNMstage,andPSAlevelconfirmedthattheoddsofPOPGS<6arereducedby74%withMRI (adjustedoddsratio:0.26,95%CI:0.15-0.43,likelihoodratiotest=28.6,P<0.0001).Therefore,afteraccounting for the influence of the other four variables, the effect of MRI (any PI-RADS™) had a significant independent reductionof74%intheoddsofPOPGS<6witha95%CIfrom57%to85%. II. Baseline Comparison of the Two Cohorts and Rates of POP GS < 6 With/Without MRI with Positive PIRADS™v2Scores4-5: PositiveMRI(PI-RADS™4-5) Variable (N=150) Age,years,mean±SD 59.1±6.8 TNMStage,median(range) 2(1-3) PSA,ng/mL,median(IQR) 5.3(4.2-8.5) POPGS<6 13(9%) *Statisticallysignificant.SD=standarddeviation,IQR=interquartilerange. NoMRI–Controls (N=176) 59.8±6.5 2(1-3) 5.0(4.0-6.8) 74(42%) PValue 0.357 0.091 0.034* <0.0001* TABLE 3: Rates of POP GS < 6 were 9% with “positive” MRI and 42% without MRI, resulting in an absolute reduction in the percentage of patients with POP GS < 6of33% based onthestudied cohorts(95% confidence interval (CI): 24% to 42% reduction). Logistic regression indicated that the unadjusted odds ofPOP GS < 6 are reduced by over 87% with MRI (odds ratio: 0.13, 95% CI: 0.07-0.25, likelihood ratio test = 50.3, P < 0.0001). Multivariable logistic regression adjusting for covariates including age, race, clinical TNM stage, and PSA level confirmedthattheoddsofPOPGS<6arereducedby89%withMRI(adjustedoddsratio:0.11,95%CI:0.05-0.23, likelihoodratiotest=44.4,P<0.0001).Therefore,afteraccountingfortheinfluenceoftheotherfourvariables, the effect of positive MRI (PI-RADS™ 4-5) had a significant independent reduction in the odds of POP GS < 6 of 89%witha95%CIfrom77%to95%. III.BaselineComparisonoftheTwoCohortsandRatesofPOPGS<6With/WithoutmpMRIInaSub-Group ofMenwithNegativePI-RADS™Scores1-3: NegativeMRI(PI-RADS™1-3) Variable (N=40) Age,years,mean±SD 57.2±7.0 TNMStage,median(range) 2(1-3) PSA,ng/mL,median(IQR) 5.4(4.0-7.4) POPGS<6 19(48%) *Statisticallysignificant.SD=standarddeviation,IQR=interquartilerange. NoMRI-Controls (N=176) 59.8±6.5 2(1-3) 5.0(4.0-6.8) 74(42%) PValue 0.026* 0.297 0.912 0.597 TABLE4:RatesofPOPGS<6weresimilarinbothcohorts-48%withMRIand42%withoutMRI,resultingina non-significant absolute increase of 6% based on MRI (95% confidence interval: -11% to 22%). Logistic regression indicated that the unadjusted odds of POP GS < 6 are increased by 25% with MRI, which is not statisticallysignificant(oddsratio:1.25,95%CI:0.63-2.48,likelihoodratiotest=0.39,P=0.531).Multivariable logistic regression adjusting for covariates including age, race, clinical TNM stage, and PSA level indicated that theoddsofPOPGS<6arenon-significantlyincreasedby15%withMRI(adjustedoddsratio:1.15,95%CI:0.542.44, likelihood ratio test = 0.13, P = 0.715). Therefore, after accounting for the influence of the other four variables,theimpactofnegativeMRIhadnosignificantmeasurableeffectontheoddsofpost-opGS<6. IV. Baseline Comparison of the Two Cohorts and Rates of POP GS < 6 With/Without mpMRI in a SubGroupofMenwithPositivePI-RADS™ScorresandPOPLesionVolumeGreaterThan0.5cc(Table5).Rates of POP GS < 6 were 2% with MRI and 42% (Table 5) without MRI resulting in an absolute reduction of 40% based on the studied cohorts (95% confidence interval (CI): 30% to 47% reduction). Logistic regression indicatedthattheunadjustedoddsofPOPGS<6arereducedbyover96%withMRI(oddsratio:0.04,95%CI: 0.01-0.14, likelihood ratio test = 55.8, P < 0.0001). Multivariable logistic regression adjusting for covariates including age, race, clinical TNM stage, and PSA level confirmed that the odds of POP confirmed GS < 6 are reducedby97%withMRI(adjustedoddsratio:0.03,95%CI:0.01-0.15,likelihoodratiotest=45.2,P<0.0001). Therefore,afteraccountingfortheinfluenceoftheotherfourvariables,theeffectofpositiveMRI(PI-RADS™4-5) amongpatientswithlesionvolume>5cchadasignificantindependentreductionof97%intheoddsofPOPGS< 6witha95%CIfrom85%to99%. Positive MRI (PI-RADS™ 4-5) NoMRI-Controls andLesionVolume>0.5cc Variable (N=84) (N=176) Age,years,mean±SD 59.0±6.2 59.8±6.5 TNMStage,median(range) 2(1-3) 2(1-3) PSA,ng/mL,median(IQR) 6.0(4.5-9.6) 5.0(4.0-6.8) POPGS<6 2(2%) 74(42%) • Statisticallysignificant.SD=standarddeviation,IQR=interquartilerange. PValue 0.353 0.108 <0.001* <0.0001* TABLE5 V.BaselineComparisonoftheTwoCohortsandRatesofPOPGS<6With/WithoutmpMRIinaSub-Group ofMenwithPositivePI-RADS™ScoresandPOPLesionVolumeLessThan0.5cc(Table6): Positive MRI (PI-RADS™ 4-5) andLesionVolume<0.5cc Variable (N=66) Age,years,mean±SD 59.2±7.5 TNMStage,median(range) 2(1-3) PSA,ng/mL,median(IQR) 4.9(4.0-7.0) POPGS<6 11(17%) *Statisticallysignificant.SD=standarddeviation,IQR=interquartilerange. NoMRI-Controls (N=176) 59.8±6.5 2(1-3) 5.0(4.0-6.8) 74(42%) PValue 0.353 0.216 0.845 0.0002* TABLE6.RatesofPOPGS<6were17%withMRIand42%withoutMRIresultinginanabsolutereductionof25% (95%confidenceinterval(CI):13%to36%reduction).Logisticregressionindicatedthattheunadjustedoddsof pathGS<6arereducedbyover72%withMRI(oddsratio:0.28,95%CI:0.14-0.56,likelihoodratiotest=14.7,P= 0.0001).Multivariablelogisticregressionadjustingforcovariatesincludingage,race,clinicalTNMstage,andPSA levelconfirmedthattheoddsofPOPconfirmedGS<6arereducedby78%withMRI(adjustedoddsratio:0.22, 95% CI: 0.09-0.55, likelihood ratio test = 13.2, P = 0.0003). Therefore, after accounting for confounding and the influenceoftheotherfourvariables,theeffectofpositiveMRI(PI-RADS™4-5)amongpatientswithlesionvolume <5cchadasignificantindependentreductionof78%intheoddsofpost-opGS<6witha95%CIfrom45%to 91%. VI.Summary:TherateofPOPGS≤6inthecontrolgroupis42%andalignedwithpreviousstudies.4,9Inmenwho hadpositivempMRI(PI-RADS™v24-5scores),therateofindolentPOPGS≤6isaslowas9%,withtheoddsof yieldpredictedtobereducedby89%.WithmpMRI(irrespectiveofPI-RADS™v2scores),therateofPOPGS≤6is 17%, also significantly lower compared to the control cohort. Based on this data, 74% reduction in the odds of yieldofindolentPCwithmpMRI(irrespectiveofPI-RADSv2score)onPOPispredictedcomparedtothecontrol group.TheeffectofnegativePI-RADS™v2scores1-3ontheoddsofyieldofPOPGS≤6isinsignificant. AmongpositivePI-RADS™v2scores(Tables5-7),theimpactontheoddsofyieldofPOPGS≤6dependson lesionvolume.Insmaller(≤0.5cc)lesions,theyieldofPOPGS≤6is17%.Inlargerlesions,therateofPOPGS≤6is aslowas2%(withpredicted97%reductionintheoddsofyield). DISCUSSION:Themajorityofpatients(83%oftheMRIcohortand58%ofcontrols)inthissurgicalpopulationhad aggressivedisease(POPGS≥7).Thisisinagreementwithotherrecentstudies.15,16TherateofindolentPOPGS≤6 of42%inthecontrolgroupreflectscurrentstandardsofPCcareinleadingacademiccenters.4.9Insharpcontrast, with positive mpMRI (PI-RADS™ v2 4-5 scores), the probability of over-estimating PC is low, as indicated by the rateofindolentPConPOPaslowas9%.WepredictasignificantreductionintheoddsofyieldofindolentPCon POPwithpositivePI-RADSscores,ifmpMRIweretobeusedfordiagnosticpatientevaluationpriortoRP. ThisstudyalsoshowsareductionintheoddsofyieldofindolentPCwithmpMRIirrespectivelyofPI-RADS v2scores,thoughthismostlikelyreflectsastrongeffectofpositivePI-RADSv2scores. Performance of positive PI-RADS™ v2 scores appears to depend on POP lesion volume, though dividing patients into two groups (≤0.5 cc and >0.5 cc) reduces the number and thus lowers power. In smaller (≤0.5cc) lesions, there was higher probability of over-estimating GS, most likely due to the bias of our readers who were blindedtoclinicalinformationbutawareofsurgicalpopulation.WeshowamajorbenefitofpositivePI-RADS™v2 scoresinlargerlesions,wheretheyieldofindolentPConPOPisaslowas2%. CONCLUSION:ThisstudyshowsthatmpMRIalongwithpositivePI-RADS™v2scoresmayplayavaluablerolein aidingoptimalselectionofcandidatesforsurgeryvs.activesurveillance.Whilepromising,theseresultsneedtobe considered within the context of this retrospective study, which has an inherent bias of the selected surgical populationanditsimpactonradiologicreaders.Thisresearchunderscorestheimportanceoffurtherlarger-scale, prospectiveandmulti-centerclinicaltrial. REFERENCES 1) GanzPA,et.al.NIHState-of-the-ScienceStatement:Roleofactivesurveillanceinthemanagementofmenwith localizedprostatecancer.NIHConsensusStateScienceStatements2011Dec5-7;28(1):1-27 2) Dall'Era,M.A.,etal.,Activesurveillanceforearly-stageprostatecancer(PC).Cancer,2008.112(8):1650-9. 3) Stephenson,A.J.,etal.,Prostatecancer-specificmortality(PCSM).JClinOncol,2009.27(26):4300-5. 4) Eggener,S.E.,etal.,Predicting15-yearprostatecancerspecificmortality.JUrol,2011.185(3):869-75. 5) Wilt,T.J.,etal.,Radicalprostatectomy(RP)versusobservation.NEnglJMed,2012.367(3):203-13. 6) Andriole,G.,etal.,ProstatecancerscreeningintherandomizedProstate,Lung,Colorectal,andOvarianCancer ScreeningTrial:mortalityresultsafter13yearsoffollow-up.JNCI,2012.104(2):125-32. 7) Schroder,F.H.,etal.,PCSMat11yearsoffollow-up.NEnglJMed,2012.366(11):981-90. 8) Freedland,S.J.,etal.,RiskofPCSMfollowingbiochemicalrecurrence.JAMA,2005.294(4):433-9. 9) Epstein,J.,etal.,UpgradinganddowngradingofPCfrombiopsytoRP.EurUrol,2012.61(5):1019-24. 10) Schoots,IG,et.al.MagneticResonanceImaginginActiveSurveillanceofProstateCancer:ASystematicReview. EuropeanUrology2015.67(4):627–636 11) Barentsz, J.O., et al., Will MRI-Guided Biopsy Replace Systematic Biopsy? European Urology Focus 1 (2015): 152-155 12) Weinreb,JC,PI-RADSProstateImaging–ReportingandDataSystem:2015,Version2.EuropeanUrology2016. 69(1):16-40. 13) Katz MH. Multivariable analysis: A practical guide for clinicians and public health researchers, 3rd ed. New York:CambridgeUniversityPress;2011:118-39. 14) Hegde, JV, et. al. Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging. 2013 May; 37(5):1035-54. PMID:23606141;PMC3741996. 15) Vos,EK,et.al.,MultiparametricMagneticResonanceImagingforDiscriminatingLow-GradeFromHigh-Grade ProstateCancer.Invest.Radiology2015.50(8):490-7 16) Park,SY,et.al.,ProstateCancer:PI-RADSVersion2HelpsPreoperativelyPredictClinicallySignificantCancers. Radiology2016.280(1):108-16
© Copyright 2025 Paperzz