T H E FUNGAL ENDOPHYTES O F DIPODIUM V A R I E G A T U M (ORCHIDACEAE) J.J. Bougoure 1 School 2 1 and J.D.W. D e a r n a l e y 2 3 of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley 6009, Australia. Department of Biological and Physical Sciences, The University of Southern Queensland, Toowoomba 4350, Australia. Author for correspondence: Fax +617 4631 1530; Email: [email protected] 3 Abstract W e h a v e a t t e m p t e d to g r o w fungi from p e l o t o n s isolated from roots o f t h e m y c o - h e t e r o t r o p h i c orchid species Dipodium variegation o n 3 different g r o w t h m e d i a . A s w e l l , w e h a v e a n a l y s e d t h e fungal D N A within roots o f the orchid u s i n g I T S - P C R analysis, cloning and m o l e c u l a r s e q u e n c i n g . Fungi failed to g r o w out from p e l o t o n s isolated from plant roots. ITS r D N A s e q u e n c e s w e r e successfully amplified and c l o n e d from roots o f three orchid plants. C o m p a r i s o n o f these sequences w i t h I T S r D N A in G e n B a n k r e v e a l e d that the fungal c o m m u n i t y o f D. variegatum roots consists of Russula spp. and n o n - m y c o r r h i z a l soil D e u t e r o m y c e t e s . J.J. B o u g o u r e & J . D . W . D e a r n a l e y ( 2 0 0 5 ) . T h e fungal e n d o p h y t e s o f Dipodium Australasian Mycologist 2 4 (1): 1 5 - 1 9 . variegatum (Orchidaceae). Introduction M y c o - h e t e r o t r o p h s are plant species that obtain a carbon source from an associated fungus. M y c o heterotrophic plants exist as both m o n o c o t s and dicots, w i t h m o s t being m o n o c o t y l e d o n o u s . T h e largest g r o u p o f such plants is the O r c h i d a l e s , 2 8 0 species o f w h i c h are entirely m y c o - h e t e r o t r o p h i c (Leake 1994). A l t h o u g h m y c o - h e t e r o t r o p h y is generally linked w i t h a c h l o r o p h y l l o u s plants, a n u m b e r o f species exist that obtain carbon b o t h autotrophically a n d heterotrophically. F o r e x a m p l e , m o s t m e m b e r s o f t h e F a m i l y O r c h i d a c e a e , w h i c h are generally autotrophic w h e n m a t u r e , pass t h r o u g h a heterotrophic p h a s e during their d e v e l o p m e n t , often associated w i t h t h e limited food reserves o f t h e generally m i n u t e seeds ( S m i t h & R e a d 1997). F u n g i are generally quite easy to isolate from p e l o t o n s (hyphal coils) in orchid roots a n d are a m e n a b l e to g r o w t h in p u r e culture. A l t h o u g h a diversity o f orchid species h a v e b e e n s a m p l e d across different g e o g r a p h i c a l areas o f the w o r l d , t h e fungal e n d o p h y t e s are largely similar ( R a s m u s s e n 2 0 0 2 , Smith & Read 1997). T h e fungi are all b a s i d i o m y c e t e s w i t h t h e majority b e l o n g i n g to t h e form genus Rhizoctonia, within the h e t e r o b a s i d i o m y c e t e s (Table 1). A few orchid m y c o - rrhizal fungi, associated w i t h m y c o - h e t e r o t r o p h i c species, are representatives o f t h e h o m o b a s i d i o m y c e t e s (Table 1). R e s e a r c h into the fungal e n d o p h y t e s o f A u s t r a l i a n terrestrial orchids has m o s t l y focussed o n t h e autotrophic orchid species (e.g. H u y n h et al. 2 0 0 4 , M i l l i g a n & W i l l i a m s 1988, P e r k i n s & M c G e e 1995, P e r k i n s et al. 1995, P o p e & Carter 2 0 0 1 , W a r c u p 1 9 7 1 , 1973, 1981) w h i l e t h e m y c o - h e t e r o t r o p h i c species h a v e largely e s c a p e d attention. W a r c u p ( 1 9 8 5 , 1991) successfully isolated Rhizoctonia-like fungal e n d o p h y t e s from t w o species o f t h e r a r e subterranean orchid Rhizanthella. H e named the e n d o p h y t e o f R. gardneri, Thanatephorus gardneri sp. n o v . after s u c c e e d i n g in p r o d u c i n g its t e l e o m o r p h ( W a r c u p 1988). T h e orchid g e n u s Dipodium or 'hyacinth orchids', contains a n u m b e r o f leafless m y c o - h e t e r o t r o p h i c species that appear to rely h e a v i l y o n c a r b o n p r o v i d e d b y e n d o p h y t i c fungi ( W a r c u p 1990). T h e identity o f these fungal e n d o p h y t e s is u n k n o w n . W a r c u p ( 1 9 8 1 , 1991) s u c c e e d e d in isolating a fine, w h i t e , u n d a m p e d a n d slow g r o w i n g e n d o p h y t e from roots o f D. punctatum J.E. S m . b u t w a s u n a b l e t o Table 1 . A list o f f u n g a l g e n e r a c a p a b l e o f f o r m i n g o r c h i d m y c o r r h i z a s . A n a m o r p h i c a n d t e l e o m o r p h i c g e n e r a a r e included for the Heterobasidiomycetes. Adapted from R a s m u s s e n (2002) a n d the recent systematic overview of B a s i d i o m y c e t e s a c c o r d i n g t o J e n s H. P e t e r s e n , h t t p : / / w w w . m y c o k e y . c o m / s y s t e m a t i c s . h t m l . Heterobasidiomycetes Order Order Genera Ceratobasidiwn Gloeocystidiales Russula Moniliopsis Oliveonia Thanatephorus Hymenochaetales Epulorhiza Tulasnella Thelephorales Erythromyces Thelephora, Tomentella Sebacina Agaricales Armillaria, Anamorph Teleomorph Ceratorhiza Ceratobasidiales Tulasnellales Homobasidiomycetes Genera Auriculariales Mycena Figure 1 . C r o s s s e c t i o n o f r o o t o f D. variegatum s h o w i n g l a r g e n u m b e r s of b r o w n - c o l o u r e d f u n g a l structures. Scale bar = 100 u m . assign t h e fungus a t a x o n o m i c identity other than ' n o t a r h i z o c t o n i a ' . W a r c u p (1981) isolated a Tulasnella-Uke fungal e n d o p h y t e from the epiphytic D. pandanum F . M . Bail. In this study w e h a v e used t w o a p p r o a c h e s to identify t h e fungal e n d o p h y t e o f the m y c o - h e t e r o t r o p h i c orchid Dipodium variegatum R. Br., a w i d e s p r e a d w o o d l a n d species in South-east Q u e e n s l a n d (Stanley & Ross 1989). W e h a v e isolated single p e l o t o n s from roots o f t h e orchid using m i c r o t e c h n i q u e s and attempted to g r o w these on a n u m b e r o f different media. A s well, w e h a v e used PCR-amplification of r D N A I T S regions, c l o n i n g and s e q u e n c e c o m p a r i s o n of fungi from colonised D. variegatum roots. The results of these investigations are presented here. Materials and Methods A c q u i s i t i o n of o r c h i d a n d f u n g a l m a t e r i a l Roots w e r e collected from t w o Dipodium variegatum plants at T o o h e y State Forest, B r i s b a n e , Q L D , Australia ( 2 7 ° 3 3 ' S , 1 5 3 ° 0 2 ' E ) and t w o plants from Duggan Park, Toowoomba, QLD, Australia ( 2 7 ° 3 5 ' S , 1 5 1 ° 5 9 ' E ) . O n e c m long root portions w e r e cut and rinsed under tap water. T h e s e portions w e r e then soaked in 1 0 0 % bleach for 3 0 s e c o n d s a n d rinsed with sterile dFLO three t i m e s . Thin, transverse sections w e r e then cut from t h e root portions a n d these w e r e then crushed to release individual p e l o t o n s from cortical cells ( s o m e u n c r u s h e d sections w e r e kept and p h o t o g r a p h e d using a N i k o n E 6 0 0 upright photomicroscope (Nikon Corporation, T o k y o , Japan)). W h i l e v i e w i n g u n d e r a c o m p o u n d microscope, healthy (non-collapsed) individual p e l o t o n s w e r e r e m o v e d with a 2.5 ul v o l u m e m i c r o p i p e t t e to m a l t extract agar ( M E A ) o r o n e sixth strength neutral d o x yeast ( N D Y 6 ) agar plates containing 15 m g 1" streptomycin a n d 15 m g 1" tetracycline or potato dextrose ( P D ) agar plates containing 100 m g 1" streptomycin and 50 m g 1"' 1 tetracycline. A t least six individual p e l o t o n s w e r e r e m o v e d from each plant. Culture plates w e r e sealed and incubated in t h e dark at 2 0 ° C for at least three weeks. M o l e c u l a r a n a l y s i s of Dipodium endophytes R o o t s w e r e collected from three flowering Dipodium variegatum plants at D u g g a n Park, T o o w o o m b a . D N A w a s extracted from these roots u s i n g a D N e a s y Plant mini kit ( Q i a g e n , D o n c a s t e r , V i c , Australia) following t h e m a n u f a c t u r e r ' s instructions. T h e fungal ITS region o f each s a m p l e w a s amplified in 50 p i reaction v o l u m e s , each containing 3 8 p i sterile distilled H 0 , 5 p i 10X buffer (50 m M K C 1 , 10 m M Tris-HCl, 0 . 1 % Triton X - 1 0 0 ; Invitrogen Australia, M t W a v e r l e y , V i c , Australia), 2.5 p i 50 m M M g C l (Invitrogen Australia), 1 p i 10 m M d N T P (Invitrogen Australia), 1 p i o f each o f the fungal specific I T S I F p r i m e r ( G a r d e s & B r u n s 1993) and I T S 4 ( W h i t e et al. 1990), 0.5 p i of Taq D N A p o l y m e r a s e (Invitrogen Australia) a n d 1 p i o f extracted g e n o m i c D N A . P C R amplifications w e r e p e r f o r m e d in a T h e r m o H y b a i d P C R E x p r e s s t h e r m o c y c l e r (Integrated Sciences, Willoughby, N S W , Australia) w i t h 35 cycles o f 9 5 ° C for 1 min., 5 0 ° C for 1 m i n . and 7 2 ° C for 1 min., w i t h a final incubation at 7 2 ° C for 10 min. T h e s e reactions w e r e p e r f o r m e d in duplicate and a n e g a t i v e control w a s included w i t h o u t D N A . T h e resulting amplification p r o d u c t s w e r e electrophoresed in 2 % ( w / v ) a g a r o s e gels with ethidium b r o m i d e , and visualized u n d e r U V light. 2 2 I T S - P C R p r o d u c t s w e r e purified u s i n g a D N A purification kit ( R o c h e Applied Science, Castle Hill, N S W , Australia) prior t o cloning with t h e p G E M - T E a s y vector s y s t e m ( P r o m e g a , A n n a n d a l e , N S W , Australia), both c o n d u c t e d as p e r t h e m a n u f a c t u r e r ' s instructions. S e q u e n c i n g reactions w e r e p e r f o r m e d in 10 p i v o l u m e s c o n t a i n i n g 4 0 0 ng o f purified p l a s m i d D N A , 6.4 p m o l e s o f T 7 p r o m o t o r p r i m e r at t h e B r i s b a n e laboratory o f the Australian G e n o m e R e s e a r c h Facility ( A G R F ) . I T S s e q u e n c e s w e r e analysed using BLAST searches (http://www.ncbi.nlm.nih.gov/). Results F u n g a l isolation F u n g a l colonisation w a s o b v i o u s within the roots o f t h e Dipodium plants with the cortex containing large n u m b e r s of b r o w n - c o l o u r e d structures (Fig. 1). A t h i g h e r magnification these structures c o n t a i n e d both collapsed fungal material and intact h y p h a e (Fig. 2). A l t h o u g h single fungal p e l o t o n s w e r e successfully r e m o v e d from root cortical cells t h e s e failed to g r o w o n M E , N D Y - 6 and P D agar. M o l e c u l a r a n a l y s i s o f Dipodium endophytes I T S - P C R amplification p r o d u c e d a n u m b e r o f b a n d s b e t w e e n 6 0 0 and 8 0 0 b p for e a c h D N A s a m p l e (data n o t s h o w n ) . Full l e n g t h I T S s e q u e n c e s w e r e o b t a i n e d for t w o clones from each o f t h e three s a m p l e d D. variegatum p l a n t s a n d these h a v e b e e n d e p o s i t e d in G e n B a n k w i t h t h e accession c o d e s listed in T a b l e 2. B o t h clones from P l a n t 1 s h o w e d h i g h identities ( 9 0 % o v e r 3 9 3 b p ) t o Russula occidentalis Singer ( T a b l e 2). T h e first c l o n e from Plant 2 h a d a high identity to Trichoderma hamatum (Bonorden) B a i n i e r ( 9 9 % o v e r 6 0 7 - 6 1 1 b p ) w h i l e the s e c o n d clone h a d 8 9 - 8 8 % identity (over 3 3 7 - 3 7 2 b p ) t o t w o species o f Russula ( T a b l e 2 ) . T h e first clone from P l a n t 3 h a d h i g h identity to a Verticillium sp. ( 9 5 % o v e r 585 bp) a n d an u n c u l t u r e d fungus ( 9 7 % o v e r 3 6 7 b p ) , w h i l e t h e s e c o n d clone h a d affinity (96 & 9 5 % o v e r 166-168 b p ) t o t w o h o m o b a s i d i o m y c e t e fungi, Halocyphina villosa K o h l m . et K o h l m and Merisimodes fasciculata ( S c h w e i n . ) Earle ( T a b l e 2 ) . Discussion S e q u e n c e c o m p a r i s o n o f t h e c l o n e d fungal I T S r D N A s a m p l e s with G e n B a n k r e v e a l e d that t h e fungal c o m m u n i t y o f D. variegatum roots consists o f a number of species. The non-mycorrhizal Deuteromycetes, Trichoderma hamatum and Verticillium sp. a r e likely to b e c o n t a m i n a n t s o n t h e orchid roots as t h e y a r e c o m m o n soil inhabiting fungi ( A l e x o p o u l o u s , M i m s & B l a c k w e l l 1996). A s Halocyphina villosa is a m a r i n e fungus ( H i b b e r t & B i n d e r 2 0 0 1 ) a n d Merismodes spp. have never been r e c o r d e d as f o r m i n g orchid m y c o r r h i z a s (see R a s m u s s e n 2 0 0 2 ) t h e results strongly s u g g e s t that the p r i m a r y peloton f o r m i n g fungi in D. variegatum roots are m e m b e r s o f t h e h o m o b a s i d i o m y c e t e g e n u s Russula. T h i s h a s g o o d correlation w i t h m o l e c u l a r studies o f species o f N o r t h A m e r i c a n m y c o heterotrophic o r c h i d s w h i c h h a v e also s h o w n t o b e c o l o n i s e d b y Russula s p p . ( T a y l o r & B r u n s 1999). W h i l e t h e s a m p l e size h e r e is small, t h e s e findings also c o m p a r e favourably with other studies o f m y c o heterotrophic o r c h i d s w h i c h h a v e s h o w n quite specific fungal associations (Selosse et al. 2 0 0 2 , T a y l o r & B r u n s 1997, 1999). I n d e e d , as m o r e m o l e c u l a r analyses o f a u t o t r o p h i c orchid e n d o p h y t e s are b e i n g c o n d u c t e d it a p p e a r s that t h e l a c k o f specificity u s u a l l y attributed to these o r c h i d t y p e s (e.g. W a r c u p 1 9 8 1 , Z e l m e r et al. 1986) m a y n o t b e t h e case (see B o u g o u r e et al. 2 0 0 5 , M c C o r m i c k et al. 2004). Table 2 . C l o s e s t t w o m a t c h e s f r o m B L A S T s e a r c h e s o f f u n g a l s e q u e n c e s a m p l i f i e d f r o m t h e t h r e e D. variegatum plants. Included are t h e t w o closest G e n B a n k matches a n d a c c e s s i o n c o d e s , s e q u e n c e identity a n d overlap of each match. Plant & clone no. Plant 1 clone 1 Plant 1 clone 2 Plant 2 clone 1 Plant 2 clone 2 Plant 3 clone 1 Plant 3 clone 2 GenBank Accession Code AY702070 AY702071 AY702072 Closest species match & accession code Sequence identity (%) Sequence overlap (bp) Russula Russula 90 90 90 90 99 99 89 88 95 97 96 95 393 393 393 393 607 611 337 372 585 367 166 168 occidentalis occidentalis Russula occidentalis Russula occidentalis Trichoderma hamatum Trichoderma hamatum AY702073 Russula Russula AY702074 Verticillium s p . Unculturedfungus Halocyphina villosa Merismodes fasciculata AY702075 Solaris lepida The endophytes of a number of European and North A m e r i c a n m y c o - h e t e r o t r o p h i c orchids h a v e b e e n recently identified v i a m o l e c u l a r biology t e c h n i q u e s . T a y l o r & B r a n s ( 1 9 9 7 , 1999) a n d M c K e n d r i c k et al. ( 2 0 0 0 a ) found that Cephalanthera austinae and Corallorhiza trifida w e r e c o l o n i s e d b y m e m b e r s of the T h e l e p h o r a c e a e , w h e r e a s Corallorhiza maculata and C. mertensiana w e r e colonised b y t h e R u s s u l a c e a e . Selosse et al. ( 2 0 0 2 ) recently s h o w e d that Neottia nidus-avis w a s c o l o n i s e d b y sebacinoid fungi, w h i l e T a y l o r et al. ( 2 0 0 3 ) s h o w e d that t h e p r i m a r y fungal partner o f Hexalectris spicata w a s also a m e m b e r o f t h e S e b a c i n a c e a e . T o g e t h e r with the p r e s e n t study, these a n a l y s e s show that both h o m o b a s i d i o m y c e t e s a n d h e t e r o b a s i d i o m y c e t e s can be e n d o p h y t e s o f m y c o - h e t e r o t r o p h i c orchids. R e s e a r c h into m y c o - h e t e r o t r o p h i c orchids a n d their fungal partners s u g g e s t s that t h e y are often i n v o l v e d in tripartite interactions w i t h s u r r o u n d i n g tree a n d s h r u b species, t h u s p r o v i d i n g t h e orchid w i t h a greater and more reliable nutrient source ( M c K e n d r i c k et al. 2 0 0 0 a , b , Selosse et al. 2 0 0 2 , W a r c u p 1985). T h e orchids u s e d in this study all o c c u r r e d close t o species o f Eucalyptus a n d it is p o s s i b l e that t h e orchids a r e linked t o t h e s e tree species v i a e c t o m y c o r r h i z a l associations. Support for this c o m e s from t h e fact that Russula species, w h i c h are well k n o w n e c t o m y c o r r h i z a l fungi in Australia (Brundrett et al. 1996), h a v e b e e n implicated in tripartite relationships b e t w e e n trees a n d m y c o heterotrophic orchids ( T a y l o r & B r a n s 1999). T h e lack o f success in g r o w i n g extracted p e l o t o n s m a y b e o w i n g t o t h e a b s e n c e o f specific cultural r e q u i r e m e n t s in t h e m e d i a u s e d o r that there w e r e p r o b l e m s w i t h t h e extraction m e t h o d o l o g y . T a y l o r & B r a n s ( 1 9 9 7 ) a n d Z e l m e r et al. (1996) h a v e also e n c o u n t e r e d difficulties in isolating fungi from vari AY228349.1 AY534206.1 AY228349.1 AY534206.1 AY154937.1 Z48816.1 AF418627.1 AY061686.1 A Y 172097.1 AF504849.1 AY571042.1 AY571052.1 ous species o f terrestrial orchids (including m e m b e r s o f t h e R u s s u l a c e a e in the former study). T h e latter authors s u g g e s t that s o m e orchid e n d o p h y t e s m a y h a v e antibiotic sensitivity o r h a v e an obligate d e p e n d e n c y on their plant hosts. In c o n c l u s i o n , in the a b s e n c e o f p u r e culture synthesis o f an association u n d e r e x p e r i m e n t a l conditions, w e h a v e identified t h e p r i m a r y p e l o t o n f o r m i n g fungal e n d o p h y t e s o f D. variegatum as members of the Russulaceae using molecular-based techniques. It w o u l d be interesting t o e x a m i n e t h e fungal e n d o p h y t e s of other Dipodium species to d e t e r m i n e if t h e s e w e r e similarly colonised by these homobasidiomycetes. Acknowledgements W e t h a n k t h e University o f S o u t h e r n Q u e e n s l a n d a n d t h e C e n t r e for B i o m e d i c a l R e s e a r c h for their financial s u p p o r t , t h e Q u e e n s l a n d P a r k s a n d Wildlife Service for g r a n t i n g u s a p e r m i t t o collect orchids a n d Mr Damian Bougoure, M r Austen Chen and Mrs A d e l e J o n e s for advice and t e c h n i c a l assistance. References A l e x o p o u l o s C.J., M i m s C . W . & B l a c k w e l l M . ( 1 9 9 6 ) . Introductory Mycology. John Wiley & Sons, N e w York, USA. B o u g o u r e J.J., B o u g o u r e D . S . , C a i r n e y J . W . G . & D e a r n a l e y , J . D . W . (2005). I T S - R F L P a n d s e q u e n c e analysis o f e n d o p h y t e s from Acianthus, Caladenia and Pterostylis ( O r c h i d a c e a e ) in south eastern Q u e e n s l a n d , Australia. Mycological Research 1 0 9 , 452-460. Brundrett, M . , B o u g h e r , N . , Dell, B . , G r o v e T . & M a l a j c z u k , N . ( 1 9 9 6 ) Working with mycorrhizas in forestry and agriculture. T h e Australian C e n t r e for International A g r i c u l t u r a l R e s e a r c h . Canberra, Australia. G a r d e s , M . & B r u n s , T . D . ( 1 9 9 3 ) . I T S p r i m e r s with enhanced specificity for basidiomycetes— application to t h e identification o f m y c o r r h i z a e a n d rusts. Molecular Ecology 2 , 1 1 3 - 1 1 8 . Hibbert, D . S . & B i n d e r , M . ( 2 0 0 1 ) . E v o l u t i o n o f M a r i n e M u s h r o o m s . Biological Bulletin 2 0 1 , 319— 322. H u y n h , T.T., M c L e a n , C . B . , C o a t e s , F . & L a w r i e , A . C . ( 2 0 0 4 ) . Effect o f d e v e l o p m e n t a l stage a n d p e l o t o n m o r p h o l o g y o n s u c c e s s in isolation o f mycorrhizal fungi in Caladenia formosa ( O r c h i d a c e a e ) . Australian Journal of Botany 5 2 , 231-241. L e a k e , J.R. (1994). The biology of mycoheterotrophic ('saprophytic') plants. New PhytologistUl, 171-216. M c C o r m i c k , M . K . , W h i g h a m , D . F . & O ' N e i l l , J. ( 2 0 0 4 ) . M y c o r r h i z a l diversity in p h o t o s y n t h e t i c terrestrial o r c h i d s . New Phytologist 163,425-438. M c K e n d r i c k , S.L., L e a k e , J.R., T a y l o r , D . L . & R e a d , D.J. (2000a). Symbiotic germination and d e v e l o p m e n t of m y c o - h e t e r o t r o p h i c plants in nature: o n t o g e n y of Corallorhiza trifida and characterization o f its m y c o r r h i z a l fungi. New Phytologist 145, 523-537. M c K e n d r i c k , S.L., L e a k e J.R. & R e a d , D.J. ( 2 0 0 0 b ) . S y m b i o t i c g e r m i n a t i o n and d e v e l o p m e n t of m y c o h e t e r o t r o p h i c plants in n a t u r e : transfer o f c a r b o n from e c t o m y c o r r h i z a l Salix repens and Betula pendula to t h e o r c h i d Corallorhiza trifida t h r o u g h s h a r e d h y p h a l c o n n e c t i o n s . New Phytologist 145, 523-537. Milligan, M.J. & W i l l i a m s , P.G. ( 1 9 8 8 ) . T h e mycorrhizal relationship of multinucleate rhizoctonias from non-orchids with Microtis ( O r c h i d a c e a e ) . New Phytologist 108,205-209. P e r k i n s , A . J . & M c G e e , P . A . ( 1 9 9 5 ) . Distribution of the orchid m y c o r r h i z a l fungus, Rhizoctonia solani, in relation to its host, Pterostylis acuminata, in the field. Australian Journal of Botany 4 3 , 5 6 5 - 5 7 5 . P e r k i n s , A.J., M a s u h a r a , G. & M c G e e , P.A. ( 1 9 9 5 ) . Specificity o f t h e associations b e t w e e n Microtis parviflora ( O r c h i d a c e a e ) and its m y c o r r h i z a l fungi. Australian Journal of Botany 4 3 , 85—91. P o p e , E.J. & Carter, D . A . ( 2 0 0 1 ) . P h y l o g e n e t i c p l a c e m e n t and h o s t specificity o f m y c o r r h i z a l isolates b e l o n g i n g to A G - 6 and A G - 1 2 in t h e Rhizoctonia solani species c o m p l e x . Mycologia 9 3 , 712-719. R a s m u s s e n , H . N . ( 2 0 0 2 ) . R e c e n t d e v e l o p m e n t s in the study o f orchid m y c o r r h i z a . Plant and Soil 2 4 4 , 149-163. Selosse, M - A . , W e i B , M . , J a n y , J-L. & Tillier, A . (2002). Communities and populations of s e b a c i n o i d b a s i d i o m y c e t e s associated with the a c h l o r o p h y l l o u s o r c h i d Neottia nidus-avis (L.) L . C . M . R i c h , and n e i g h b o r i n g t r e e e c t o m y c o r r h i z a . Molecular Ecology 1 1 , 1 8 3 1 - 1 8 4 4 . Smith, S.E. & R e a d , D.J. ( 1 9 9 7 ) . Mycorrhizal symbiosis. A c a d e m i c P r e s s , C a m b r i d g e , U K . Stanley, T . D . & R o s s , E . M . ( 1 9 8 9 ) . Flora of South eastern Queensland. Volume 3. Queensland Department of Primary Industries, Brisbane, Australia. Taylor, D . L . & B r u n s , T . D . ( 1 9 9 7 ) . I n d e p e n d e n t , specialized i n v a s i o n s o f e c t o m y c o r r h i z a l m u t u a l i s m b y t w o n o n p h o t o s y n t h e t i c o r c h i d s . Proceedings of the National Academy of Sciences 9 4 , 4 5 1 0 ^ 1 5 1 5 . Taylor, D . L . & B r u n s , T.D. ( 1 9 9 9 ) . P o p u l a t i o n , habitat a n d genetic correlates o f m y c o r r h i z a l specialization in the 'cheating' orchids Corallorhiza maculata and C. mertensiana. Molecular Ecology 8 , 1 7 1 9 - 1 7 3 2 . Taylor, D . L . , B r u n s , T.D., S z a r o , T . M . & H o d g e s , S.A. ( 2 0 0 3 ) . D i v e r g e n c e in m y c o r r h i z a l s p e c i a t i o n within Hexalectris spicata ( O r c h i d a c e a e ) , a n o n p h o t o s y t h e t i c desert orchid. American Journal of Botany 9 0 , 1 1 6 8 - 1 1 7 9 . W a r c u p , J.H. ( 1 9 7 1 ) . Specificity o f m y c o r r h i z a l association in s o m e A u s t r a l i a n terrestrial o r c h i d s . New Phytologist 70,41^16. W a r c u p , J.H. ( 1 9 7 3 ) . S y m b i o t i c g e r m i n a t i o n o f s o m e A u s t r a l i a n o r c h i d s . New Phytologist 72, 387-392. W a r c u p , J.H. ( 1 9 8 1 ) . T h e m y c o r r h i z a l r e l a t i o n s h i p s o f Australian o r c h i d s . New Phytologist 8 7 , 371— 381. Warcup, J.H. (1985). Rhizanthella gardneri ( o r c h i d a c e a e ) , its Rhizoctonia e n d o p h y t e a n d close association with Melaleuca uncinata (Myrtaceae) in W e s t e r n A u s t r a l i a . New Phytologist 99, 2 7 3 280. W a r c u p , J.H. ( 1 9 8 8 ) . M y c o r r h i z a l associations o f isolates o f Sebacina vermifera. New Phytologist 110,227-231. W a r c u p , J.H. ( 1 9 9 0 ) . M y c o r r h i z a s , in R.J. B a t e s & J.Z. W e b e r ( e d s ) , Orchids of South Australia, pp. 2 1 - 2 6 . Flora and Fauna of South Australia Handbook Committee, Adelaide, Australia. W a r c u p , J.H. ( 1 9 9 1 ) . T h e Rhizoctonia endophytes of Rhizanthella ( O r c h i d a c e a e ) . Mycological Research 95, 656-659. W h i t e , T.J., B r u n s , T., L e e , S. & T a y l o r , J. ( 1 9 9 0 ) . A m p l i f i c a t i o n and direct s e q u e n c i n g o f fungal r i b o s o m a l R N A g e n e s for p h y l o g e n e t i c s , in M . A . I n n i s , D . H . Gelfand, J.J. S n i n s k y & T.J. W h i t e ( e d s ) , PCR Protocols: a Guide to Methods and Applications, pp. 315-322, Academic Press, San Diego, U S A . Z e l m e r , C D . , C u t h b e r t s o n , L. & C u r r a h , R . S . ( 1 9 9 6 ) . Fungi associated with terrestrial orchid m y c o r r h i z a s , s e e d s and p r o t o c o r m s . Mycoscience 37,439-448.
© Copyright 2026 Paperzz