Tetrahedron 71 (2015) 2595e2602 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Tetrahedron report number 1077 Unique chemoselective Paal-Knorr reaction catalyzed by MgI2 etherate under solvent-free conditions Xingxian Zhang *, Guodong Weng, Yongdong Zhang, Pengcheng Li College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China a r t i c l e i n f o Article history: Received 3 January 2015 Received in revised form 3 March 2015 Accepted 7 March 2015 Available online 12 March 2015 Keywords: Chemoselective Paal-Knorr reaction Primary amine 1,4-Diketone MgI2 etherate Contents 1. 2. 3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2596 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2596 Experimental section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1. General procedure for the synthesis of N-substituted pyrroles 3ae3t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.1. 1-Phenyl-2,5-dimethyl-1H-pyrrole (3a)29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.2. 1-o-Tolyl-2,5-dimethyl-1H-pyrrole (3b)30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.3. 1-(4-Methoxyphenyl)-2,5-dimethyl-1H-pyrrole31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.4. 1-(3-Methoxyphenyl)-2,5-dimethyl-1H-pyrrole (3d)30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.5. 1-(2,6-Diisopropylphenyl)-2,5-dimethyl-1H-pyrrole (3e)32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.6. 1-(4-Bromophenyl)-2,5-dimethyl-1H-pyrrole (3f)27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.7. 1-(3,5-Difluorophenyl)-2,5-dimethyl-1H-pyrrole (3g)33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.8. 1-(4-Nitrophenyl)-2,5-dimethyl-1H-pyrrole (3h)29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.9. 2,5-Dimethyl-1-(4-amino-3-nitrophenyl)-1H-pyrrole (3i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.10. 2-(2,5-Dimethyl-1H-pyrrol-1-yl)pyridine (3j)15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.11. 2-(2,5-Dimethyl-1H-pyrrol-1-yl)pyrimidine (3k)34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.12. 1-Benzyl-2,5-dimethyl-1H-pyrrole (3l)27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.13. 1-(4-Fluorobenzyl)-2,5-dimethyl-1H-pyrrole (3m)30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.14. 1-Isobutyl-2,5-dimethyl-1H-pyrrole (3n)35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.15. 2,5-Dimethyl-1-(prop-2-ynyl)-1H-pyrrole(3o)36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.16. (R)-1-(1-(Naphthalen-1-yl)ethyl)-2,5-dimethyl-1H-pyrrole (3p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.17. 1-((1R,2S)-2-(3,4-Difluorophenyl)cyclopropyl)-2,5-dimethyl-1H-pyrrole (3q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 3.1.18. (S)-Methyl 2-(2,5-dimethyl-1H-pyrrol-1-yl)-3-phenylpropanoate (3r)37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.19. (R)-Methyl 2-(2,5-dimethyl-1H-pyrrol-1-yl)propanoate (3s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.20. (S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-phenylacetamide (3t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.21. 1-(4-Methoxyphenyl)-2-methyl-5-phenyl-1H-pyrrole (4a)30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.22. 1-(4-Methoxybenzyl)-2-methyl-5-phenyl-1H-pyrrole (4b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 * Corresponding author. Tel.: þ86 571 88320320; fax: þ86 571 88320913; e-mail address: [email protected] (X. Zhang). http://dx.doi.org/10.1016/j.tet.2015.03.035 0040-4020/Ó 2015 Elsevier Ltd. All rights reserved. 2596 4. X. Zhang et al. / Tetrahedron 71 (2015) 2595e2602 3.1.23. 1-(1-(4-Methoxyphenyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl) ethanone (4c)38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.24. 1-(1-(4-Methoxybenzyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl)ethanone (4d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.25. 1-(2-Methyl-1-phenethyl-5-phenyl-1H-pyrrol-3-yl)ethanone (4e)38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.26. Ethyl 2-methyl-1-phenethyl-5-phenyl-1H-pyrrole-3-carboxylate (4f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.27. Ethyl 1-(4-methoxyphenyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate (4g)39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.28. Diethyl 1-(4-methoxyphenyl)-2,5-dimethyl-1H-pyrrole-3,4-dicarboxylate (4h)39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.29. Diethyl 1-4-chlorophenyl-2,5-dimethyl-1H-pyrrole-3,4-dicarboxylate (4i)39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.30. 1,3-Bis(2,5-dimethyl-1H-pyrrol-1-yl)propane (5)35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.31. 1,4-Bis(2,5-dimethyl-1H-pyrrol-1-yl)benzene (6)15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.32. 2,5-Dimethyl-1-(4-aminophenyl)-1H-pyrrole (7)40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.33. 4,40 -Bis(2,5-dimethyl-1H-pyrrol-1-yl)biphenyl (8)41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.1.34. 2,5-Dimethyl-1-(2-aminophenyl)-1H-pyrrole (9)15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 3.2. General procedure for crossover reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2601 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2602 Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2602 References and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2602 1. Introduction Pyrrole derivatives are important species with remarkable biological activities1 and useful intermediates in the synthesis of natural products and heterocycles.2 Many methods for the synthesis of pyrrole derivatives have been developed, which involve conjugate addition,3 Hantzsch procedure,4 1,3-dipolar cycloaddition reaction,5 transition metal-mediated cyclization,6 aza-Wittig reaction,7 titanium catalyzed hydroamination of diynes,8 multicomponents reactions9 and other operations.10 Among them, the Paal-Knorr reaction remains one of the most significant and simple methods, which consists of the cyclocondensation of primary amines with 1,4-diketones to produce N-substituted pyrroles. Recently, many methods for the synthesis of pyrroles by PaalKnorr cyclization of primary amines with 1,4-diketones have been developed in the presence of various Lewis acid catalysts, such as, Ti(OiPr)4,13 ZrOCl2$8H2O,14 Sc(OTf)3,15 Bi(NO3)3$5H2O,16 ZrCl4,17 BiCl3/SiO2,18 InCl3,19 and FeCl3.20 Although, pyrroles can be obtained by the aforementioned strategies, it is highly desirable to develop methods that will overcome the inherent limitations, such as harsh reaction conditions, poor substrate generality, and can introduce a diverse substitution pattern into the heterocyclic core. Therefore, the development of less expensive, environmentally benign, and easily handled promoters for the synthesis of N-substituted pyrroles by Paal-Knorr condensation under neutral, mild, and convenient condition is still highly desirable. Magnesium, a practically ideal main group metal, which abundantly exists in nature, has been actively investigated as a catalyst in the field of CeC bond formation and functional group transformation.21 In our previous papers,22 we have demonstrated that MgI2 etherate could efficiently catalyze the Mukaiyama aldol reaction of aldehydes with trimethylsilyl enolates, allylation of aldehydes with allylstannane, cycloaddition of isocyanates with oxiranes and Clauson-Kass reaction of primary amines with 2,5dimethoxytetrahydrofuran. In continuation of our ongoing research field, we wish to report a mild, efficient, and highly chemoselective Paal-Knorr condensation of various primary amines with 1,4-diketones catalyzed by 3 mol % MgI2 etherate under solvent-free conditions. 2. Results and discussion Initially, we have chosen aniline and 2,5-hexadione 1a (acetonylacetone) as the model substrates for surveying the reaction parameters in the model reaction. The results are summarized in Table 1. By screening various solvents we have found that CH2Cl2 is the best solvent for this reaction (Table 1, entry 1). Moderate yields were given in THF, MeCN, acetone and methanol (Table 1, entries 2e5). Very low yield was given in DMF (Table 1, entries 6). It is worthy to be noted that this Paal-Knorr reaction was carried out very efficiently under solvent-free conditions in a short time. Under solvent-free condition, temperature has a remarkable effect on the yield of compound 3a. The results showed that the yields were improved by increasing the reaction temperature. The excellent yield was given at 70 C (Table 1, entry 9). However, the higher temperature could not cause the obvious increase for the yield of product (Table 1, entries 10e11). In addition, the reaction was carried out sluggishly without catalyst under solvent-free condition (Table 1, entry 12). To examine the halide anion effect, halogen analogs of MgI2 etherate, MgBr2 etherate, MgCl2, Mg(ClO4)2 and Mg(OTf)2 were compared under parallel reaction conditions, respectively. The best result has been observed with MgI2 etherate as the catalyst (Table 1, entry 9). Good yield was given by using 3 mol % of MgClO4 (Table 1, entry 13). MgCl2 and MgBr2 etherate are also effective to this reaction and produced the moderate yields (Table 1, Table 1 Optimization of reaction conditions for MgX2-catalyzed Paal-Knorr reactiona O Me Me Me + Ph NH2 3 mol% MgX2 2a N Ph O Me 1a 3a Entry Solvent Catalyst Temp ( C) Time (h) Yields (%)b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 DCM MeCN THF MeOH Acetone DMF None None None None None None None None None None MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n MgI2(OEt2)n None Mg(ClO4)2 MgCl2 MgBr2(OEt2)n Mg(OTf)2 40 70 70 65 55 70 30 50 70 90 110 70 70 70 70 70 5 5 5 5 5 5 1 1 1 1 1 5 2 2 2 2 94 75 70 78 60 20 70 76 96 89 89 48 85 75 78 50 a The reaction was carried out by the condensation of aniline(5.0 mmol) and 2,5hexadione (6.0 mmol) in the presence of MgX2 under the above reaction conditions. b Isolated yield by silica gel flash chromatography. X. Zhang et al. / Tetrahedron 71 (2015) 2595e2602 entries 14e15). However, Mg(OTf)2 is less effective in terms of substrate conversion (Table 1, entry 16). With these optimal conditions in hand, we further explored the scope and limitation of this simple process by reaction of electronically, sterically and functionally diverse amines with 2,5-hexadione under the same conditions. The results are listed in Table 2. As shown in Table 2, the reaction proceeded smoothly under solventfree conditions at 70 C and provided 2,5-dimethyl-N-substituted pyrroles in good to excellent yields. Furthermore, we have observed the following delicate electronic effects: (1) anilines bearing an electron-donating group (i.e., OMe, Me) reacted much faster than aniline and provided the corresponding products in excellent yields (Table 2 entries 2e4). (2) anilines bearing electron-withdrawing group (i.e., Br, F, NO2) deactivated aryl amine remarkably and afforded the corresponding pyrrole derivatives in moderate yields (Table 2 entries 6e9). It is worthy to be noted that p-methoxy aniline is much more reactive than m-methoxy aniline, due to its delicate electronic effect. Seemingly, this reactivity of aromatic amine is principally dependent on the electron density of the amino group, which is further suggested by the exclusively regioselective condensation of 2-nitro-benzene-1,4-diamine 2i. It is worthy to be noted that Paal-Knorr reaction of 2-nitro-1,4-benzenediamine 2i with two equivalents of 2,5-hexadione exclusively afforded the mono-pyrrole compound 1-(3-nitro-4-aminophenyl)-2,5-dimethyl -1H-pyrrole 3i in 95% yield (Table 2, entry 9). In addition, the reaction of less sterically hindred 2-methylaniline with 2,5-hexadione could give a good yield (Table 2 entry 2). However, the more sterically hindered 2,6diisopropylaniline gave a moderate yield (Table 2, entry 5). Morever, we examined the reactivity of heterocyclic amines with 2,5hexadione in the presence of 3 mol % of MgI2 etherate under solvent-free conditions. The Paal-Knorr reaction of heterocyclic amine such as 2-aminopyridine 2j affords 2-(2,5-dimethyl-1H-pyrrol-1-yl)pyridine 3j in 90% yield (Table 2, entry 10). 2-amino-pyrimidine 2k gave 2-(2,5-dimethyl-1H-pyrrol-1-yl)pyrimidine 3k in 80% yield (Table 2, entry 11). Therefore, heterocyclic amines exhibited analogous behavior to that of aromatic amines. Furthermore, we have examined the Paal-Knorr reaction of aliphatic amines with 2, 5hexadione (Table 2, entries 12e15). As well, the corresponding products were obtained with good yields. Unfortunately, no reaction of tert-butylamine with 2, 5-hexadione was observed under the same conditions, due to its higher steric hindrance. Under further observation, the pyrrole derivatives containing a chiral substituent at the nitrogen atom are encountered, which are potential building blocks for the synthesis of biologically active compounds with an optimal combination of activity and safety.23 The alkylation of pyrrolyl anion with esters of chiral a-hydroxy acids by tosylates in polar aprotic solvents by the action of bases is involved to provide pyrrole derivatives containing a chiral substituent at the nitrogen atom by complete conversion.24 However, this method clearly unsuitable to pyrroles with a chiral substituent at the nitrogen atom since the use of basic media may lead to racemization due to the CH acidity of the chiral site. Thus, it is necessary to develop another method for the synthesis of pyrroles with a chiral substituent at the nitrogen atom, which involved PaalKnorr cyclization using chiral amines since the chiral site in this case is not affected in the reaction. It is observed that the reaction of chiral amine with 2,5-hexadione catalyzed by 3 mol % of MgI2 etherate under solvent-free conditions provided the optically pyrrole derivative in good yields without racemization (Table 2 entries 16e20). We used this method for the synthesis of chiral derivatives of N-aryl-2,5-dimethylpyrroles employing 2,5-hexadione with (R)(þ)-1-(1-naphthyl)ethylamine 2p in 85% yield. As well, the chiral N-alkyl-2,5-dimethylpyrroles derivatives are prepared by Paal-Korr reaction of optically active a-amino acids as the amine component. Interestingly, the condensation of (R)-2-amino-2-phenylacetamide 2t, which has two amino groups, exclusively gave (R)-2-(2,5- 2597 Table 2 Paal-Knorr condensation of 2,5-hexadione with various amines catalyzed by MgI2 etheratea O Me Me + Me 3 mol% MgI2 (OEt2)n R NH2 solvent free 70 oC 2a-2t O 1a N R Me 3a-3t Entry Amine t (h) Product Yield (%)b 1 2 3 4 5 6 7 8 C6H5NH2 2-CH3C6H4NH2 4-MeOC6H4NH2 3-MeOC6H4NH2 2,6-(iPr)2C6H3NH2 4-BrC6H4NH2 3,5-F2C6H3NH2 4-NO2C6H4NH2 2 2 0.5 4 8 2 4 10 3a 3b 3d 3c 3e 3f 3g 3h 93 93 98 80 76 85 73 78 1 3i 95 10 2 3j 90 11 8 3k 80 2 2 2 3l 3m 3n 90 95 80 2 3o 83 2 3p 85 NH2 3 3q 78 OMe 4 3r 84 3 3s 94 5 3t 75 O2N 9 12 13 14 H2N NH2 C6H5CH2NH2 4-FC6H4CH2NH2 (CH3)2CHCH2NH2 NH2 15 NH2 16 F 17 F NH2 18 O NH2 19 OMe NH2 NH2 20 O a The reaction was carried out by the condensation of amine (5.0 mmol) and 2,5hexadione (6.0 mmol) in the presence of 3 mol % MgI2(OEt2)n under solvent-free conditions at 70 C. b Isolated yield by silica gel flash chromatography. 2598 X. Zhang et al. / Tetrahedron 71 (2015) 2595e2602 Table 3 Paal-Knorr condensation of various 1,4-diketones with amines catalyzed by MgI2 etheratea O R1 Me R3 R2 3 mol% MgI2 (OEt2)n + R NH2 solvent free 70 oC O Me R1 N R R2 1b, R1 = R2 = H, R3 = Ph 1c, R1 = COMe, R2 = H, R3 = Ph 1d, R1 = CO2Et, R2 = H, R3 = Ph 1e, R1 = R2 = CO2Et, R3 = Me R3 4a-4i Entry Amine R1 R2 R3 t (h) Product Yield (%)b 1 2 3 4 5 6 7 8 9 4-MeOC6H4NH2 4-CH3OC6H4CH2NH2 4-MeOC6H4NH2 4-CH3OC6H4CH2NH2 C6H5(CH2)2NH2 C6H5(CH2)2NH2 4-MeOC6H4NH2 4-MeOC6H4NH2 4-ClC6H4NH2 H H COCH3 COCH3 COCH3 COOEt COOEt COOEt COOEt H H H H H H H COOEt COOEt Ph Ph Ph Ph Ph Ph Ph Me Me 0.5 1.0 2 3 1.5 1.0 0.5 2.0 2.0 4a 4b 4c 4d 4e 4f 4g 4h 4i 80 86 88 78 89 82 87 90 86 a The reaction was carried out by the condensation of amines (5.0 mmol) and 1,4diketones (6.0 mmol) in the presence of 3 mol % MgI2(OEt2)n under solvent-free conditions at 70 C. b Isolated yield by silica gel flash chromatography. dimethyl-1H-pyrrol-1-yl)-2-phenylacetamide 3t with the retention of absolute configuration. This procedure permitted to obtain pyrroles with a chiral substituent at the nitrogen atom in high synthetic and enantiomeric yields. The synthesis of functionalized N-substituted pyrroles under mild reaction conditions from readily available precursors has remained problematic. Furthermore, an efficient synthesis for accessing fully substituted pyrrole is rare. Consequently, various procedures have been devised for the synthesis of functionalized pyrroles.25 Among them, the multicomponent coupling reactions (MCRs) are an efficient alternative approach.26 However, the harsh reaction conditions, strict avoidance from moisture and poor substrate generality limited this method. To the best of our knowledge, the reported procedures for the synthesis of functionalized Nsubstituted pyrroles via Paal-Knorr condensation are few. Herein, we attempted to examined the scope and generality of our protocol using different substituted 1,4-diketone with primary amines. The results are summarized in Table 3. As shown in Table 3, the results showed that various substituted 1,4-diketones are also good substrates in this catalytic system, and the desired functionalized N-substituted pyrroles are formed in good yields. For example, The condensation of 1-phenylpentane-1,4-dione with p-methoxyaniline or p-methoxy-benzyl amine gave the desired products in good yields, respectively (Table 3, entries 1 and 2). 3-Acetyl-1-phenylpentane 1,4-dione and ethyl 2-acetyl-4-oxo-4-phenylbutanoate underwent efficientyl Paal-Knorr cyclization with p-methoxyaniline or p-methoxybenzyl amine (Table 3, entries 3e7) to give N-protected trisubstituted pyrroles. Interestingly, the fully substituted pyrroles are afforded using diethyl 2,3-diacetylsuccinate as substrate in good yield (Table 3, entries 8 and 9). Unfortunately, no reaction of 1, 4-diphenylbutane-1,4-dione with 4-methoxyaniline was occurred. The observed interesting chemoselectivity was further evaluated by crossover experiments of various aniline with 2,5-hexadione, respectively. The MgI2 etherate catalysis shows high levels of aromatic amines discrimination in the competitive reactions with 2,5hexadione (Table 4). Firstly, the catalyst can differentiate the steric difference in aromatic amines to much higher extents (Table 4 entries 1 and 2). Secondly, the MgI2 etherate catalyst can uniquely recognize the delicate difference in electronic effect involved in aniline. Apparently, 4-nitroaniline is much less reactive than aniline and 4-methoxyaniline in the MgI2 etherate-catalyzed process. Only the Paal-Knorr condensation product of aniline and 4-methoxyaniline was obtained, respectively (Table 4, entries 3 and 4). As well, the crossover-reaction between aniline and 4-bromoaniline provided 1-phenyl-2,5-dimethyl-1H-pyrrole in high chemoselectivity. In crossover-reaction of 4-nitroaniline with 4-bromoaniline, the former is also less reactive than the latter (Table 4, entry 6) and the reaction exclusively gave the 1-(4-bromophenyl)-2,5-dimethyl-1H-pyrrole. Furthermore, MgI2 etherate catalyst shows the remarkable preference for 4-methoxyaniline over aniline, 4-bromoaniline (Table 4, entries 7 and 8). More significantly, the reactivity of 4methoxyaniline is much better than that of 3-methoxyaniline in this catalysis process(Table 4, entry 9). It is worthy to be noted that the highly selective conversion of aniline was observed versus benzyl amine, which is just different from the silimar reaction catalyzed by PEG-SO3H reported by Jafari.27 These results suggest that the relative Table 4 Crossover condensation of 2,5-hexadione with aromatic aminesa . O Me Me ArNH2 + Ar'NH2 + 3 mol% MgI2 (OEt2)n solvent-free O 3 + 3' 70 oC Entry Ar Ar0 Ratio (3/30 )b Yield (%)c 1 2 3 4 5 6 7 8 9 10 C6H5 4-MeOC6H4 C6H5 4-MeOC6H4 C6H5 4-BrC6H4 4-MeOC6H4 4-MeOC6H4 4-MeOC6H4 C6H5 2,6-(CH3)2CHC6H3 2,6-(CH3)2CHC6H3 4-NO2C6H4 4-NO2C6H4 4-BrC6H4 4-NO2C6H4 C6H5 4-BrC6H4 3-MeOC6H4 C6H5CH2 >99/<1 >99/<1 >99/<1 >99/<1 96/4 >99/<1 97/3 >99/<1 93/7 >99/<1 90 97 91 96 91 85 97 97 97 92 a Reactions were run with a mixture of 5.0 mmol of each amine, 5.0 mmol of 2,5-hexadione 1a in the presence of 3 mol % of MgI2 etherate under solvent-free conditions at 70 C. b The ratio was determined by flash column chromatography. c Isolated overall yield. X. Zhang et al. / Tetrahedron 71 (2015) 2595e2602 2599 O H2N + NH2 O Me Me NH2 + 3 mol% MgI2 etherate Me N solvent-free, 0.5h 95% yield O H2N Me 3 mol% MgI2 etherate Me Me N Me Me Me N N Me 5 Me + N NH2 solvent-free, 1h Me 98% yield O Me 6 Me 7 (6 : 7 = 95 : 5) O H2N NH2 3 mol% MgI2 etherate Me Me + solvent-free, 1h 98% yield O Me Me N N Me O NH2 NH2 NH2 Me 3 mol% MgI2 etherate Me Me + Me 8 N solvent-free, 1h 93% yield O 9 Me Scheme 1. Paal-Knorr condensation of 2,5-hexadione with diamines. was studied, the reaction gave only the mono-pyrrole product (9) in the presence of two equivalents of 2,5-hexadione in excellent yield. Apparently, the reactivity of aromatic amine is subject to its inherent electron density of the amino group, which implies the coordination of MgI2 etherate with electron-rich amino group and exhibits the unique chemoselectivity in this catalytic process. To the best of our knowledge, commonly used strong Lewis acids, i.e. Ti(OiPr)4,13 Sc(OTf)315 and Bi(NO3)3$5H2O16 are usually non- or poor-chemoselective. Thus, MgI2 etherate represents a novel type of main group Lewis acid catalyst, which selectively activates the electron-rich functionality aromatic amines. A possible mechanism for the formation of N-substitution pyrroles in the presence of MgI2 etherate as a catalyst is shown in Scheme 2. The uniqueness of MgI2 etherate is attributed to the dissociative character of iodide counterion, which is cooperating with the coordination of Lewis basic reactivity of aromatic amines in the MgI2 etherate-catalyzed process is determined almost solely by nucleophilicity of nitrogen lone pair upon the aromatic amines themselves. The reaction using MgI2 etherate as catalyst has shown an important feature that is the ability to tolerate various amines including aliphatic, aromatic, and heterocyclic amines. Next, we investigated the reaction of diamines with 2,5-hexadione (Scheme 1). In this reaction, two equivalents of 2,5-hexadione were required in order to have a complete conversion of diamines. When aliphatic diamine such as 1,3-propanediamine was examined, the corresponding bispyrrole product 5 was obtained in 95% yield. However, aromatic diamine such as 1,4-benzenediamine was examined, the reaction mainly produced bis-pyrrole product 6. As well, the sole bis-pyrrole product 8 was afforded by the condensation of benzidine with two equivalents of 2,5-hexadione in excellent yield. Furthermore, sterically more hindered aromatic diamine such as 1, 2-benzenediamine Me O O Me R-NH2 1 I MgI2 (OEt2)n N MgI (OEt2)n 3 R Me O O Me R + H2O H H O MgI (OEt2)n HO Me 2 NH O Me Me H MgI2 (OEt2)n H2O Me N Me R 5 MgI (OEt2)n O I N Me R 4 Scheme 2. The proposed mechanism of MgI2 etherate-catalyzed Paal-Knorr reaction. I 2600 X. Zhang et al. / Tetrahedron 71 (2015) 2595e2602 oxygen atom of carbonyl group with Mg (II) leading to a more Lewis acidic cationic Mgecoordinate as a result of Lewis base activation of Lewis acid.28 The reactive intermediate 3 on reaction with amine 1 can lead to intermediate 4 following a nucleophilic addition and subsequent expulsion of H2O. Then a similar process was followed to attack another activated carbon atom of carbonyl group with imine as described in the intermediate 4, which further converted into pyrrole 2 by dehydration and aromatization steps as shown in the intermediate 5. This reaction suggests the capability of MgI2 etherate to serve as Lewis acid activator. In conclusion, we have developed a mild, convenient and environmentally friendly procedure for efficient synthesis of N-substituted pyrroles and multifunctional-substituted pyrroles by the condensation of amines with 1,4-diketones in the presence of 3 mol % of MgI2 etherate under solvent-free conditions Furthermore, we have demonstrated that the MgI2 etherate catalysis system has unique chemoselectivity to the substrates. An approach to the preparation of optically active pure pyrrole derivatives with a chiral substituent at the nitrogen atom based on MgI2 etheratecatalyzed Paal-Knorr reaction is developed. Exploitation of this protocol for generation of novel multicyclic stuctures is actively pursued in our lab. 3. Experimental section 3.1. General procedure for the synthesis of N-substituted pyrroles 3ae3t A Schlenk reaction tube was charged with primary aromatic amine (5.0 mmol), 2,5-hexadione (6.0 mmol), MgI2 etherate (0.15 mmol, 3 mol %). The reaction mixture was stirred at 70 C for several hours and then concentrated in vacuo. The residue was purified by flash column chromatography on a silica gel to give the desired product. The physical and spectra data of the compounds 3ae3t are shown as follows. 3.1.1. 1-Phenyl-2,5-dimethyl-1H-pyrrole (3a).29 Pale yellow solid; Rf 0.67 (100% PE); mp 49e50 C (lit. 48e50 C); 1H NMR (500 MHz, CDCl3): d¼2.11 (s, 6H), 5.98 (s, 2H), 7.27e7.29 (m, 2H), 7.44e7.47 (m, 1H), 7.50e7.54 (m, 2H) ppm. 3.1.2. 1-o-Tolyl-2,5-dimethyl-1H-pyrrole (3b).30 Pale yellow liquid; Rf 0.42 (100% PE); 1H NMR (500 MHz, CDCl3): d¼1.96 (s, 6H), 1.98 (s, 3H), 5.96 (s, 2H), 7.20 (d, J¼7.5 Hz, 1H), 7.29e7.35 (m, 1H), 7.36e7.37 (m, 2H) ppm. 3.1.3. 1-(4-Methoxyphenyl)-2,5-dimethyl-1H-pyrrole.31 White solid; Rf 0.57 (PE:EA¼10:1); mp 54.8e55.5 C (lit. 57e59 C); 1H NMR (500 MHz, CDCl3): d¼2.15 (s, 6H), 3.96 (s, 3H), 6.01 (s, 2H), 7.08 (d, J¼8.8 Hz, 2H), 7.24 (d, J¼8.8 Hz, 2H) ppm. 3.1.4. 1-(3-Methoxyphenyl)-2,5-dimethyl-1H-pyrrole (3d).30 Pale 1 yellow liquid; Rf 0.42 (100%PE); H NMR (500 MHz, CDCl3): d¼2.18 (s, 6H), 3.92 (s, 3H), 6.01 (s, 2H), 6.88 (d, J¼2.2 Hz, 1H), 6.89e6.94 (m, 1H), 7.05e7.7.07 (m, 1H), 7.46 (t, J¼8.0 Hz, 1H) ppm. 3.1.5 . 1 -(2, 6-D iiso pro pylp henyl) -2, 5 -dim ethyl -1H -pyrrole (3e).32 White solid; Rf 0.73 (PE:EA¼10:1); mp 56e57 C (lit. 56e58 C). 1H NMR (500 MHz, CDCl3) d 1.16 (d, J¼6.9 Hz, 12H), 1.95 (s, 6H), 2.0e2.1 (m, 2H), 5.98 (s, 2H), 7.28 (d, J¼7.7 Hz, 2H), 7.44 (t, J¼7.7 Hz, 1H) ppm. 3.1.6. 1-(4-Bromophenyl)-2,5-dimethyl-1H-pyrrole (3f).27 Yellow solid; Rf 0.64 (PE:EA¼10:1); mp 69e71 C (lit. 70e72 C); 1H NMR (500 MHz, CDCl3): d¼2.08 (s, 6H), 5.95 (s, 2H), 7.12e7.15 (m, 2H), 7.62e7.65 (m, 2H) ppm. 3.1.7. 1-(3,5-Difluorophenyl)-2,5-dimethyl-1H-pyrrole (3g).33 White solid; Rf 0.68 (PE:EA¼10:1); mp 54.8e55.3 C; 1H NMR (500 MHz, CDCl3): d¼2.09 (s, 6H), 5.93 (s, 2H), 6.81 (dd, J¼2.2, 7.4 Hz, 2H), 6.88e6.92 (m, 1H) ppm. 3.1.8. 1-(4-Nitrophenyl)-2,5-dimethyl-1H-pyrrole (3h).29 Yellow solid; Rf 0.35 (PE:EA¼10:1); mp 141.7e143.2 C (lit. 143e144 C); 1H NMR (500 MHz, CDCl3): d¼2.10 (s, 6H), 5.98 (s, 2H), 7.39e7.43 (m, 2H), 8.35e8.38 (m, 2H) ppm. 3.1.9. 2,5-Dimethyl-1-(4-amino-3-nitrophenyl)-1H-pyrrole (3i). Yellow solid; Rf 0.6 (PE:EA¼1:1); mp 142.0e143.1 C; 1H NMR (500 MHz, CDCl3): d¼2.07 (s, 6H), 5.92 (s, 2H), 6.30 (br s, 2H), 6.94 (d, J¼8.8 Hz, 1H), 7.25e7.28 (m, 1H), 8.04 (d, J¼2.4 Hz, 1H) ppm; 13C NMR (125 MHz,CDCl3): d¼13.0, 106.0, 119.4, 125.4, 128.1, 128.9, 131.5, 135.7, 144.1 ppm; HRMS (EI) calcd for C12H13N3O2: 231.2505, found for [M]þ: 231.2494. 3.1.10. 2-(2,5-Dimethyl-1H-pyrrol-1-yl)pyridine (3j).15 Yellow liquid; Rf 0.54 (PE:EA¼5:1); 1H NMR (500 MHz, CDCl3): d¼2.15 (s, 6H), 5.93 (s, 2H), 7.23e7.28 (m, 1H), 7.30e7.33 (m, 1H), 7.82e7.86 (m, 1H), 8.62e8.64 (m, 1H) ppm. 3.1.11. 2-(2,5-Dimethyl-1H-pyrrol-1-yl)pyrimidine (3k).34 Yellow liquid; Rf 0.32 (PE:EA¼10:1); 1H NMR (500 MHz, CDCl3): d¼2.38 (s, 6H), 5.94 (s, 2H), 7.17 (t, J¼4.9 Hz, 1H), 8.77 (d, J¼4.8 Hz, 2H) ppm. 3.1.12. 1-Benzyl-2,5-dimethyl-1H-pyrrole (3l).27 White solid; Rf 0.42 (100%PE); mp 41.0e42.0 C (lit. 42e43 C); 1H NMR (500 MHz, CDCl3): d¼2.32 (s, 6H), 5.17 (s, 2H), 6.05 (s, 2H), 7.06 (d, J¼7.4 Hz, 2H), 7.39 (t, J¼7.3 Hz, 1H), 7.45 (t, J¼7.3 Hz, 2H) ppm. 3.1.13. 1-(4-Fluorobenzyl)-2,5-dimethyl-1H-pyrrole (3m).30 Pale yellow solid; Rf 0.39 (100% PE); mp 55e56 C (lit. 56e57 C); 1H NMR (500 MHz, CDCl3): d¼2.22 (s, 6H), 5.05 (s, 2H), 5.95 (s, 2H), 6.92 (dd, J¼3.4, 5.4 Hz, 2H), 7.03e7.07 (m, 2H) ppm. 3.1.14. 1-Isobutyl-2,5-dimethyl-1H-pyrrole (3n).35 Pale yellow liquid; Rf 0.46 (100% PE); 1H NMR (500 MHz, CDCl3): d¼0.96 (d, J¼6.7 Hz, 6H), 2.01e2.07 (m, 1H), 2.26 (s, 6H), 3.58 (d, J¼7.6 Hz, 2H), 5.83 (s, 2H) ppm. 3.1.15. 2,5-Dimethyl-1-(prop-2-ynyl)-1H-pyrrole(3o).36 White solid; Rf 0.52 (PE:EA¼20:1); mp 60.5e62.1 C; lH NMR (500 MHz, CDC13): d¼2.32 (s, 7H), 4.54 (d, J¼2.5 Hz, 2H), 5.83 (s, 2H) ppm. 3.1.16. (R)-1-(1-(Naphthalen-1-yl)ethyl)-2,5-dimethyl-1H-pyrrole (3p). Yellow liquid; Rf 0.31 (PE:EA¼10:1); [a]25 D þ95 (c¼1.0, CHCl3); FTIR (KBr) y (cm1): 2978, 1566, 1516, 1448, 1420, 1245, 1212, 1060, 760; lH NMR (500 MHz, CDC13): d¼2.05 (d, J¼7.1 Hz, 3H), 2.19 (s, 6H), 5.91 (s, 2H), 6.10 (q, J¼7.1 Hz, 1H), 7.53e7.57 (m, 3H), 7.77e7.79 (m, 1H), 7.90e7.95 (m, 1H), 7.95e7.96 (m, 1H) ppm; l3C NMR (125 MHz, CDC13): d¼14.2, 20.5, 51.7, 106.5, 123.2, 123.4, 124.4, 126.7, 128.0, 128.4, 128.8, 129.4, 132.3, 135.3, 137.0 ppm; EIMS: 249.1(10), 155.2(100), 149.2(31), 95.2(43), 81.2(23); HRMS (EI) calcd for C18H19N: 249.1517, found for [M]þ: 249.1522. 3.1.17. 1-((1R,2S)-2-(3,4-Difluorophenyl)cyclopropyl)-2,5-dimethyl1H-pyrrole (3q). Yellow liquid; Rf 0.63 (PE:EA¼10:1); [a]25 D 291 (c¼1.0, CHCl3); 1H NMR (500 MHz, CDCl3): d¼1.47e1.51 (m, 1H), 1.63e1.67 (m, 1H), 2.30 (s, 6H), 2.33e2.37 (m, 1H), 3.06e3.09 (m, 1H), 5.79 (s, 2H), 6.91e6.99 (m, 2H), 7.11e7.17 (m, 1H) ppm; 13C NMR (125 MHz,CDCl3): d¼13.6, 17.9, 24.4, 29.8, 36.0, 105.9, 114.7, 117.4, 121.9, 130.0, 137.5, 148.8, 150.7 ppm; EIMS: 246.9 (100), 232.0 X. Zhang et al. / Tetrahedron 71 (2015) 2595e2602 (49), 151.0 (17), 133.0 (34), 96.1 (9), 77.1 (6); HRMS (EI) calcd for C15H15NF2: 247.1173, found for [M]þ: 247.1175. 3 .1.18 . ( S ) - M e t h y l 2 - ( 2 , 5 - d i m e t h y l - 1 H - p y r r o l - 1 - y l ) - 3 phenylpropanoate (3r).37 Yellow liquid; Rf 0.38 (PE:EA¼10:1). l [a]30 D 155 (c¼1.0, CHCl3); H NMR (500 MHz, CDC13): d¼1.99 (s, 6H), 3.20 (dd, J¼10.0, 14.0 Hz, 1H), 3.57 (dd, J¼4.8, 10.0 Hz, 1H), 3.78 (s, 3H), 4.79 (dd, J¼4.8, 10.0 Hz, 1H), 5.76 (s, 2H), 6.91e6.93 (m, 2H), 7.21e7.23 (m, 3H) ppm. 3.1.19. (R)-Methyl 2-(2,5-dimethyl-1H-pyrrol-1-yl)propanoate (3s). Yellow solid; Rf 0.38 (PE:EA¼10:1); mp 35.5e37.0 C; [a]30 D þ133 (c¼1.0, CHCl3); FTIR (KBr) y (cm1): 2950, 1744, 1579, 1522, 1401, 1223, 1114, 754; lH NMR (500 MHz, CDC13): d¼1.70 (d, J¼7.3 Hz, 3H), 2.25 (s, 6H), 3.80 (s, 3H), 4.91 (q, J¼7.3 Hz, 1H), 5.85 (s, 2H) ppm; 13C NMR (125 MHz, CDC13): d¼13.0, 17.3, 52.3, 106.2, 127.4, 171.4 ppm; EIMS: 181.1 (18), 167.0 (23), 151.1 (13), 149.0 (100), 134.1 (21), 123.1 (18), 95.1 (37), 77.1 (28). HRMS (EI) calcd for C10H15NO2: 181.1103, found for [M]þ: 181.1108. 3.1.20. (S)-2-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-phenylacetamide (3t). Yellow solid; Rf 0.4 (PE:EA¼3:1); mp 102.7e105.2 C; FTIR (KBr) y (cm1): 2983, 1693, 1564, 1513, 1444, 1230, 1074, 840, 765; l H NMR (500 MHz, CDC13): d¼2.07 (s, 6H), 5.70 (s, 1H), 5.89 (s, 2H), 5.98 (s, 1H), 6.85 (s, 1H), 7.25e7.28 (m, 2H), 7.30 (s, 1H), 7.31e7.36 (m, 2H) ppm; l3C NMR (125 MHz, CDC13): d¼13.6, 61.1, 107.7, 127.8, 128.1, 128.4, 128.8, 135.4, 171.6 ppm; EIMS: 228.1(7), 185.4(11), 184.3 (43), 94.7 (100), 106.4 (10); HRMS (EI) calcd for C14H16N2O: 228.1263, found for [M]þ: 228.1260. 3.1.21. 1-(4-Methoxyphenyl)-2-methyl-5-phenyl-1H-pyrrole (4a).30 Yellow solid; Rf 0.49 (PE:EA¼10:1); mp 104.5e106.0 C; lH NMR (500 MHz, CDC13): d¼2.19 (s, 3H), 3.86 (s, 3H), 6.15 (d, J¼3.0 Hz, 1H), 6.42 (d, J¼3.4 Hz, 1H), 6.94 (d, J¼8.8 Hz, 2H), 7.12e7.16 (m, 5H), 7.20 (t, J¼7.6 Hz, 2H) ppm. 3.1.22. 1-(4-Methoxybenzyl)-2-methyl-5-phenyl-1H-pyrrole (4b). Yellow solid; Rf 0.68 (PE:EA¼10:1); mp 91.0e92.0 C; FTIR (KBr) y (cm1): 2930, 1550, 1510, 1444, 1403, 1240, 1170, 1033, 820; l H NMR (500 MHz, CDC13): d¼2.28 (s, 3H), 3.87 (s, 3H), 5.20 (s, 2H), 6.18 (d, J¼3.0 Hz, 1H), 6.37 (d, J¼3.3 Hz, 1H), 6.97 (dd, J¼5.2, 8.9 Hz, 4H), 7.27e7.36 (m, 1H), 7.40e7.46 (m, 4H) ppm 13C NMR (125 MHz, CDC13): d¼12.5, 47.0, 55.1, 107.2, 107.9, 114.0, 126.5, 126.7, 128.3, 128.5, 130.3, 130.9, 133.8, 134.5, 158.1 ppm EIMS: 277.1 (8), 156.2 (2), 121.2 (100), 91.4 (11), 77.3 (13); HRMS (EI) calcd for C19H19NO: 277.1467, found for [M]þ: 277.1461. 3.1.23. 1-(1-(4-Methoxyphenyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl) ethanone (4c).38 Yellow solid; Rf 0.36 (PE:EA¼5:1); mp 116.5e118.0 C; lH NMR (500 MHz, CDC13): d¼2.43 (s, 3H), 2.51 (s, 3H), 3.83 (s, 3H), 6.73 (s, 1H), 6.91 (dd, J¼2.2, 4.6 Hz, 2H), 7.05e7.10 (m, 4H), 7.15e7.20 (m, 3H) ppm. 3.1.24. 1-(1-(4-Methoxybenzyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl) ethanone (4d). Yellow liquid; Rf 0.33 (PE:EA¼5:1); FTIR (KBr) y (cm1): 2934, 1643, 1607, 1514, 1445, 1416, 1248, 1180, 1031, 821; lH NMR (500 MHz, CDC13): d¼2.45 (s, 3H), 2.51 (s, 3H), 3.72 (s, 3H), 5.05 (s, 2H), 6.62 (s, 1H), 6.82 (s, 4H), 7.27e7.30 (m, 5H) ppm; l3C NMR (125 MHz, CDC13): d¼12.1, 28.6, 47.0, 55.3, 110.4, 114.3, 121.4, 126.8, 127.7, 128.6, 129.1, 129.3, 132.5, 134.0, 136.6, 158.9, 195.1 ppm; EIMS: 319.1 (5), 183.3 (1), 121.3 (100), 91.1 (6), 77.1 (7); HRMS (EI) calcd for C21H21NO2: 319.1572, found for [M]þ: 319.1565. 3.1.25. 1-(2-Methyl-1-phenethyl-5-phenyl-1H-pyrrol-3-yl)ethanone (4e).38 Yellow liquid; Rf 0.49 (PE:EA¼5:1); lH NMR (500 MHz, 2601 CDC13): d¼2.46 (s, 3H), 2.59 (s, 3H), 2.77 (t, J¼7.8 Hz, 2H), 4.12 (t, J¼7.7 Hz, 2H), 6.52 (s, 1H), 6.89e6.91 (m, 2H), 7.22e7.28 (m, 3H), 7.34e7.36 (m, 2H), 7.41e7.46 (m, 3H) ppm. 3.1.26. Ethyl 2-methyl-1-phenethyl-5-phenyl-1H-pyrrole-3carboxylate (4f). Yellow solid; Rf 0.69 (PE:EA¼5:1); mp102.5e103.5 C; FTIR (KBr) y (cm1): 2979, 1679, 1564, 1526, 1418, 1209, 1062, 767, 703; lH NMR (500 MHz, CDC13): d¼1.40 (t, J¼7.1 Hz, 3H), 2.57 (s, 3H), 2.77 (t, J¼7.8 Hz, 2H), 4.13 (t, J¼7.7 Hz, 2H), 4.33 (q, J¼7.1 Hz, 2H), 6.62 (s, 1H), 6.90e6.92 (m, 2H), 7.24 (d, J¼7.0 Hz, 3H), 7.37 (t, J¼1.7 Hz, 2H), 7.40e7.44 (m, 3H) ppm; l3C NMR (125 MHz, CDC13): d¼11.5, 14.6, 37.1, 45.7, 59.3, 110.1, 112.1, 126.8, 127.7, 128.5, 128.7, 129.5, 133.2, 133.4, 136.5, 137.7, 165.7 ppm; EIMS: 333.0 (100), 304.0 (5), 288.1 (7), 260.1 (12), 242.2 (43), 196.2 (59), 170.6 (91), 169.0 (69), 105.2 (17), 77.4 (10); HRMS (EI) calcd for C22H23NO2: 333.1729, found for [M]þ: 333.1735. 3.1.27. Ethyl 1-(4-methoxyphenyl)-2-methyl-5-phenyl-1H-pyrrole3-carboxylate (4g).39 White solid; Rf 0.51 (PE:EA¼5:1); mp 120.0e122.5 C; FTIR (KBr) y (cm1): 2983, 2833, 1693, 1603, 1564, 1443, 1414,1074.1,1030, 840, 704; 1H NMR (500 MHz, CDCl3): d¼1.39 (t, J¼7.2 Hz, 3H), 2.40 (s, 3H), 3.84 (s, 3H), 4.34 (q, J¼7.1 Hz, 2H), 6.80 (s, 1H), 6.89e6.92 (m, 2H), 7.05e7.09 (m, 4H), 7.12e7.19 (m, 3H). 3.1.28. Diethyl 1-(4-methoxyphenyl)-2,5-dimethyl-1H-pyrrole-3,4dicarboxylate (4h).39 White solid; Rf 0.35 (PE:EA¼5:1); mp 71.0e73.0 C;FTIR (KBr) y (cm1): 2980, 1720, 1554, 1506, 1440, 1070, 840, 705; 1H NMR (500 MHz, CDC13): d¼1.34 (t, J¼7.0 Hz, 6H), 2.13 (s, 6H), 3.87 (s, 3H), 4.29 (q, J¼7.0 Hz, 4H), 6.99 (d, J¼8.6 Hz, 2H), 7.08 (d, J¼8.6 Hz, 2H) ppm. 3.1.29. Diethyl 1-4-chlorophenyl-2,5-dimethyl-1H-pyrrole-3,4dicarboxylate (4i).39 White solid; Rf 0.41 (PE:EA¼5:1); mp 96.0e98.0 C;FTIR (KBr) y (cm1): 3030, 1700, 1544, 1506, 1445, 1071, 840, 700; H NMR (500 MHz, CDCl3) d 1.34 (t, J¼7.1 Hz, 6H), 2.14 (s, 6H), 4.30 (q, J¼7.1 Hz, 4H), 7.12 (d, J¼8.7 Hz, 2H), 7.49 (d, J¼8.7 Hz, 2H) ppm. 3.1.30. 1,3-Bis(2,5-dimethyl-1H-pyrrol-1-yl)propane (5).35 White 1 solid; Rf 0.87 (PE:EA¼1:1); mp 138.0e140.0 C; H NMR (500 MHz, CDCl3): d¼2.06e2.08 (m, 2H), 2.30 (s, 12H), 3.87 (t, J¼7.7 Hz, 4H), 5.90 (s, 4H) ppm. 3.1.31. 1,4-Bis(2,5-dimethyl-1H-pyrrol-1-yl)benzene (6).15 White solid; Rf 0.57 (PE:EA¼10:1); mp 239.0e242.0 C; 1H NMR (500 MHz, CDCl3): d¼2.11 (s, 12H), 5.96 (s, 4H), 7.32 (s, 4H) ppm. 3.1.32. 2,5-Dimethyl-1-(4-aminophenyl)-1H-pyrrole (7).40 Yellow liquid; Rf 0.13 (PE:EA¼10:1); 1H NMR (500 MHz, CDCl3) d 2.03 (s, 6H), 5.88 (s, 2H), 6.74 (d, J¼8.6 Hz, 2H), 6.97e7.00 (m, 2H) ppm. 3.1.33. 4,40 -Bis(2,5-dimethyl-1H-pyrrol-1-yl)biphenyl (8).41 White solid; Rf 0.75 (PE:EA¼5:1); mp 278.0e279.5 C (lit. 279e280 C); lH NMR (500 MHz, CDC13): d¼2.12 (s, 12H), 5.97 (s, 4H), 7.28e7.36 (m, 4H), 7.74e7.77 (m, 4H) ppm. 3.1.34. 2,5-Dimethyl-1-(2-aminophenyl)-1H-pyrrole (9).15 Yellow 1 liquid; Rf 0.38 (PE:EA¼10:1); H NMR (500 MHz, CDCl3): d¼2.01 (s, 6H), 3.47 (br s, 2H), 5.96 (s, 2H), 6.81e6.84 (m, 2H), 7.07e7.09 (dd, J¼1.4, 6.9 Hz, 1H), 7.22e7.28 (m, 1H) ppm. 3.2. General procedure for crossover reaction A schlenk reaction tube was charged with each amine (5.0 mmol), 2,5-hexadione (5.0 mmol), MgI2 etherate (3 mol %). The 2602 X. Zhang et al. / Tetrahedron 71 (2015) 2595e2602 reaction mixture was stirred at 70 C for several hours. Flash column chromatography afforded the desired products. The ratio of each product was determined by column chromatography isolation. Acknowledgements We are grateful to the National Natural Science Foundation of China (No. 21372203 and 21272076), National university student innovation test plan (201310337007) and Zhejiang Xinmiao talent projects (2014R403021) for financial support. Supplementary data Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.tet.2015.03.035. References and notes 1. (a) Jones, R. A.; Bean, G. P. The Chemistry of Pyrroles; Academic: London, UK, 1977; (b) Lipshutz, B. H. Chem. Rev. 1986, 86, 795; (c) Jacobi, P. A.; Coults, L. D.; € rstner, A. Angew. Chem. Guo, J. S.; Leung, S. I. J. Org. Chem. 2000, 65, 205; (d) Fu 2003, 115, 3706; (e) Muchowski, J. M. Adv. Med. Chem. 1992, 1, 109; (f) Aydogan, F.; Basarir, M.; Yolacana, C.; Demirb, A. S. Tetrahedron 2007, 63, 9746; (g) Pridmore, S. J.; Slatford, P. A.; Daniel, A.; Whittlesey, M. K.; Williams, J. M. J. Tetrahedron Lett. 2007, 48, 5115. 2. (a) Boger, D. L.; Boyce, C. W.; Labrili, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54; (b) Paolesse, R.; Nardis, S.; Sagone, F.; Khoury, R. G. J. Org. Chem. 2001, 66, 550. 3. Dieter, R. K.; Yu, H. Org. Lett. 2000, 2, 2283. 4. Palacios, F.; Aparico, D.; Santos, J. M.; Vicario, J. M. Tetrahedron 2001, 57, 1961. 5. Berree, F.; Marchand, E.; Morel, G. Tetrahedron Lett. 1992, 33, 6155. 6. Katritzky, A.; Jiang, J.; Steel, P. J. J. Org. Chem. 1994, 59, 4551. 7. Katritzky, A.; Steel, P. J. J. Org. Chem. 1994, 59, 4551. 8. Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957. 9. Iwasawa, N.; Maeyama, K.; Saitou, M. J. Am. Chem. Soc. 1997, 119, 1486. 10. (a) Hantzsch, A. Chem. Ber. 1890, 23, 1474; (b) Broadbent, H. S.; Burnharm, W. S.; Olsen, R. K.; Sheely, R. M. J. Heterocycl. Chem. 1968, 5, 757; (c) Bayer, H. O.; Gotthardt, H.; Huisgen, R. Chem. Ber. 1970, 103, 2356; (d) Huisgen, R.; Gotthardt, H.; Bayer, H. O.; Schaefter, F. C. Chem. Ber. 1970, 103, 2611; (e) Cooney, J. V.; McEwen, W. E. J. Org. Chem. 1981, 46, 2570; (f) Arcadi, A.; Rossi, E. Tetrahedron 1998, 54, 15253; (g) Periasamy, M.; Srinivas, G.; Bharati, P. J. Org. Chem. 1999, 64, 4204. 13. Yu, S. X.; Quesne, P. W. L. Tetrahedron Lett. 1995, 36, 6205. 14. Rahmatpour, A. Appl. Organomet. Chem. 2011, 25, 585. 15. Chen, J.; Wu, H.; Zheng, Z.; Jin, C.; Zhang, X.; Su, W. Tetrahedron Lett. 2006, 47, 5383. 16. Banik, B. K.; Banik, I.; Renteria, M.; Dasgupta, S. K. Tetrahedron Lett. 2004, 45, 3417. 17. Zhang, Z.-H.; Li, J.-J.; Li, T.-S. Ultrason. Sonochem. 2008, 15, 673. 18. Aghapoor, K.; Ebadi-Nia, L.; Mohsenzadeh, F. J. Organomet. Chem. 2012, 708, 25. 19. Shanthi, G.; Perumal, P. T. Tetrahedron Lett. 2009, 50, 3959. 20. Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H. Synlett 2009, 2245. 21. For rewiew see: Zhang, X. X.; Li, W. D. Chin. J. Org. Chem. 2003, 23, 1185. 22. (a) Zhang, X. X. Synlett 2008, 65; (b) Li, W. D.; Zhang, X. X. Org. Lett. 2002, 4, 3485; (c) Zhang, X. X.; Chen, W. Chem. Lett. 2010, 39, 527; (d) Zhang, X. X. Tetrahedron 2011, 67, 898. 23. Ryzhkov, I. O.; Andreev, I. A.; Belov, G. M.; Kurkin, A. V.; Yurovskaya, M. A. Chem. Heterocycl. Com. 2011, 47, 182. 24. (a) Amos, R. I. J.; Gourlay, B. S.; Molesworth, P. P. Tetrahedron 2005, 61, 8226; (b) Hoffmann, T. J. Agric. Food Chem. 1998, 46, 3902. 25. For review articles, see: (a) Beck, E. M.; Gaunt, M. J. Top. Curr. Chem. 2010, 292, 85; (b) Thirumalairajan, S.; Pearce, B. M.; Thompson, A. Chem. Commun. 2010, 1797; (c) For recent selected examples, see: Khalili, B.; Jajarmi, P.; Eftekhari-Sis, B.; Hashemi, M. M. J. Org. Chem. 2008, 73, 2090; (d) Dey, S.; Pal, C.; Nandi, D.; Giri, V. S.; Zaidlewicz, M.; Krzeminski, M.; Smentek, L.; Hess, B. A.; Gawronski, J.; Kwit, M.; Babu, N. J.; Nangia, A.; Jaisankar, P. Org. Lett. 2008, 10, 1373; (e) Dou, G.; Shi, C.; Shi, D. J. Comb. Chem. 2008, 10, 810; (f) Alizadeh, A.; Babaki, M.; Zohreh, N. Tetrahedron 2009, 65, 1704. 26. (a) Estvez, V.; Villacampa, M.; Menndez, J. C. Chem. Soc. Rev. 2010, 39, 4402; (b) Das, B.; Bhunia, N.; Lingaiah, M. Synthesis 2011, 3471; (c) Zhang, S.; Zhao, J.; Zhang, W.-X.; Xi, Z. Org. Lett. 2011, 13, 1626; (d) Soleimani, E.; Zainali, M. J. Org. Chem. 2011, 76, 10306; (e) Frolova, L. V.; Evdokimov, N. M.; Hayden, K.; Malik, I.; Rogelj, S.; Kornienko, A.; Magedov, I. V. Org. Lett. 2011, 13, 1118. 27. Jafari, A.; Amini, S.; Tamaddon, F. J. Appl. Polym. Sci. 2012, 125, 1339. 28. (a) Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432; (b) Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123, 6199. 29. Satyanarayana, V. S. V.; Sivakumar, A. Ultrason. Sonochem. 2011, 18, 9172. 30. Lee, H.; Kim, B. H. Tetrahedron 2013, 69, 6698. 31. Luo, H.-T.; Kang, Y.-R.; Li, Q.; Yang, L.-M. Heteroat. Chem. 2008, 19, 144. 32. Chen, J. X.; Yang, X. L.; Liu, M. C.; Wu, H. Y.; Ding, J. C.; Su, W. K. Synth. Commun. 2009, 39, 4180. 33. Thomas, R. C.; Poel, T.; Barbachyn, M. R.; Gordeev, M. F.; Luehr, G. W.; Renslo, A.; Singh, U.; Josyula, V. U. S. Patent 0,147,760, 2004; Chem. Abstr. 2004, 141, 140424. 34. Biava, M.; Fioravanti, R.; Porretta, G. C. Farmaco 1995, 50, 431. 35. Devi, A.; Sharma, M. L.; Singh, J. Synth. Commun. 2012, 42, 1480. 36. Srinivas, R.; Thirupathi, B.; Kumar, J. K. P.; Prasad, A. N.; Reddy, B. M. Curr. Org. Chem. 2012, 16, 2482. 37. Kashima, C.; Maruyama, T.; Harada, K.; Hibi, S.; Omote, Y. J. Chem. Res. 1988, 2, 62. 38. Meshram, H. M.; Bangade, V. M.; Reddy, B. C.; Kumar, G. S.; Thakur, P. B. Int. J. Org. Chem. 2012, 2, 159. 39. Almeida, Q. A. R.; Faria, R. B. Green. Chem. Lett. Rev. 2013, 6, 129. 40. Karami, B.; Jamshidi, M.; Khodabakshi, S. Lett. Org. Chem. 2013, 10, 12. 41. Zhu, X.-H.; Chen, G.; Xu, Z.-L.; Wan, Y.-Q. Chin. J. Org. Chem. 2008, 28, 115.
© Copyright 2026 Paperzz