CEGEP CHAMPLAIN - ST. LAWRENCE 201-103-RE: Differential Calculus Fall 2010 - Patrice Camiré Derivatives of Exponential/Logarithmic Functions & Logarithmic Differentiation 1. Use the rules of differentiation to differentiate the following functions. (a) 𝑒2𝑥 (b) 𝑒𝑥 (f) 3 𝑒𝑥 𝑥+1 2 (j) tan(𝑥) (c) 4𝑒sin(𝑥) √ (e) 𝑥𝑒3𝑥 (i) cos(𝑒 𝑥 (p) 𝑒𝑥 cos(2𝑥) 2𝑥 (l) 𝑒 (q) tan(𝑒𝑥 /𝑥) (m) 6𝑥 63𝑥 ) 3 𝑒𝑥 (o) sec(𝑒2𝑥 ) (k) 𝑥4 9𝑥 (g) 3 (h) sin(3𝑥)𝑒7𝑥 (d) 25𝑥 (n) 7𝑥 𝑒𝑥 𝑥−1 𝑥+1 (r) 𝑒 𝑥−1 2. Use the rules of differentiation to differentiate the following functions. (a) 𝑥2 ln(𝑥) (g) ln(cos 𝑥) (b) ln(𝑥2 + 1) (h) ln(sin 𝑥) 3 (c) ln(𝑥 ) (j) 𝑥(𝑥 − 1)3 (𝑥 + 1)4 (b) 𝑦 = 𝑥sin(𝑥) (c) 𝑦 = 𝑥3 𝑒2𝑥 (𝑥2 + 1)7 𝑥4 𝑒5𝑥 (𝑥 − 1)3 (𝑥 + 1)2 √ (e) 𝑦 = 4𝑥 𝑒𝑥 + 1 √ √ 3𝑥 + 1 3 𝑥 − 1 (f) 𝑦 = 𝑥2 + 8 (n) 𝑥 log2 (2𝑥 + 1) ln(3𝑥 + 1) 2𝑥 + 1 (o) log4 (𝑥 cos(𝑥) tan(𝑥)) (k) log3 (𝑥) 3. Use logarithmic differentiation to find (a) 𝑦 = (m) log2 (𝑥) log9 (𝑥) (i) ln(𝑥2𝑥 𝑒𝑥 ) (d) ln(3𝑥) − 4 (e) ln(5𝑥) − 8 ( ) 𝑥−1 (f) ln 𝑥+1 (l) log8 (cos 𝑥) (p) 1 log5 (𝑥) 𝑑𝑦 . 𝑑𝑥 (g) 𝑦 = 𝑥(𝑥 + 1) (𝑥 + 2)(𝑥 + 3) (h) 𝑦 = [sin(2𝑥)]cos(3𝑥) √ 𝑥𝑒4𝑥 (i) 𝑦 = 23𝑥 sin(𝑥) (d) 𝑦 = 2 (j) 𝑦 = 𝑒𝑥 sin(𝑥) cos(𝑥)53𝑥 (k) 𝑦 = (𝑥 − 1)4 (𝑥 + 1)3 (𝑥 + 2)5 (l) 𝑦 = [ln(sec 𝑥)]𝑥 Answers (h) [3 cos(3𝑥) + 7 sin(3𝑥)]𝑒7𝑥 1. (a) 2𝑒2𝑥 (b) 3𝑥2 𝑒 𝑥3 (i) sin(𝑥) −𝑒 √ (e) (3𝑥 + 1)𝑒3𝑥 (f) 2𝑥 (l) 2𝑥 𝑒 tan(𝑥) ln(2) (k) (l) (m) (n) (o) (h) cot(𝑥) 𝑑𝑦 𝑑𝑥 (c) 𝑑𝑦 𝑑𝑥 (d) 𝑑𝑦 𝑑𝑥 (e) 𝑑𝑦 𝑑𝑥 (f) 𝑑𝑦 𝑑𝑥 (g) 𝑑𝑦 𝑑𝑥 ( 1 3 4 + − 𝑥 𝑥−1 𝑥+1 (p) ) 𝑒𝑥 𝑥 )( 𝑥−1 𝑥2 3(2𝑥 + 1) − 2(3𝑥 + 1) ln(3𝑥 + 1) (3𝑥 + 1)(2𝑥 + 1)2 1 𝑥 ln(3) − tan(𝑥) ln(8) log9 (𝑥) log2 (𝑥) + 𝑥 ln(2) 𝑥 ln(9) 2𝑥 log2 (2𝑥 + 1) + (2𝑥 + 1) ln(2) [ ] 1 1 1 − tan(𝑥) + ln(4) 𝑥 sin(𝑥) cos(𝑥) −1 𝑥 ln(5) [log5 (𝑥)]2 𝑥(𝑥 − 1)3 (𝑥 + 1)4 ( ) sin(𝑥) = cos(𝑥) ln(𝑥) + 𝑥sin(𝑥) 𝑥 ( ) 3 14𝑥 = +2+ 2 𝑥3 𝑒2𝑥 (𝑥2 + 1)7 𝑥 𝑥 +1 ( ) 4 3 2 𝑥4 𝑒5𝑥 = +5− − 𝑥 𝑥 − 1 𝑥 + 1 (𝑥 − 1)3 (𝑥 + 1)2 ( ) √ 𝑒𝑥 𝑥 = ln(4) + 4 𝑒𝑥 + 1 2(𝑒𝑥 + 1) √ ( )√ 3 1 2𝑥 3𝑥 + 1 3 𝑥 − 1 = + − 2(3𝑥 + 1) 3(𝑥 − 1) 𝑥2 + 8 𝑥2 + 8 ( ) 1 𝑥(𝑥 + 1) 1 1 1 = + − − 𝑥 𝑥 + 1 𝑥 + 2 𝑥 + 3 (𝑥 + 2)(𝑥 + 3) 𝑑𝑦 = 𝑑𝑥 ( 𝑥+1 (j) 1 𝑥 2 −2𝑒 𝑥−1 (r) (𝑥 − 1)2 (m) 4 ln(6)6 2. (a) 𝑥(2 ln(𝑥) + 1) 2𝑥 (b) 2 𝑥 +1 3 (c) 𝑥 1 (d) 𝑥 1 (e) 𝑥 1 1 2 (f) − = 2 𝑥−1 𝑥+1 𝑥 −1 (g) − tan(𝑥) (b) (q) 𝑒 sec 4𝑥 (g) ln(3) sec (𝑥)3 (p) (cos(2𝑥)−2𝑥 sin(2𝑥))𝑒𝑥 cos(2𝑥) 𝑥 (k) 9 𝑥 (𝑥 ln(9) + 4) 2 3. (a) 2 𝑥 3 𝑥𝑒𝑥 (𝑥 + 1)2 (i) 1 + ln(2) + (o) 2 sec(𝑒2𝑥 ) tan(𝑒2𝑥 )𝑒2𝑥 √ 2 𝑥 (2𝑥2 − 2𝑥 − 1)𝑒𝑥 (j) (𝑥 − 1)2 (d) 5 ln(2)25𝑥 ln(7) √ 𝑥 sin(𝑒 𝑥 ) (c) 4 cos(𝑥)𝑒 3 𝑒𝑥 (n) 𝑥2 (𝑥 + 3)𝑒𝑥 7𝑥 ) [ ] 𝑑𝑦 = 2 cos(3𝑥) cot(2𝑥) − 3 sin(3𝑥) ln(sin(2𝑥)) [sin(2𝑥)]cos(3𝑥) 𝑑𝑥 ( )√ 1 1 𝑥𝑒4𝑥 𝑑𝑦 = + 4 − 3 ln(2) − cot(𝑥) (i) 𝑑𝑥 2 𝑥 23𝑥 sin(𝑥) (h) [ ] 2 𝑑𝑦 = 2𝑥 + cot(𝑥) − tan(𝑥) + 3 ln(5) 𝑒𝑥 sin(𝑥) cos(𝑥)53𝑥 𝑑𝑥 ) ( 𝑑𝑦 4 3 5 (𝑥 − 1)4 (𝑥 + 1)3 (𝑥 + 2)5 (k) = + + 𝑑𝑥 𝑥−1 𝑥+1 𝑥+2 ) ( 𝑑𝑦 𝑥 tan(𝑥) [ln(sec 𝑥)]𝑥 (l) = ln ln(sec 𝑥) + 𝑑𝑥 ln(sec 𝑥) (j)
© Copyright 2025 Paperzz