Supporting Information Modeling Adsorption and Self-Diffusion of Methane in LTA Zeolites: the Influence of Framework Flexibility A. García-Sánchez1,2, D. Dubbeldam2, S. Calero1* Department of Physical, Chemical, and Natural Systems. University Pablo de Olavide. Ctra. Utrera km. 1. 41013 Seville, Spain, Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands. * E-mail: [email protected] University Pablo de Olavide(1), University of Amsterdam(2). Table S1: Energy potentials and force field parameters used in this work based on the force field reported by Nicholas et al.1 Force Field Parameters Valence Potential Parameters i) Bond Stretch: U bond (r ) kr r r0 2 2 Si-Ozeo Bond Stretch (Harmonic Bond) kr/kB = 300724.7766358210 (K/Å2) r0= 1.61 Å Al-Oa Bond Stretch (Harmonic Bond) kr/kB = 300724.7766358210 (K/Å2) r0= 1.61 Å ii) Bond Angle Bend: (Ozeo-Si-Ozeo) U Obend Si O ( ) k 0 2 2 Ozeo-Si-Ozeo Bond Angle Bend (Harmonic Bend) 0 = 109.50 kθ/kB = 69537.44416550520 (K/rad2) Oa-Al-Oa Bond Angle Bend (Harmonic Bend) 0 = 109.50 kθ/kB = 69537.44416550520 (K/rad2) iii) Bond Angle Bend: (Si-Ozeo-Si) USibend OSi ( ) k1 0 2 k2 0 3 k3 0 4 2 2 2 Si-Ozeo-Si Bond Angle Bend (Quartic Bend) k1/kB=5462.50557(K/rad2) k2/kB=-17157.8055(K/rad3) k3/kB=13351.6726(K/rad4) 0 =149.50 k3/kB=13351.6726(K/rad4) 0 =149.50 Al-Oa-Si Bond Angle Bend (Quartic Bend) k1/kB=5462.50557(K/rad2) k2/kB=-17157.8055(K/rad3) iv) Bond Angle Coupling: U U B (r ) kr rSiSi r0 2 2 Si-Ozeo-Si Urey-Bradley Term (Harmonic Urey-Bradley) kr/kB = 27488.73770226310 (K/Å2) r0= 3.1261 Å Al-Oa-Si Urey-Bradley Term (Harmonic Urey-Bradley) kr/kB = 27488.73770226310 (K/Å2) r0= 3.1261 Å v) Dihedral Angle: k U torsion ( , , ' ) S (1 cos(3 )) S ' 2 Si-Ozeo-Si-Ozeo Torsion (Smoothed three cosine dihedral) k/kB = -352.419714131579 (K) Si-Ozeo-Al-Ozeo Torsion (Smoothed three cosine dihedral) k/kB = -352.419714131579 (K) Al-Ozeo-Si-Ozeo Torsion (Smoothed three cosine dihedral) k/kB = -352.419714131579 (K) vi) Nonbonded Potential Parameters (Lennard Jones Potential) q (e-) Atom ε/kB (K) Si 81.76308187 3.962387454 1.1 Al 81.76308187 3.962387454 0.8 OSi 29.4338257 3.062219744 -0.55 OAl 29.4338257 3.062219744 -0.609146341 Si 81.76308187 3.962387454 1.1 Na -- -- 0.536585366 Ca -- -- 1.073170732 The Ozeo oxygen atom has two types: (a) OSi connected to two silicon atoms, and (b) OAl connected to an aluminium. The smoothing function S() is defined as: 1 S 2 off 2 3on off off on with on =1700 and off =1800. on on Table S2: Energy potentials and force field parameters used in this work based on the force field reported by Hill and Sauer2,3. Force Field Parameters i) Bond Stretch: U bond(r ) k2 r r0 k3 r r0 k4 r r0 2 3 4 Si-O Bond Stretch (CFF Quartic Bond) k2/kB = 231017.255 (K/Å2) k3/kB = -338387.114 (K/Å3) k4/kB = 223109.917 (K/Å4) r0= 1.6104 Å Si-Oa Bond Stretch (CFF Quartic Bond) k2/kB = 248642.816 (K/Å2) k3/kB = -18468.957 (K/Å3) k4/kB=1082265.698 (K/Å4) r0= 1.6157 Å Al-Oa Bond Stretch (CFF Quartic Bond) k2/kB = 165400.667 (K/Å2) k3/kB = -171605.009 (K/Å3) k4/kB = 1101564.816 (K/Å4) r0= 1.7193 Å ii)Bond Angle Bend: U angle( ) k2 0 k3 0 k4 0 2 3 4 O-Si-O Bond Bending (Bond Angle Bend) (CFF Quartic Bend) k2/kB = 41248.441 (K/rad2) k3/kB = -18408.470 (K/rad3) k4/kB = 58854.427 (K/rad4) θ0= 112.02000 Oa-Si-O Bond Bending (Bond Angle Bend) (CFF Quartic Bend) k2/kB = 44318.985 (K/rad2) k3/kB = -28705.144 (K/rad3) k4/kB = 46537.881 (K/rad4) θ0= 112.42790 Oa-Al-Oa Bond Bending (Bond Angle Bend) (CFF Quartic Bend) k2/kB= 150991.986 (K/rad2) k3/kB = -16387.793 (K/rad3) k4/kB = 33846.084 (K/rad4) θ0= 113.40000 Oa-Si-Oa Bond Bending (Bond Angle Bend) (CFF Quartic Bend) k2/kB = 77589.386 (K/rad2) k3/kB = -34550.792 (K/rad3) k4/kB = 11890.672 (K/rad4) θ0= 110.61200 Si-O-Si Bond Bending (Bond Angle Bend) (CFF Quartic Bend) k2/kB = 10417.396 (K/rad2) k3/kB = 13863.996 (K/rad3) k4/kB = 5531.891 (K/rad4) θ0= 173.76510 Al-Oa-Si Bond Bending (Bond Angle Bend) (CFF Quartic Bend) k2/kB = 5206.006 (K/rad2) k3/kB = 6358.982 (K/rad3) k4/kB = 4530.887 (K/rad4) θ0= 162.40000 iii) Bond Bond: U bondbond(r , r ' ) kbb' r r0 r 'r '0 Al-Oa-Si Bond-Bond (Bond Coupling) (CFF Bond Bond Cross) kbb’ /kB = 41850.643 (K/Å2) r’0= 1.6157 Å r0= 1.7193 Å Oa-Si-O Bond-Bond (Bond Coupling) (CFF Bond Bond Cross) kbb’ /kB = 23023.294 (K/Å2) r0= 1.6157 Å r’0= 1.6104 Å Si-O-Si Bond-Bond (Bond Coupling) (CFF Bond Bond Cross) kbb’ /kB = 76426.043 (K/Å2) r0= 1.6104 Å r’0= 1.6104 Å Oa-Al-Oa Bond-Bond (Bond Coupling) (CFF Bond Bond Cross) kbb’ /kB = -28434.412 (K/Å2) r0= 1.7193 Å r’0= 1.7193 Å Oa-Si-Oa Bond-Bond (Bond Coupling) (CFF Bond Bond Cross) kbb’ /kB = 76426.043 (K/Å2) r0= 1.6157 Å r’0= 1.6157 Å iv) Bond-Angle: U bondangle(r , , r ' ) 0 kr r r0 kr ' r 'r '0 Al-Oa-Si Bond-Bend (Bond-Bend Coupling) (CFF Bond Bend Cross) kr /kB = 4612.610 (K/Å/rad) kr’ /kB = 6918.160 (K/Å/rad) θ0= 162.40000 b0= 1.7193 Å b’0=1.6157 Å Oa-Si-O Bond-Bend (Bond-Bend Coupling) (CFF Bond Bend Cross) kr /kB = 10125.881 (K/Å/rad) kr’/kB =39231.890 (K/Å/rad) θ0= 112.42790 b0= 1.6157 Å b’0=1.6104 Å O-Si-O Bond-Bend (Bond-Bend Coupling) (CFF Bond Bend Cross) kr /kB = 39313.462 (K/Å/rad) kr’/kB= 39313.462 (K/Å/rad) θ0= 112.02000 b0= 1.6104 Å b’0=1.6104 Å Si-O-Si Bond-Bend (Bond-Bend Coupling) (CFF Bond Bend Cross) kr /kB = 4649.244 (K/Å/rad) kr’/kB = 4649.244 (K/Å/rad) θ0= 173.76510 b0= 1.6104 Å b’0=1.6104 Å Oa-Al-Oa Bond-Bend (Bond-Bend Coupling) (CFF Bond Bend Cross) kr /kB = 55430.774 (K/Å/rad) kr’/kB =55430.774 (K/Å/rad) θ0= 113.40000 b0= 1.7193 Å b’0=1.7193 Å Oa-Si-Oa Bond-Bend (Bond-Bend Coupling) (CFF Bond Bend Cross) kr/kB= 117789.368 (K/Å/rad) kr’/kB=117789.368(K/Å/rad) θ0= 110.61200 b0= 1.6157 Å b’0=1.6157 Å v) Angle- Angle: U angleangle( , ' ) k ' 0 ' '0 O-Si-O-O Bend-Bend (Bend Coupling) (CFF Bend Bend Cross) kθθ’ /kB = -3171.792 (K/rad2) θ0= 112.02000 θ'0= 112.02000 O-Si-Oa-O Bend-Bend (Bend Coupling) (CFF Bend Bend Cross) kθθ’ /kB = 9680.532 (K/rad2) θ0= 112.42790 θ'0= 112.42790 vi) Torsion: U torsion , , ' S k1 1 cos k2 1 cos 2 k3 1 cos 3 S ' Al-Oa-Si-O Bend-Torsion-Bend (Torsion) (Smoothed CFF Dihedral) k1 /kB = 1106.52913 (K) k2 /kB = 378.82356 (K) k3 /kB = -248.38909 (K) Si-O-Si-Oa Bend-Torsion-Bend (Torsion) (Smoothed CFF Dihedral) k1 /kB = 19.97780 (K) k2 /kB = 6.69282 (K) k3 /kB = -123.43972 (K) Si-O-Si-O Bend-Torsion-Bend (Torsion) (Smoothed CFF Dihedral) k1 /kB = 15.39851 (K/Å2) k2 /kB = -5.28380 (K/Å2) k3 /kB = 40.45884 (K/Å2) Si-Oa-Al-Oa Bend-Torsion-Bend (Torsion) (Smoothed CFF Dihedral) k1 /kB = 3061.48615 (K/Å2) k2 /kB = -286.93570 (K/Å2) k3 /kB = -745.67050 (K/Å2) Al-Oa-Si-Oa Bend-Torsion-Bend (Torsion) (Smoothed CFF Dihedral) k1 /kB = 935.83711 (K/) k2 /kB = -11.62437 (K) k3 /kB = -218.64883 (K) vii) Angle-Angle Torsion: U angleangletorsion ( , , ' ) k ' cos 0 ' '0 O-Si-Oa-Al Bend-Torsion-Bend (Bend Coupling Torsion) (Smoothed CFF Bend Torsion Cross) kθθ’/kB = 4260.004 (K/rad2) θ0= 112.42790 θ'0= 162.40000 Oa-Si-O-Si Bend-Torsion-Bend (Bend Coupling Torsion) (Smoothed CFF Bend Torsion Cross) kθθ’/kB = -5243.093 (K/rad2) θ0= 112.42790 θ'0= 173.76510 O-Si-O-Si Bend-Torsion-Bend (Bend Coupling Torsion) (Smoothed CFF Bend Torsion Cross) kθθ’/kB = -2272.036 (K/rad2) θ0= 112.02000 θ'0= 173.76510 Oa-Al-Oa-Si Bend-Torsion-Bend (Bend Coupling Torsion) (Smoothed CFF Bend Torsion Cross) kθθ’/kB = -9067.208 (K/rad2) θ0= 113.40000 θ'0= 162.40000 Oa-Si-Oa-Al Bend-Torsion-Bend (Bend Coupling Torsion) (Smoothed CFF Bend Torsion Cross) kθθ’ /kB = -5499.131 (K/rad2) θ0= 110.61200 θ'0= 162.40000 Nonbonded Potential Parameters (CFF 9-6 Potential: U (r ) p1 p2 r9 r6 Atom p1/kB (K Å9) p2/kB (K Å6) q (e-) Si 94057219.175 0.0 2.05 Al 10316687.74 0.0 1.75 O 40076506.50 0.0 -1.025 Oa 28891069.825 0.0 -1.2 Na -- -- 1.0 Ca -- -- 2.0 (1) Nicholas, J. B.; Hopfinger, A. J.; Trouw, F. R.; Iton, L. E. J. Am. Chem. Soc. 1991, 113, (2) (3) Hill, J. R.; Sauer, J. Journal of Physical Chemistry 1994, 98, 1238. Hill, J. R.; Sauer, J. Journal of Physical Chemistry 1995, 99, 9536. 4792.
© Copyright 2026 Paperzz