Jan Hagemejer Advanced Microeconomics Example firm problem: Cobb-Douglas technology Based on example 5.C.1 from MWG 1 Cost minimization problem with a Cobb-Douglas function Derive the cost function and conditional factor demands for the Cobb-Douglas utility function of the form: q = f (z1 , z2 ) = z1α z2β The cost minimization problem is: Min w1 z1 + w2 z2 subject to q = f (z1 , z2 ), z ,z 1 2 where q is an arbitrary output level. The Lagrange function is: L = w1 z1 + w2 z2 − λ(f (z1 , z2 ) − q), The first order conditions; ∂L = w1 − λαz1α−1 z2β = 0 ∂z1 (1) ∂L = w2 − λβz1α z2β−1 = 0 ∂z2 (2) ∂L = z1α z2β − q = 0 ∂λ (3) Dividing (1) by (2) we get: w1 α z2 = w2 β z1 Solve for z2 : w1 β z1 = z2 w2 α Substitute to (3): z1α z1α+β w1 β z1 w2 α !β w1 β w2 α !β 1 =q =q ! z1 (w1 , w2 , q) = w2 α w1 β ! z2 (w1 , w2 , q) = w1 β w2 α β α+β 1 q α+β α α+β 1 q α+β The above are condtional (on the w1 , w2 , q) factor demands for z1 and z2 . How to get the cost function? Algebra is a little nasty: C(w1 , w2 , q) = w1 z1 (w1 , w2 , q) + w2 z2 (w1 , w2 , q) = w1 w2 α w1 β ! β α+β q =q 1 α+β w1 =q 1 α+β 1 = q α+β w1 1 = q α+β w1 w1 w2 α w1 β ! w2 α w1 β ! w2β w2α w1β w2α α α β β αα w2α+β w1β w2α α+β β α α β β αα =q 1 α+β 1 α+β 1 1 w1 w2 α β α β α w1 w2 β α w1 β w2 α + w2 β α+β =q w1 w2 (α + =q ! + w2 w1 β w2 α + w2 w1α w1β w1β w2α β β β β αα α+β + w2 w1α+β w1β w2α 1 ! α+β = α α+β = α β β β β αα 1 ! α+β 1 ! α+β 1 α+β w α/(α+β) w β/(α+β) (α 1 2 1 α α ββ 1 + β) α α ββ ! ! 1 α+β = 1 α+β ! −β/(α+β) −α(α+β) β)w1 w2 = 1 1 + w1 w2 β β α β α w1 w2 β α 1 α+β α α+β + w2 1 α+β 1 q α+β = ! β α+β 1 α+β α α+β w1 β w2 α 1 ! α+β ! ! = = Or to get the same expression as in MWG: =q 1 α+β αα+β w α/(α+β) w β/(α+β) 1 2 αα β β C(w1 , w2 , q) = q 1 α+β α β ! β α+β ! α + β or: 2 1 α+β ! β α+β + αα β β −α α+β ! 1 α+β = w α/(α+β) w β/(α+β) 1 2 = 1 α/(α+β) C(w1 , w2 , q) = q α+β θw1 β α+β where θ = αβ + Some things to note: α β −α α+β β/(α+β) w2 , and is just a parameter. 1 • In the cost function, only the q α+β is a function of q. The rest is a scalar if prices are fixed. • α + β is the measure of returns to scale. If α + β = 1, then the function becomes (should remind you the expenditure function for a Cobb-Douglas utility function): C(w1 , w2 , q) = qθw1α w21−α , • with α + β = 1, M C = AC = θw1α w21−α . In this case, θ = α−α β −β = α−α (1 − α)−(1−α) . • we can also rewrite the function as: 1 C(w1 , w2 , q) = q α+β θφ(w1 , w2 ), α/(α+β) where φ(w1 , w2 ) = w1 2 β/(α+β) w2 Profit maximization using the derived cost function We have can now state the profit maximization problem in the following way: Max π(p, w1 , w2 , q) = pq − C(w1 , w2 , q) q 1 = pq − q α+β θφ(w1 , w2 ) FOC: ∂π 1 =p−( )q 1/(α+β)−1 θφ(w1 , w2 ) = 0 ∂q α+β Solving for q from the above will give us the profit maximizing output (the second term after the minus is the marginal cost). However, we have to check SOC: ∂π 1 1 = −( − 1)( )q 1/(α+β)−2 θφ(w1 , w2 ) ≤ 0 ∂q α+β α+β whenever 0 < α + β ≤ 1 so we need to have either decreasing or constant returns to scale. However, with CRS the q dissapears from the FOC and we cannot determine the profit maximizing q (any q such that P = M C is in fact profit maximizing). 3
© Copyright 2026 Paperzz