Scilab Manual for Antenna Wave Propagation by Mrs Nandini Ammanagi Electronics Engineering VESIT1 Solutions provided by Mrs. Nandini Ammanagi Electronics Engineering V.E.S.I.T. June 17, 2017 1 Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the ”Migrated Labs” section at the website http://scilab.in 1 Contents List of Scilab Solutions 3 1 SCILAB CODE FOR PATTERN MULTIPLICATION OF TWO INFINITESIMAL DIPOLES (given d=/2,=- /2) 5 2 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT UNIFORM AMPLITUD EENDFIRE ARRAY 12 3 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT UNIFORM AMPLITUDE BROADSIDE ARRAY 15 4 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT DOLPH TSCHEBYSCHEFF ARRAY 18 5 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT BIONOMIAL ARRAY 21 2 List of Experiments Solution 1.01 patternmult . . Solution 1.02 patternmult . . Solution 1.03 patternmult . . Solution 2.01 endfirearray . . Solution 3.01 broadsidearray Solution 4.01 dolpharray . . Solution 5.01 binomialarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6 9 12 15 18 21 List of Figures 1.1 1.2 1.3 patternmult . . . . . . . . . . . . . . . . . . . . . . . . . . . patternmult . . . . . . . . . . . . . . . . . . . . . . . . . . . patternmult . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9 11 2.1 endfirearray . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 broadsidearray . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 dolpharray . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 binomialarray . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Experiment: 1 SCILAB CODE FOR PATTERN MULTIPLICATION OF TWO INFINITESIMAL DIPOLES (given d=/2,=- /2) Scilab code Solution 1.01 patternmult 1 // d e f i n i n g lambda =1; 2 3 d = lambda /4; between the d i p o l e s= // d i s t a n c e /4 4 5 k =(2* %pi ) / lambda ; k=2 6 7 // d e f i n i n g c o n s t a n t / beta = - ( %pi /2) ; // d e f i n i n g beta as phase d i f f e r e n c e between the dipoles 5 8 9 10 11 12 13 // t h e t a theta =0:0.01:2* %pi ; v a r i e s from 0 t o 360 subplot (2 ,2 ,1) ; // polarplot ( theta , abs ( cos ( theta ) ) ) ; to plot s i n g l e element pattern 14 15 title ( ’ELEMENT PATTERN ’ ) ; 16 17 AF = cos (0.5*( d * k * cos ( theta ) + beta ) ) // E x p r e s s i o n f o r Array f a c t o r 18 19 20 21 22 23 24 25 26 27 28 29 subplot (2 ,2 ,2) ; polarplot ( theta , abs ( AF ) ) ; // t o p l o t a r r a y f a c t o r p a t t e r n title ( ’ARRAY FACTOR PATTERN ’ ) ; subplot (2 ,2 ,3.5) ; polarplot ( theta , abs ( cos ( theta ) ) .* abs ( AF ) ) ; plot t o t a l f i e l d of the array // t o title ( ’TOTAL ARRAY PATTERN ’ ) ; Scilab code Solution 1.02 patternmult 1 // d e f i n i n g lambda =1; 2 6 Figure 1.1: patternmult 7 // d i s t a n c e 3 d = lambda /4; between the d i p o l e s= /4 4 5 k =(2* %pi ) / lambda ; k=2 6 7 8 9 10 11 12 13 // d e f i n i n g c o n s t a n t / beta = 0; // d e f i n i n g b e t a as phase d i f f e r e n c e between the d i p o l e s // t h e t a theta =0:0.01:2* %pi ; v a r i e s from 0 t o 360 subplot (2 ,2 ,1) ; // polarplot ( theta , abs ( cos ( theta ) ) ) ; to plot s i n g l e element pattern 14 15 title ( ’ELEMENT PATTERN ’ ) ; 16 17 AF = cos (0.5*( d * k * cos ( theta ) + beta ) ) // E x p r e s s i o n f o r Array f a c t o r 18 19 20 21 22 23 24 25 26 27 28 29 subplot (2 ,2 ,2) ; polarplot ( theta , abs ( AF ) ) ; // t o p l o t a r r a y f a c t o r p a t t e r n title ( ’ARRAY FACTOR PATTERN ’ ) ; subplot (2 ,2 ,3.5) ; polarplot ( theta , abs ( cos ( theta ) ) .* abs ( AF ) ) ; plot t o t a l f i e l d of the array title ( ’TOTAL ARRAY PATTERN ’ ) ; 8 // t o Figure 1.2: patternmult Scilab code Solution 1.03 patternmult 1 // d e f i n i n g lambda =1; 2 3 d = lambda /4; between the d i p o l e s= // d i s t a n c e /4 4 5 k =(2* %pi ) / lambda ; // d e f i n i n g c o n s t a n t 9 k=2 6 7 8 9 10 11 12 13 / beta = 0; // d e f i n i n g b e t a as phase d i f f e r e n c e between the d i p o l e s theta =0:0.01:2* %pi ; v a r i e s from 0 t o 360 // t h e t a subplot (2 ,2 ,1) ; // polarplot ( theta , abs ( cos ( theta ) ) ) ; to plot s i n g l e element pattern 14 15 title ( ’ELEMENT PATTERN ’ ) ; 16 17 AF = cos (0.5*( d * k * cos ( theta ) + beta ) ) // E x p r e s s i o n f o r Array f a c t o r 18 19 20 21 22 23 24 25 26 27 28 29 subplot (2 ,2 ,2) ; polarplot ( theta , abs ( AF ) ) ; // t o p l o t a r r a y f a c t o r p a t t e r n title ( ’ARRAY FACTOR PATTERN ’ ) ; subplot (2 ,2 ,3.5) ; polarplot ( theta , abs ( cos ( theta ) ) .* abs ( AF ) ) ; plot t o t a l f i e l d of the array title ( ’TOTAL ARRAY PATTERN ’ ) ; 10 // t o Figure 1.3: patternmult 11 Experiment: 2 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT UNIFORM AMPLITUD EENDFIRE ARRAY Scilab code Solution 2.01 endfirearray // Number o f 1 n =10; Elements 2 3 // d e f i n i n g lambda =1; 4 5 d = lambda /4; between the d i p o l e s= // d i s t a n c e /4 6 7 k =(2* %pi ) / lambda ; k=2 8 9 // d e f i n i n g c o n s t a n t / // theta =0.0001:0.01:2* %pi ; 12 t h e t a v a r i e s from 0 10 11 t o 360 // beta1 = -( k * d ) ; kd 12 13 psi = k * d .* cos ( theta ) + beta1 ; 1 =− // P r o g r e s s i v e Phase 14 15 AF = sin ( n .* psi /2) ./( n * sin ( psi /2) ) ; // E x p r e s s i o n f o r Array F a c t o r 16 17 18 19 // p l o t f o r polarplot ( theta , AF ) ; =−kd // beta2 = k * d ; kd 20 21 psi = k * d .* cos ( theta ) + beta2 ; 2= // P r o g r e s s i v e Phase 22 23 AF = sin ( n .* psi /2) ./( n * sin ( psi /2) ) ; // E x p r e s s i o n f o r Array F a c t o r 24 25 26 27 28 29 xset ( ’ l i n e s t y l e ’ ,3) // p l o t polarplot ( theta , AF ) ; for =kd title ( ”POLAR PLOT FOR ARRAY FACTOR PATTERN FOR N ELEMENT UNIFORM AMPLITUDE END FIRE ARRAY CASE : N =10 , d= /4 , =+−(Kd) ” ) 30 31 h1 = legend ( ’ =Kd ’ , ’ =−Kd ’ ) 13 Figure 2.1: endfirearray 14 Experiment: 3 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT UNIFORM AMPLITUDE BROADSIDE ARRAY Scilab code Solution 3.01 broadsidearray // Number o f 1 n =10; Elements 2 3 // d e f i n i n g lambda =1; 4 5 d1 = lambda /4; // d i s t a n c e b e t w e e n t h e d i p o l e s d1= 6 7 k =(2* %pi ) / lambda ; k=2 8 9 /4 // d e f i n i n g c o n s t a n t / // theta =0.0001:0.01:2* %pi ; 15 t h e t a v a r i e s from 0 t o 360 10 11 beta =0; 12 13 psi = k * d1 * cos ( theta ) + beta ; // =0 // P r o g r e s s i v e Phase 14 15 AF = sin ( n .* psi /2) ./( n * sin ( psi /2) ) ; // E x p r e s s i o n f o r Array F a c t o r 16 17 // p l o t f o r polarplot ( theta , AF ) ; d1= /4 18 19 d2 = lambda ; // d i s t a n c e b e t w e e n t h e d i p o l e s d2= 20 21 psi = k * d2 * cos ( theta ) + beta ; // P r o g r e s s i v e Phase 22 23 AF = sin ( n .* psi /2) ./( n * sin ( psi /2) ) ; // E x p r e s s i o n f o r Array F a c t o r 24 25 26 27 28 29 xset ( ’ l i n e s t y l e ’ ,3) // p l o t polarplot ( theta , AF ) ; f o r d2= title ( ”POLAR PLOT FOR ARRAY FACTOR PATTERN FOR N ELEMENT UNIFORM AMPLITUDE BROADSIDE ARRAY CASE : N =10 , d= /4 and d= , =0” ) 30 31 h1 = legend ( ’ d= /4 ’ , ’ d= 16 ’) Figure 3.1: broadsidearray 17 Experiment: 4 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT DOLPH TSCHEBYSCHEFF ARRAY Scilab code Solution 4.01 dolpharray 1 // d e f i n i n g lambda =1; 2 3 d1 = lambda /4; // d i s t a n c e b e t w e e n t h e d i p o l e s d1= 4 5 /4 // Theta v a r i e s from 0 theta =0:0.01:2* %pi ; t o 360 6 7 u1 =( %pi * d1 / lambda ) .* cos ( theta ) ; d1/ // u1 = ∗cos 8 9 AF1 =2.798.* cos ( u1 ) +2.496.* cos (3.* u1 ) +1.974.* cos (5.* 10 u1 ) +1.357.* cos (7.* u1 ) + cos (9.* u1 ) ; // e x p r e s s i o n f o r a r r a y f a c t o r 18 p a t t e r n f o r N=10 , 2M=10 11 12 p = get ( ” h d l ” ) ; // g e t h a n d l e on c u r r e n t e n t i t y ( h e r e t h e p o l y l i n e e n t i t y ) 13 14 p . line_style =1; 15 16 polarplot ( theta , AF1 ) 17 18 d2 = lambda /2; // p l o t p o l a r p l o t // d i s t a n c e b e t w e e n t h e d i p o l e s d2= /2 19 20 u2 =( %pi * d2 / lambda ) .* cos ( theta ) ; d2/ // u2 = ∗cos 21 22 AF2 =2.798.* cos ( u2 ) +2.496.* cos (3.* u2 ) +1.974.* cos (5.* 23 u2 ) +1.357.* cos (7.* u2 ) + cos (9.* u2 ) ; // e x p r e s s i o n f o r a r r a y f a c t o r p a t t e r n f o r N=10 , 2M=10 24 25 p . line_style =8; 26 27 title ( ’POLAR PLOT OF ARRAY FACTOR PATTERN OF N ELEMENT DOLPH TSCHEBYSCHEFF ARRAY CASE : N=10 and d = /4 , /2 ’ ) ; 28 29 30 polarplot ( theta , AF2 ) 31 32 hl = legend ( ’ d = /4 ’ , ’ d = // p l o t p o l a r p l o t /2 ’ ) ; 19 Figure 4.1: dolpharray 20 Experiment: 5 SCILAB CODE FOR ARRAY FACTOR PATTERN OF N ELEMENT BIONOMIAL ARRAY Scilab code Solution 5.01 binomialarray 1 2 3 // t h e t a theta =0:0.001:2* %pi ; v a r i e s from 0 t o 360 // d e f i n i n g lambda =1; 4 5 d1 = lambda /4; // d i s t a n c e b e t w e e n t h e d i p o l e s d1= /4 6 7 u1 =( %pi * d1 / lambda ) .* cos ( theta ) ; d1/ // u1 = ∗cos 8 9 AF1 =126.* cos ( u1 ) +84.* cos (3* u1 ) +36.* cos (5* u1 ) +9.* cos 21 Figure 5.1: binomialarray 22 (7* u1 ) + cos (9* u1 ) ; // e x p r e s s i o n f o r // a r r a y f a c t o r N=10 , N=2M, AF= a n c o s ( 2 n −1)u f o r n=1 t o M 10 p = get ( ” h d l ” ) ; // g e t h a n d l e on current e n t i t y ( here the p o l y l i n e e n t i t y ) 11 12 p . line_style =1; 13 14 polarplot ( theta , AF1 ) 15 16 d2 = lambda /2 d i p o l e s d2= // p o l a r p l o t o f AF // d i s t a n c e b e t w e e n t h e /2 17 18 u2 =( %pi * d2 / lambda ) .* cos ( theta ) ; d2/ // u2 = ∗cos 19 20 AF2 =126.* cos ( u2 ) +84.* cos (3* u2 ) +36.* cos (5* u2 ) +9.* cos (7* u2 ) + cos (9* u2 ) ; // e x p r e s s i o n f o r // 21 array factor 22 23 p . line_style =8; 24 25 polarplot ( theta , AF2 ) 26 27 28 d3 =3* lambda /4 d i p o l e s d3= 3 // p o l a r p l o t o f AF // d i s t a n c e b e t w e e n t h e /4 29 30 u3 =( %pi * d3 / lambda ) .* cos ( theta ) ; u3 = d3/ // ∗cos 31 32 AF3 =126.* cos ( u3 ) +84.* cos (3* u3 ) +36.* cos (5* u3 ) +9.* cos (7* u3 ) + cos (9* u3 ) ; // e x p r e s s i o n f o r 23 // 33 array factor 34 35 p . line_style =2; 36 37 polarplot ( theta , AF3 ) // p o l a r p l o t o f AF 38 39 d4 = lambda // d i s t a n c e b e t w e e n t h e d i p o l e s d4= 40 41 u4 =( %pi * d4 / lambda ) .* cos ( theta ) ; = d4/ // u4 ∗cos 42 43 AF4 =126.* cos ( u4 ) +84.* cos (3* u4 ) +36.* cos (5* u4 ) +9.* cos // e x p r e s s i o n f o r // a r r a y factor (7* u4 ) + cos (9* u4 ) ; 44 45 46 p . line_style =6; 47 48 polarplot ( theta , AF4 ) // p o l a r p l o t o f AF 49 50 title ( ’POLAR PLOT OF ARRAY FACTOR PATTERN OF N ELEMENT BINOMIAL ARRAY CASE : N=10 and d = /2 , 3 /4 , ’ ); 51 52 hl = legend ( ’ d = /4 ’ ; ’ d = ’ ); 24 /2 ’ ; ’ d = 3 /4 , /4 ’ ; ’ d =
© Copyright 2026 Paperzz