More Properties of Laplace Transforms - (4.4) 1. Derivatives of Laplace Transforms: Let Fs c£ft ¤. Then n c£t n ft ¤ "1 n d n Fs "1 n F n s ds n1 c£tft ¤ "1 F U s n2 c£t 2 ft ¤ F UU s It can be derived directly from the definition: . F U s d c£ft ¤ d ; ft e "st dt ds 0 ds . . . ; 0 ft dsd e "st dt ; 0 ft "te "st dt " ; tft e "st dt "c£tft ¤, 0 U c£tft ¤ "F s Note that we can derive the following formula from this property: U F s c£"tft ¤ Example Find c£gt ¤ where a. gt te "2t c. gt t 2 cos2t b. gt t sin=t a. c£gt ¤ c£te "2t ¤ " d c£e "2t ¤ " d ds ds 1 s2 " " 1 s 2 2 1 s 2 2 b. c£gt ¤ c£gt ¤ c£t sin=t ¤ " d c£sin=t ¤ " d ds ds "= "2s 2 s = 2 2 = s2 =2 2=s 2 s = 2 2 c. c£gt ¤ 2 2 c£gt ¤ c£t 2 cos2t ¤ d 2 c£cos2t ¤ d 2 ds ds d ds 4 " s2 2 s 2 4 s s2 4 d ds "2ss 2 4 " 4 " s 2 2s 2 4 2s s 2 4 4 s 2 4 " s2s 2 s 2 4 2 2s "9 2s 3 s 2 4 Example Find ft where a. c£ft ¤ ln s2 s " 5 s 2 4 b. c£ft ¤ arctan4s Recall from the formula of the derivative of Laplace transform we can also derive the formula U U F s c£"tft ¤ or ft " 1 c "1 F s t So if we know the inverse Laplace transform of F U s then we can find ft by above formula. Here are two 1 examples of this type. a. Let s2 lns 2 " lns " 5 " lns 2 4 s " 5 s 2 4 F U s 1 " 1 " 22s s"5 s2 s 4 1 " 1 " 2s c "1 £F U s ¤ c "1 e "2t " e 5t " 2 cos2t s"5 s2 s2 4 Fs ln Hence, " tft e "2t " e 5t " 2 cos2t ft " 1 t e "2t " e 5t " 2 cos2t b. Let Fs arctan4s . F U s 4 4 1 16 1 16s 2 1 4s 2 "1 U c £F s ¤ c 1 16 1 4 "1 1 16 " tft sin 1 t , 4 s 2 4 s2 1 4 1 16 s2 sin 1 t 4 ft " 1 sin 1 t t 4 Example Use Laplace transform to solve y UU 16y cos4t , y0 1, y U 0 1 a. Find c£y¤. c£y UU ¤ 16c£y¤ c£cos4t ¤ s 2 c£y¤ " sy0 " y U 0 16c£y¤ s 2 16 c£y¤ s s 1, s2 6 c£y¤ s s 16 2 1 s 2 16 s s1 s2 6 b. Find y. s 1 s1 s 2 16 s 2 6 2 1 9 2 s 10 s 16 s 16 1 9 2 s 1 3s 10 s 16 10 s 6 s 2 16 Fs y c "1 9s 1 s 1 10 10 s 2 16 10 s 2 6 1 s 10 s 3 6 1 sin4t 9 cos4t 1 cos 4 10 10 6t 2. Convolution: a. Definition: Let f and g be piecewise continuous functions. The convolution of f and g denoted by f ' g is defined as f ' g t Example Find i 2 i t ' e 2t ; ii e "t ' cos=t t ; 0 fA gt " A dA. t ' e 2t t ; 0 Ae 2t"A dA " 12 t " 1 1 e 2t 4 4 ii e "t ' cos=t t "e "t cos t= = sin t= 1 =2 ; 0 e "A cos=t " A dA b. Laplace Transform of a convolution: Let c£f¤ Fs and c£g¤ Gs . Then c£f ' g¤ c£f¤c£g¤ Fs Gs c "1 £Fs Gs ¤ f ' g Example Find ii c£e "t ' cos=t ¤ i c£t ' e 2t ¤ t ; 0 e A sint " A dA iii c i 1 s2 c£t ' e 2t ¤ c£t¤c£e 2t ¤ 1 s"2 1 s 2 s " 2 ii 1 s1 c£e "t ' cos=t ¤ c£e "t ¤c£cos=t ¤ s s2 =2 s s 1 s 2 = 2 iii c t ; 0 e A sint " A dA c£e t ' sint ¤ c£e t ¤c£sin t¤ 1 s"1 1 s2 1 1 s " 1 s 2 1 Example Find ht where c£h¤ Hs i Hs i Hs 1 ss 2 2 1 2 s 4 2 1 ss 2 2 1 ss 2 2 1 s ft 1 ' 1 sin 2 1 ii Hs 2 2 s 4 1 1 2 2 2 s 4 s 4 1 s2 2 2t 1 s2 4 c£1¤c 1 2 t ; 0 sin c ht 1 sin2t ' sin2t 1 4 4 3 ii Hs 1 sin 2 c 1 ' 1 sin 2 2 A dA 1 2 " 1 cos t 2 2 2 1 sin2t c 2 t 2t 1 sin2t 2 ; 0 sin2A sin2t " A dA c 2t 2 1 2 2 1 sin2t ' 1 sin2t 2 2 1 sin 2t " t cos 2t 16 8 Example Solve the initial value problem: y UU 4y 2 sin 2t, y0 1, y U 0 "1 a. Find c£y¤. c£y UU ¤ 4c£y¤ 2c£sin2t ¤ s 2 c£y¤ " s1 " "1 4c£y¤ 2 4 s " 1, s2 4 s 2 4 c£y¤ 2 s2 4 1 s2 4 c£y¤ 4 s"1 s2 4 b. Find y. Fs y c "1 4 s"1 s2 4 1 s2 4 4 " 21 2s 2 s 4 s 4 4 s 4 " 21 2s 2 s 4 s 4 s 4 2 sin2t ' sin2t cos2t " 1 sin2t 2 2 t ; 0 sin2A sin2t " A dA cos2t " 1 sin2t 1 sin 2t " 1 tcos 2t cos2t " 1 sin2t 2 2 4 2 3. Laplace Transform of an Integral: t ; 0 fu du c 1s Fs where c£f¤ Fs c "1 Fs s t ; 0 ft dt Example Find a. c a. fu ue t t ; 1 ue "2u du b. c t ; e "u cos=u du , 0 "2u Fs c£ft ¤ c£te "2t ¤ t ; 1 ue "2u du c 1s 1 s 2 2 1 s 2 2 1 ss 2 2 b. fu e "u cos=u s"1 " s 1 2 = 2 Fs c£ft ¤ c£e "t cos=t ¤ t c t ; e "u cos=u du 0 " d c ds t ; 0 e "u cos=u du " d ds 3 2 2 " " 2s " 5s 4s " 1 " =2 2 2 2 s s " 2s 1 = 1 s s"1 s " 1 2 = 2 3 2 2 2s " 5s 4s " 1 " =2 2 2 2 s s " 2s 1 = Example Find ht where Hs is a. Hs 1 ss 2 2 b. Hs 1 s 2 s " 2 a. Hs 4 1 1s ss 2 2 1 s 2 2 1s c 1 sin 2 2t ht t ;0 2 A dA " 1 cos t 2 1 2 2 1 sin 2 b. Hs 1 1s s 2 s " 2 ht ; 0 ; 0 e 2z dz du t u 1 s 1s c£1 ' e 2t ¤ 1 s"2 1 e 2t " 1 t " 1 4 4 2 t Example Solve ft using Laplace transform where ft 2t " 4 ; sin A ft " A dA 0 a. Find c£f¤ : t c£f¤ c 2t " 4 ; sin A ft " A dA 0 1 4 c£f¤ 22 , s2 1 s 2c£t¤ " 4c£sin t¤c£f¤ 22 " 4 2 1 c£f¤ s s 1 2 2s 1 s 2 5 c£f¤ 2 , c£f¤ 2 2 2 2 s s 1 s s 5 b. Find f : ft c "1 2s 2 1 s 2 s 2 5 c "1 8 2 5s 2 5 5s 2 Example LC-circuit: Solve the initial value problem: L dI RI 1 C dt 2 t 8 sin 5 5 5 5t t ; 0 IA dA Et where L 0. 1, R 2, C 0. 1, E 120t " 120tUt " 1 , I0 0. a. Find c£I¤. c£Et ¤ c£120t " 120tUt " 1 ¤ c£120t " 120t " 1 1 Ut " 1 ¤ 1 " 120 1 1 e "s s s2 s2 t c dI 20I 100 ; IA dA dt 0 120 10c£Et ¤ 1 "s 1 1 sc£I¤ " I0 20c£I¤ 100 s c£I¤ 1200 s 2 " 1200 s 2 s e s 20 100 c£I¤ 1200 12 " 1200 12 1s e "s s s s 2 s 20s 100 c£I¤ 1200 1 " 1200 1 1 e "s s s s2 s2 s 1200 12 " 1200 12 1s e "s c£I¤ 2 s 20s 100 s s 1200 1200 1 "s " 1 e ss 10 2 s 10 2 s b. Find I : c "1 5 1200 ss 10 2 c "1 120 12 " " 12 2 s s 10 s 10 12 " 120te "10t " 12e "10t 1200 s 10 2 c "1 c "1 1200 s 10 2 1200 1 1200 s 10 2 s 10 2 s 12 " 120te "10t " 12e "10t 1200te "10t 1 1 s 1 1 e "s s c "1 12 " 12e "10t"1 1080t " 1 e "10t"1 Ut " 1 It 12 " 120te "10t " 12e "10t 12 " 12e "10t"1 1080t " 1 e "10t"1 Ut " 1 4. Laplace Transform of a Periodic Function: Let f be a periodic function with period T. Then c£f¤ T ; 0 e "st ft dt 1 1 " e "Ts Derivation c£f¤ . T ; 0 ft e "st dt ; 0 ft e "st dt ; 2T T ft e "st dt ; 3T 2T ft e "st dt . . . Observe that let u t " T 2T ;T ft e "st dt T T ; 0 fu T e "suT du e "sT ; 0 fu e "su du c£f¤ 1 e "sT s "s2T . . . ; T 0 ft e "st dt 1 1 " e "sT T ;0 ft e "st dt T Note that the integral ; e "st ft dt is equivalent to c£gt ¤ where 0 gt ft , 0 t t T 0, t u T . Since gt ft " ft Ut " T , c£gt ¤ c£ft " ft Ut " T ¤. Example Find c£f¤ where a. ft t, 0 t t 1, with period 1 b. ft t 0tt1 0 1tt2 , with period 2 c. ft sin t, 0 t t =, with period = a. 1 c£t " t " 1 1 Ut " 1 ¤ 1 c£t " tUt " 1 ¤ 1 " e "s 1 " e "s 1 1 " 1 1 e "s 1 " 1 e "s s 1 " e "s s 1 " e "s s 2 s2 s2 c£f¤ 6 1.8 2 1.6 1.4 1.5 1.2 1 1 0.8 0.6 0.4 0.5 0.2 0 0.5 1 1.5 t 2 2.5 3 0 1 2 ft s 3 4 5 Fs b. 1 1 c£t " tUt " 1 ¤ c£t " t " 1 1 Ut " 1 ¤ 1 " e "2s 1 " e "2s 1 1 " 1 1 e "s s 1 " e "2s s 2 s2 c£f¤ 2 1.8 1.2 1.6 1 1.4 1.2 0.8 1 0.6 0.8 0.6 0.4 0.4 0.2 0.2 0 1 2t ft 3 4 1 2 s 3 4 5 Fs c. 1 1 c£sin t " sin tUt " = ¤ c£sin t " sint " = = Ut " = ¤ 1 " e "=s 1 " e "=s 1 1 1 1 e "=s c£sin t sint " = Ut " = ¤ 1 " e "=s 1 " e "=s s 2 1 s2 1 c£f¤ 7 3 1.8 1.6 2.5 1.4 2 1.2 1 1.5 0.8 1 0.6 0.4 0.5 0.2 0 2 4 6 t 0 8 1 2 s 3 4 5 Fs ft 1 0tt1 Example Solve the initial value problem: dI I Et , I0 0, where Et dt 0 1tt2 period 2. a. Find c£I¤. 1 c£1 " Ut " 1 ¤ 1 " e "2s 1 1 " 1 e "s s s s 1 1 " e "2s sc£I¤ " 0 c£I¤ c£Et ¤, s 1 c£I¤ 1 s1 1 1 " e "2s 1 ss 1 1 e "s c£I¤ 1 1 " e "s s b. Find I. c "1 It c "1 1 1 e "s 1 ss 1 1 ss 1 c 1 " 1 s s1 c "1 1 ss 1 1 " e "t 1 " e "s e "2s " e "3s . . . 1 " e "t " 1 " e "t"1 Ut " 1 1 " e "t"2 Ut " 2 " 1 " e "t"3 Ut " 3 . . . 2 1 1.8 0.8 1.6 1.4 0.6 1.2 1 0.4 0.8 0.6 0.2 0.4 0.2 d 0 1 2x Input Et 8 3 4 0 1 2 t It 3 4 5 with
© Copyright 2026 Paperzz