Electric Field of Charged Rod (1) y x • Charge per unit length: λ = Q/L • Charge on slice dx: dq = λdx dE + + + + + +++ + + + + D • Electric field generated by slice dx: dE = dq = λ dx x L kλdx kdq = x2 x2 • Electric field generated by charged rod: E = kλ Z D+L D » » – – 1 dx 1 1 D+L kQ − = kλ = kλ − = x2 x D D D+L D(D + L) kQ D2 kλ • Limiting case of very long rod (L ≫ D): E ≃ D • Limiting case of very short rod (L ≪ D): E ≃ 27/1/2009 [tsl31 – 5/13] Electric Field of Charged Rod (2) • Charge per unit length: λ = Q/L • Charge on slice dxs : dq = λdxs • Trigonometric relations: yp = r sin θ, −xs = r cos θ yp dθ xs = −yp cot θ, dxs = sin2 θ • dE = kλdxs kλdθ kλdxs 2 = sin θ = r2 yp2 yp θ2 kλ kλ • dEy = dE sin θ = sin θdθ ⇒ Ey = yp yp Z kλ kλ • dEx = dE cos θ = cos θdθ ⇒ Ex = yp yp Z sin θdθ = − θ1 θ2 θ1 cos θdθ = kλ (cos θ2 − cos θ1 ) yp kλ (sin θ2 − sin θ1 ) yp 27/1/2009 [tsl32 – 6/13] Electric Field of Charged Rod (3) Symmetry dictates that the resulting electric field is directed radially. • θ2 = π − θ1 , ⇒ sin θ2 = sin θ1 , cos θ2 = − cos θ1 . L/2 • cos θ1 = p . 2 2 L /4 + R • ER = − • Ez = kλ kλ L p . (cos θ2 − cos θ1 ) = R R L2 /4 + R2 kλ (sin θ2 − sin θ1 ) = 0. R kQ . 2 R 2kλ • Small distances (R ≪ L): ER ≃ R ~ = 2kλ R̂. • Rod of infinite length: E R • Large distance (R ≫ L): ER ≃ 27/1/2009 [tsl33 – 7/13] Electric Field of Charged Rod (4) Symmetry dictates that the resulting electric field is directed radially. • Charge per unit length: λ = Q/L • Charge on slice dx: dq = λdx • dE = kλdx kdq = r2 x2 + y 2 dEy kλydx • dEy = dE cos θ = p = 2 (x + y 2 )3/2 x2 + y 2 " #+L/2 Z +L/2 kλydx kλyx • Ey = = p 2 2 3/2 y 2 x2 + y 2 −L/2 (x + y ) −L/2 • Ey = kλL kQ p = p y (L/2)2 + y 2 y (L/2)2 + y 2 • Large distance (y ≫ L): Ey ≃ kQ y2 2kλ • Small distances (y ≪ L): Ey ≃ y y dE dq x + + + + + + + + + ++ + ++ + + + + ++ −L/2 +L/2 27/1/2009 [tsl33 – 8/13]
© Copyright 2026 Paperzz