Session 3A Non-idealities Andrew Martin UPenn, February 2014 ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 1 What could go wrong? Assumptions Each data point is from: – ONE discrete wavelength – ONE discrete angle – ONE discrete thickness “Real” World – Wavelength Spread – Angle Spread – Non-uniform film thickness Substrate is: – Backside Reflections – Infinitely thick Film is: – Smooth, Homogeneous – Isotropic ©2014 J.A. Woollam Co., Inc. – Rough, Index Gradient – Anisotropic Optical Constants www.jawoollam.com 2 Wavelength Spread A grating or prism is used to spread wavelengths out and collect a small region on the detector. – Discrete wavelength is actually a “spread” of wavelengths. Slit or Detector element Grating ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 3 Angle Spread Focused-beam measurements will actually collect a “range” of angles. – Discrete angle actually a “spread” of angles f ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 4 Non-uniform Thickness Measurement spot can be large enough to see variation in film thickness within the measured area – Discrete thickness actually a “spread” of thicknesses. t ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 5 Case: Thickness Nonuniformity Experimental Data 80 How are data affected by measurements over ’spread’ of thicknesses. Ideal Film Same Film, 3% Thickness Non-Uniformity in degrees 60 Data from thicker and thinner film go in opposite directions – 34 average together. 32 40 20 0 0 300 Experimental Data 600 900 1200 1500 1800 Wavelength (nm) Ideal Data With 3% non-uniformity Varied Thickness Data t in degrees 30 28 26 24 22 ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 6 Case: Thickness Nonuniformity Experimental Data 80 Near a sharp feature, the data are affected by the thickness variation. Ideal Film Same Film, 3% Thickness Non-Uniformity in degrees 60 40 20 Experimental Data 0 Ideal Data 0 With 3% non-uniformity Varied Thickness Data 300 600 900 1200 Wavelength (nm) 1500 1800 Data from thicker and thinner film go in same directions – pulls average down. 581 613 ©2014 J.A. Woollam Co., Inc. 644 675 www.jawoollam.com 7 Affect of non-idealities on data Non-idealities can cause: – Rounding/lowering of peaks and valleys in ψ and Δ – Depolarization (A portion of the POLARIZED light becomes randomly polarized upon reflection). 95% 5% + Non-uniform film Unpolarized Light Substrate ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 8 Thickness Uniformity Depolarization- hints towards non-ideality. The uniformity of a film is more important as the film thickness increases. Experimental Data %Depolarization 80 200nm thick, 3% non-uniform 3 microns thick, 3% non-uniform 60 40 20 0 0 ©2014 J.A. Woollam Co., Inc. 300 600 900 1200 Wavelength (nm) www.jawoollam.com 1500 1800 9 Measuring Depolarization Possible only on Ellipsometers with COMPENSATOR – VASE with AutoRetarder, M-2000, IR-VASE (rotating compensator) – All modern Woollam ellipsometers Acquiring data type “Standard” or “Isotropic” measures: ψ, Δ Acquiring data type “Depolarization” measures: ψ, Δ and % Depolarization. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 10 Measure Depolarization! Non-idealities can cause depolarization: – Thickness non-uniformity – Wavelength Spread – Angle spread Also: – Backside substrate reflections – Patterned films Measure depolarization to help quantify the non-ideality. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 11 How to deal with “non-ideal” world 1. Eliminate (or reduce) non-ideality. Spatially reduce collected “spread” of wavelengths. Use collimated measurements Use smaller measurement spot or make more uniform films. 2. Account for non-ideality in the model. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 12 Model Options Dialog Box ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 13 1 Example_1_Organic_on_Si_nonuniform.dat – Determine Index, Thickness and Nonuniformity, based on SE + Depol data. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 14 2,3 Example_2_Dielectric_on_Si.dat Example_3_SiO2_on_Si.dat Fit data and identify the likely cause of depolarization for each case. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 15 Coherent / Incoherent Incoherent beam summation can produce depolarization. Always must consider when working with transparent substrate Reflected Beams Rf Input Light Beam Tf • Rb • Tfr (Tf • Rb • Tfr) • (Rfr • Rb) (Tf • Rb • Tfr) • (Rfr • Rb)2 Multilayer Film Stack (coherent propagation) front side Transparent Substrate (incoherent propagation) back side (Tf • Tb) • (Rfr • Rb)3 (Tf • Tb) • (Rfr • Rb)2 (Tf • Tb) • (Rfr • Rb) (Tf • Tb) ©2014 J.A. Woollam Co., Inc. www.jawoollam.com Transmitted Beams 16 Incoherent Backside Reflections How to deal with backside reflections – Roughen backside with sandblaster or sanding tool – Index matching tape for glass substrate (translucent Scotch tape) – Focusing optics – Wedge/thick substrate – Account for it in software ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 17 Summary Non-idealities Bandwidth Nonuniform thickness Angular spread NEXT: Absorbing Films ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 18 Absorbing Films (l), D(l) n(l), k(l) AOI n k ? D d d Known Substrate Challenge: More unknown sample properties than measured values. Issues: no unique answer -Correlation between thickness and optical properties©2014 J.A. Woollam Co., Inc. www.jawoollam.com 19 Can Multiple Angle SE break the correlation? 40 Not necessarily!! 30 25 5.0 Exp E 45° Exp E 55° Exp E 65° Exp E 75° 20 15 200 400 600 800 1000 30 25 2.5 20 1200 Wavelength (nm) 180 160 0.0 15 Exp < 1>-E 65° Exp < 1>-E 75° Exp < 2>-E 65° Exp < 2>-E 75° -2.5 140 120 -5.0 200 100 Exp E 45° Exp E 55° Exp E 65° Exp E 75° 80 60 40 200 400 600 800 Wavelength (nm) 1000 400 600 800 1000 < 2> < 1> in degrees 35 D in degrees TiN film Silicon 10 5 0 1200 Wavelength (nm) 1200 “Pseudo” optical constants remove the angle dependence to compare information content Change in path length from multiple angles is minimal for thin film - does not provide new information. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 20 Can Multiple Angle SE break the correlation? 40 35 30 MSE 25 20 15 10 5 0 0 10 20 30 40 50 60 TiN Thickness - nm ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 21 Methods on Absorbing Films Reducing unknowns – Opaque Layer – Optical Constant Parameterization – Extrapolation from Transparent Region n k d n n k k d d Adding information – – – – SE + Transmission Interference Enhancement Multi-Sample Analysis In-Situ DD D D Above methods are often combined! J. Hilfiker, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry” Thin Solid Films 516 (2008) 7979-7989. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 22 Opaque Layers Sample absorbs light in the entire measured range. n k D Typical for metal substrates, thick metal films (>50-100nm) Model assumptions affect accuracies of final optical properties. Method Opaque layers ©2014 J.A. Woollam Co., Inc. Direct fit Advantages Simplified data analysis – ignore the film thickness. www.jawoollam.com Disadvantages Ignores surface films (oxide and/or roughness). Opaque layer may have different “n,k” from thin layers. 23 Parameterization (l) D(l) p1 pp11pp3 p2 d 1 Use dispersion equations to describe sample optical properties. Often combined with other techniques Cauchy GenOsc Method Advantages Disadvantages Optical Constant Parameterization Reduce # of Fit Parameters Smooth, continuous curves for n,k that are often KK consistent Work better for well-known and welldefined optical properties, such as a-Si or DLC By itself, results can often be correlated Need to choose best of many different options. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 24 Extrapolation from Transparent region Transparent region nt d K=0 Absorption region D na k D Pt by pt Genosc Cauchy Sample is transparent in some measured region – Get thickness and n in the transparent region (k=0) – Extend to absorbing region to get n, k and thickness Correct model should fit both transparent and absorbing regions ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 25 Extrapolation from Transparent region Cont. Method Advantages Extrapolation High sensitivity to thickness in transparent region. from Transparent Pt by pt fit quickly and easily Region ©2014 J.A. Woollam Co., Inc. Disadvantages Requires film to be transparent over some measured wavelengths. extends into absorbing region. Possible for NK to get lost in absorbing region Genosc models enhance KK consistency. Complicated www.jawoollam.com 26 SE + Intensity n k d D (l), D(l) %R(l) I n(l), k(l) Known Substrate Parameterization Including intensity Uniqueness fit Method d %T(l) Advantages SE + Extra information from Transmission Intensity breaks correlation. Disadvantages Not for absorbing substrates. Need accurate Intensity measurements. B. Johs et al. ,Opt. Int. Coat. Tech. Digest. 15 (1992) 433. B. Johs et al. Thin Solid Films. 253 (1994) 25. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 27 Interference Enhancement (l), D(l) X 2 Angles n k d1 d2 1D12D2 n(l), k(l) Thick Transparent Film d2 d1 Known Substrate Method Advantages Interference Enhancement Extra info. from multi-angle data. Effective “substrate” features enhance sensitivity to correct film thickness/n,k. Great method for absorbing substrates. Disadvantages Requires extra, thick dielectric layer. Increases complexity Demonstrated on a-C:H films W.A. McGahan, B. Johs, J.A. Woollam, Thin Solid Films 234 (1993) 443-446. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 28 Multi-Sample and in-situ Analysis n k d1 d2 1 D1 2 D2 (l), D(l) (l), D(l) n(l), k(l) (l), D(l) n(l), k(l) (l), D(l) d n(l), k(l) Parameterization Multi-sample analysis Method Advantages Multi-Sample More information about same material. and in-situ Easy to achieve from map of Analysis non-uniform sample. Known Substrate Disadvantages Requires consistent optical constants In-situ requires ellipsometer integration into system. C.M. Herzinger et al. “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis” J. Appl. Phys. 77 (9) 1995, p. 4677-4687. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 29 SE + Intensity Increase measured information. Transmission requires transparent substrate Must accurately measure intensity (l), D(l) %R(l) d n(l), k(l) Known Transparent Substrate %T(l) B. Johs et al. ,Opt. Int. Coat. Tech. Digest. 15 (1992) 433. B. Johs et al. Thin Solid Films. 253 (1994) 25. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 30 4 Example_4_Cr_on_glass_SE.dat Example_4_Cr_on_glass_T.dat Use Glass_genosc.mat for substrate Append Transmission data to Fit Thickness, n and k simultaneously. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 31 Cr on Glass – SE Only Thickness fixed at 12, 18, and 24nm. 12 200 Model Fit Exp E 45° Exp E 60° Exp E 75° 100 50 9 1 D in degrees 150 6 Fixed at 12 nm Fixed at 18 nm Fixed at 24 nm 3 0 30 21 20 18 15 2 in degrees 0 10 12 0 300 600 900 1200 Wavelength (nm) MSE = 0.8, 0.5, 0.9 for 12, 18 and 24nm ©2014 J.A. Woollam Co., Inc. 1500 1800 9 6 300 600 900 1200 1500 1800 Wavelength (nm) www.jawoollam.com 32 Use “fit” n,k to simulate transmission and reflection intensity. Transmission, 0° Compare to measured values, only match the 18nm data. P-Reflection, 45° SE + Intensity – Cr on Glass 0.50 0.40 0.30 Experimental Model-12nm Model-18nm Model-24nm 0.20 0.10 0.24 0.21 0.18 0.15 0.12 0.09 300 600 900 1200 1500 1800 Wavelength (nm) ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 33 SE + Intensity 10 Normalized Relative MSE 9 8 SE Only SE + T SE + R 7 6 5 4 3 2 1 0 0 ©2014 J.A. Woollam Co., Inc. 5 10 15 20 Cr Thickness - nm www.jawoollam.com 25 30 35 34 Interference Enhancement Thick dielectric below absorbing layer enhances change in path length to provide new information from multiple angles. Increases sample complexity. (l), D(l) X 2 Angles n(l), k(l) Thick Transparent Film d d Known Transparent Substrate Demonstrated on a-C:H films Applied to Data Storage Industry for thin magnetic layers W.A. McGahan, B. Johs, J.A. Woollam, Thin Solid Films 234 (1993) 443-446. M.T. Kief, G. Al-Jumaily, and G.S. Mowry, IEEE Transactions on Magnetics, 33 (1997) 2926. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 35 Multiple Angles (new info?) Check <n,k> to see if new angles help. Experimental Data Experimental Data 50 8 Exp E 60° Exp E 70° Exp E 80° 30 20 0 200 4 2 10 400 600 800 Wavelength (nm) Experimental Data 1000 0 200 1200 400 600 800 1000 1200 Wavelength (nm)Data Experimental 4.0 300 Exp E 60° Exp E 70° Exp E 80° 3.0 2.0 <k> 200 D in degrees Exp E 60° Exp E 70° Exp E 80° 6 <n> in degrees 40 100 1.0 0.0 Exp E 60° Exp E 70° Exp E 80° -1.0 0 -2.0 -100 200 400 600 800 Wavelength (nm) 1000 -3.0 200 1200 400 600 800 Wavelength (nm) 1000 1200 Thin TiN / SiO2 / Si substrate ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 36 Thin TiN on SiO2 / Silicon Fit n, k, t1, and t2 unique result! 25 20 MSE 15 10 Uniqueness Simulation shows a minimum in the MSE for a “unique” thickness 5 0 0 5 10 15 20 25 30 35 TiN thickness in nm ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 37 5 Example_5_Pt_on_SiO2_on_Si.dat Thin Pt film on thick thermal oxide. Assume fixed nk for Pt and SiO2. Fit thickness only. Allow Pt nk to fit directly. Check uniqueness. Fit to GenOsc (Extra Credit). Interference Enhancement ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 38 Example 5 Result Simultaneously fit Pt and SiO2 thickness, and Pt nk Generated and Experimental 45 3 2 1 0 in degrees 40 35 Model Fit Exp E 45.2° Exp E 60.3° Exp E 75.5° 30 25 pt sio2_jaw intr_jaw si_jaw 15.374 nm 1709.768 nm 1.000 nm 1 mm 20 15 400 600 800 Wavelength (nm) 1000 1200 Optical Constants 4.5 Generated and Experimental D in degrees 160 140 120 Model Fit Exp E 45.2° Exp E 60.3° Exp E 75.5° 100 80 60 400 600 800 Wavelength (nm) ©2014 J.A. Woollam Co., Inc. 1000 1200 4.0 3.5 Pt - Direct nk fit, n Pt - GenOsc nk fit, n Pt - Direct nk fit, k Pt - GenOsc nk fit, k 7.0 6.0 3.0 5.0 2.5 4.0 2.0 1.5 400 www.jawoollam.com 600 800 Wavelength (nm) 1000 Extinction Coefficient 'k' Index of Refraction 'n' 180 8.0 3.0 1200 39 Multilayer films Need to determine many unknowns! – Includes thickness, n and k for each layer. SE data feature: Oscillation patterns will be superimposed! 80 200 nm 500 nm 1 mm Multilayer Oxide Only Nitride Only Substrate 60 in degrees 2 nitride 1 oxide 0 substrate 40 20 0 0 ©2014 J.A. Woollam Co., Inc. 300 600 900 1200 Wavelength (nm) www.jawoollam.com 1500 1800 40 Multi-Layer Strategies Preferred Method #1 – Measure n,k from single-layers: use dispersion models. – Fit thickness only. – If poor fit, add dispersion parms. for least stable film. Film A Film B Film C Substrate Substrate Film B ©2014 J.A. Woollam Co., Inc. Film C Film A Substrate Substrate www.jawoollam.com 41 Multi-Layer Strategies Preferred Method #2 – Measure n,k for each “new” layer with previous layers fixed: use dispersion models. – If poor fit, add thickness and then dispersion parameters for previous layers. Film C Film B Film B Film A Film A Film A Substrate Substrate Substrate ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 42 Multilayer Fit Strategy Strategy #1: – Measure “n, k” from single layer samples. – Then, fit thicknesses only for multi-layers. Strategy #2: – Fix “n, k” for known layers. – Use dispersion or alloy models for unknown layers. Additional Strategy: – If same coating is repeated in stack, use same (coupled) optical constants for each. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 43 Repeated Layer Structures in WVASE WVASE32 allows user to very simply model repeated structures…“Superlattices”. – Thickness and optical constants automatically coupled in repeated layers. 4 3 2 1 0 gaas-ox (gaas) Coupled to #0 algaas x=0.350 algaas x=0.200 gaas ©2014 J.A. Woollam Co., Inc. 15 Å 200 Å 3000 Å 2000 Å 1 mm 5 www.jawoollam.com 44 6 Example_6_a-Si_on_SiO2_on_Si.dat Use tabulated n and k for Si and SiO2 Use Gen-Osc for the a-Si layer. – (a-Si.mat as reference) Fit thickness of layers Fit thickness and Gen-Osc Parameter of layers. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 45 Example 6: a-Si / SiO2 / Silicon Fit Thickness and All Oscillator Parameters 3 2 1 0 (sio2) Coupled to #1 genosc sio2 si_jaw 300 40 Model Fit Exp E 65° Exp E 70° Exp E 75° 200 D in degrees 30 in degrees 2.301 nm 374.234 nm 320.232 nm 1 mm Generated and Experimental Generated and Experimental 20 Model Fit Exp E 65° Exp E 70° Exp E 75° 100 0 10 0 300 MSE = 2.17 400 ©2014 J.A. Woollam Co., Inc. 500 600 Wavelength (nm) 700 800 900 -100 300 www.jawoollam.com 400 500 600 Wavelength (nm) 700 800 900 46 7 Example_7_TiO2 on SiO2 on Si.dat Nominal structure 30 nm TiO2 over 240 nm SiO2 on Silicon. Use reference n and k for Si substrate and SiO2. Use Cauchy equation for index of TiO2 ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 47 Example 7: TiO2/SiO2 on Si 2 cauchy 1 sio2_jaw 0 si_jaw MSE=2.776 Thick.1 Thick.2 An.2 Bn.2 Cn.2 29.991 nm 237.105 nm 1 mm Generated and Experimental 100 180 80 150 D in degrees in degrees Generated and Experimental 60 40 Model Fit Exp E 60° Exp E 65° Exp E 70° 20 0 300 600 ©2014 J.A. Woollam Co., Inc. 900 1200 Wavelength (nm) 237.105±0.101 29.991±0.114 2.0502±0.00239 0.028775±0.00131 0.0036188±0.000253 1500 120 90 Model Fit Exp E 60° Exp E 65° Exp E 70° 60 30 1800 0 300 www.jawoollam.com 600 900 1200 Wavelength (nm) 1500 1800 48 8 Example_8_SOI.dat Crystalline Si over SiO2 on Si (thickness unknown). Start by using reference n and k for all layers. Don’t forget surface oxide!! Bonus: Try Global fitting thickness. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 49 Example 8: SOI 3 2 1 0 (sio2) Coupled to #1 (si_jaw) Coupled to #0 sio2 si_jaw 2.682 nm 131.568 nm 393.074 nm 1 mm Generated and Experimental Generated and Experimental 60 300 Model Fit Exp E 45° Exp E 65° Model Fit Exp E 45° Exp E 65° 200 40 D in degrees in degrees 50 30 20 100 0 10 0 0 300 ©2014 J.A. Woollam Co., Inc. 600 900 Wavelength (nm) 1200 1500 1800 -100 0 www.jawoollam.com 300 600 900 Wavelength (nm) 1200 1500 1800 50 Summary Non-idealities Bandwidth Nonuniform thickness Angular spread Absorbing Films Opaque Films SE+Transmission Interference Enhancement Multilayer Films ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 51 Extra Slides The following slides provide additional details pertaining Generalized Ellipsometry and Mueller Matrix data. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 52 More Multilayer Examples Example_9A_ARC on Si.dat Example_9B_Photoresist on Si.dat Example_9C_Photoresist on ARC on Si.dat – Model single layers first, ARC and Photoresist. – Then fit thickness only in multilayer sample. – Try fitting thickness and oscillator parameters (Extra Credit). ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 53 Example 9A: ARC on Silicon AR Coating Generated and Experimental 100 Model Fit Exp E 60° Exp E 75° 1 ar coating-cauchy 0 si_jaw 1601.411 Å 1 mm in degrees 80 60 40 20 0 0 300 600 ARC Optical Constants 2.00 900 Wavelength (nm) 1200 1500 1800 Generated and Experimental 0.40 0.30 1.80 0.20 1.70 0.10 1.60 1.50 0 300 ©2014 J.A. Woollam Co., Inc. 600 900 Wavelength (nm) 1200 1500 Model Fit Exp E 60° Exp E 75° 150 D in degrees n k 1.90 Extinction Coefficient ' k' Index of Refraction ' n' 180 0.00 1800 www.jawoollam.com 120 90 60 30 0 0 300 600 900 Wavelength (nm) 1200 1500 1800 54 Example 9B: Photoresist on Si PhotoResist Generated and Experimental 100 Model Fit Exp E 60° Exp E 75° 1 photoresist-cauchy 0 si_jaw 6062.039 Å 1 mm in degrees 80 60 40 20 0 0 300 600 photoresist-cauchy Optical Constants 0.15 0.12 0.09 1.80 0.06 1.70 1.60 0 0.03 300 ©2014 J.A. Woollam Co., Inc. 600 900 Wavelength (nm) 1200 1500 1800 Generated and Experimental 1500 150 D in degrees n k 1.90 1200 180 Extinction Coefficient ' k' Index of Refraction ' n' 2.00 900 Wavelength (nm) 0.00 1800 www.jawoollam.com 120 Model Fit Exp E 60° Exp E 75° 90 60 30 0 0 300 600 900 Wavelength (nm) 1200 1500 1800 55 Example 9C : Photoresist on ARC Use Results from single layers. Build and fit 2 layer model. Fit both layer thicknesses. 2 photoresist 6129.155 Å 3110.700 Å 1 mm 1 ar coating 0 si_jaw Generated and Experimental Generated and Experimental 100 Model Fit Exp E 60° Exp E 75° 60 40 20 0 0 Model Fit Exp E 60° Exp E 75° 150 D in degrees in degrees 80 180 120 90 60 30 300 600 900 Wavelength (nm) 1200 1500 1800 0 0 300 600 900 Wavelength (nm) 1200 1500 1800 ARC film was twice the nominal value of 1600 Å! ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 56 Example 4C : Photoresist on ARC Resist and AR indices: – Very similar in visible and infrared. – VERY different in UV. UV data makes analysis possible! Optical Constants Optical Constants 0.40 ar coating photoresist 1.90 Extinction Coefficient ' k' Index of Refraction ' n' 2.00 1.80 1.70 1.60 1.50 0 300 ©2014 J.A. Woollam Co., Inc. 600 900 Wavelength (nm) 1200 1500 1800 ar coating photoresist 0.30 0.20 0.10 0.00 0 www.jawoollam.com 300 600 900 Wavelength (nm) 1200 1500 1800 57 Traditional Ellipsometry Measures change in polarization from complex ratio of output/input Electric Fields tan eiD in E out E p p Esout Esin 1. Known input polarization E p-plane s-plane 3. Measure output polarization p-plane E s-plane plane of incidence 2. reflect off sample ... ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 58 Based on Jones Matrix Notation… For Isotropic sample: ~ rp – where ~ rp E out p out E s 0 0 E inp in ~ rs Es ~ rs and are complex Fresnel reflection coefficients. tan eiD tan() ©2014 J.A. Woollam Co., Inc. ~ rp rp i p s ~ e in Es rs rs in E out E p p Esout rp rs D p s www.jawoollam.com 59 Stokes vector Describe any light beam as a vector of different polarized intensities 2 2 Eox Eoy S0 S1 Eox2 Eoy2 S S 2 2 Eox Eoy cos S3 2 Eox Eoy sin Total Intensity Horizontal – Vertical +45° – (-45°) Right Hand – Left Hand –( is the phase difference between Eox and Eoy): ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 60 Mueller Matrix Describes polarization change by mapping Stokes Vectors – Can describe Depolarization and Anisotropy Light in Light out S o _ out m11 S1_ out m21 S m 2 _ out 31 S m 3 _ out 41 ©2014 J.A. Woollam Co., Inc. m12 m13 m22 m23 m32 m33 m42 m43 www.jawoollam.com m14 S o _ in m24 S1_ in m34 S 2 _ in m44 S3 _ in 61 Mueller Matrix of sample For isotropic sample: 1 N M sample 0 0 N 0 1 0 0 C 0 S 0 0 S C N cos 2 C sin 2 sin D S sin 2 cos D P N 2 C2 S 2 %depolarization 1 P 100% ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 62 Generalized Ellipsometry... For Anisotropic Samples… pout rpp rsp pin s r r out ps ss sin Generalized Ellipsometry allows cross-terms 0 3 Ellipsometry Ratios instead of 1… – r pp i D tan() e AnE: rss tan( ps ) e – Aps: iD ps – Asp:tan(sp ) e iD sp ©2014 J.A. Woollam Co., Inc. r ps r pp rsp rss www.jawoollam.com 63 Anisotropic Mueller Matrix When sample is anisotropic and depolarizing. mm11 mm12 s1 mm s mm 21 22 2 mm31 mm32 s3 s 4 in mm41 mm42 mm13 mm23 mm33 mm43 mm14 s1 mm24 s 2 mm34 s3 mm44 s 4 out Anisotropy in off-diagonal blocks ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 64 MM elements measured? Figure from: Spectroscopic Ellipsometry: Principles and Applications by Hiroyuki Fujiwara (2007) ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 65 When is g-SE needed? Anisotropic materials “may” cause crosspolarization between pand s-. Off-diagonal elements only non-zero when optical axis misaligned with ellipsometer. Figure from: Spectroscopic Ellipsometry: Principles and Applications by Hiroyuki Fujiwara (2003) ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 66 Euler Angles The Euler Angles (f, , ) define the orientation of SAMPLE DIELECTRIC TENSOR relative to the LABORATORY Frame of reference. Laboratory frame of reference is defined by: sample surface (x-y plane) plane of incidence (x-z plane) Plane of incidence x Shown: (f, , ) = (0°, 0°, 0°) ©2014 J.A. Woollam Co., Inc. y z sample surface www.jawoollam.com 22 direction 11 direction 33 direction 67 Euler Angles (f, , ) 3 Euler Angle steps: 2) : rotate y’,z’ about sample x’ surface x y 1) f : rotate x,y about z x y sample surface 22 direction 33 direction 11 direction z z ” y ’ 22 y ” direction z f 11 direction 33 direction z z ’ 3) : rotate x”,y” about z” sample surface x ’ y ’ x ’ x y 22 direction 33 direction 11 direction z y ’ ’ ’ ©2014 J.A. Woollam Co., Inc. www.jawoollam.com y ” z ’ ’ ’ x ” x’ ’ ’ 68 Anisotropy - challenge MANY UNKNOWNS nx(l), ny(l), nz(l) Euler Angles: f, , ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 69 Anisotropic Substrates Anisotropic effects from substrate can be minimized by removing backside reflections. Hard coating Hard coating polycarbonate polycarbonate 20 20 in degrees in degrees Exp Data, 65° 16 12 16 12 8 8 Model Fit Exp Data, 65° 4 300 70 500 ©2014 J.A. Woollam Co., Inc. 700 Wavelength (nm) 900 1100 4 300 www.jawoollam.com 500 700 Wavelength (nm) 900 1100 70 Handling Substrates 1. 2. 3. 4. Roughen backside (lightly with sandpaper) Align with “specific” direction. Measure Pseudo-N Save Optical Constants as reference for future measurements with same alignment. OR Complete Characterization of substrate analyzing g-SE or MM data. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 71 G-VASE data acquisition strategies electric fields must probe both e & o Simultaneous analysis of multiple sample rotational orientations and incident angles For reflection-VASE, best if sample is “optically thick” (eliminates backside effects) In - p la n e s a m p le r o ta tio n T r a n s m is s io n E llip s o m e t r y In p u t L ig h t M u ltip le a n g le s o f in c id e n c e : n e g a tiv e & p o s it iv e ©2014 J.A. Woollam Co., Inc. www.jawoollam.com R e f le c t io n E llip s o m e t r y 72 ANISOTROPY What is Anisotropy? Building Anisotropic Models Uniaxial Thin Films? Extra slides: – Generalized SE and MM ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 73 Anisotropy Optically anisotropic material – A material that exhibits different optical properties depending on the polarization direction of light beam propagating through the material Beam C Beam B z Beam A y x ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 74 Anisotropic Materials Anisotropic crystalline materials – – – – Tetragonal, Hexagonal, Rhombohedral, … Crystalline organic chains Liquid crystals Sugars (chiral) Materials strained during processing – PET sheets, spin-on films Materials with preferred orientation growth – Certain columnar growth films ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 75 Origins of Anisotropy Mechanical depiction of Anisotropy, where the springs have different stiffness depending on direction ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 76 Electron Cloud Model Spherical -- light encounters same electron density regardless of direction Electron cloud Oxygen Molecule has different electron density with direction BUT: rotates at high speed and random ordering of large number of molecules Incident light Incident light ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 77 Anisotropic Material Requires Direction-dependent distribution of atomic or molecular properties Long-range alignment and confinement. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 78 Anisotropic Optical Phenomena Linear Birefringence – no ne Linear Dicroism – ko ke Circular Birefringencen k L, L – nL nR no, ko ne, ke nR, kR Circular Dicroism – kL kR ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 79 Angle of Refraction Birefringence 2 refraction angles – Probe beam splits upon entering sample p- & s- E-field components Refracted beam splits into two beams ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 80 Types of Anisotropy Figure from: Spectroscopic Ellipsometry: Principles and Applications by Hiroyuki Fujiwara (2003) ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 81 Modeling Anisotropy Right click on layer and choose ‘Add Uniaxial Anisotropy’ 0 Uniaxial -1 Nz (cauchy)/100% (dNz) -2 dNz -3 cauchy 1 mm 0 nm 0 nm 0 nm or ‘Add Biaxial Anisotropy’ 0 Biaxial -1 Ny (cauchy)/50% (dNxy) -2 Nx (cauchy)/-50% (dNxy) -3 dNxy -4 Nz (cauchy)/100% (dNz) -5 dNz -6 cauchy ©2014 J.A. Woollam Co., Inc. 1 mm 0 nm 0 nm 0 nm 0 nm 0 nm 0 nm www.jawoollam.com 82 Biaxial.mat layer Describe optical constants in 3 orthogonal directions To adjust optical constants, ‘couple’ to dummy layers below. ©2014 J.A. Woollam Co., Inc. 3 2 1 0 www.jawoollam.com biaxial cauchy2 cauchy si_jaw 637.22 nm 0 nm 0 nm 1 mm 83 Polymer on Si Isotropic Cauchy Fit MSE = 173.5 1 cauchy 0 si_jaw Generated and Experimental Generated and Experimental 100 300 60 40 200 D in degrees Model Fit Exp E 55° Exp E 65° Exp E 75° 80 in degrees 602.4 nm 1 mm 100 0 Model Fit Exp E 55° Exp E 65° Exp E 75° -100 20 -200 0 400 600 800 ©2014 J.A. Woollam Co., Inc. 1000 1200 Wavelength (nm) 1400 1600 1800 -300 400 www.jawoollam.com 600 800 1000 1200 Wavelength (nm) 1400 1600 1800 84 Polymer on Si Uniaxial Anisotropy Fit. 4 3 2 1 0 MSE < 21 Uniaxial Nz (cauchy)/100% (dNz) dNz cauchy si_jaw Generated and Experimental Generated and Experimental 300 100 200 Model Fit Exp E 55° Exp E 65° Exp E 75° 60 D in degrees in degrees 80 40 100 Model Fit Exp E 55° Exp E 65° Exp E 75° 0 -100 20 0 400 637.65 nm 0 nm 0 nm 0 nm 1 mm 600 800 ©2014 J.A. Woollam Co., Inc. 1000 1200 Wavelength (nm) 1400 1600 1800 -200 400 www.jawoollam.com 600 800 1000 1200 Wavelength (nm) 1400 1600 1800 85 Polymer Result biaxial Optical Constants Index of refraction ' n' 1.80 nx nz 1.75 1.70 1.65 1.60 1.55 400 ©2014 J.A. Woollam Co., Inc. 600 800 1000 1200 Wavelength (nm) www.jawoollam.com 1400 1600 1800 86 DEMONSTRATION Example 4-Polymer on Si Fit with Anisotropic Model. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 87 Uniqueness of Anisotropy Test for “uniqueness” of model from Fit Window. 70 60 50 MSE 40 30 20 10 0 -0.2 -0.15 -0.1 -0.05 0 Index Difference (A-parm) ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 88 How thin can we measure? Uniqueness Fit for 22nm Thin Film 25 20 MSE 15 10 5 0 -0.04 -0.02 0 0.02 0.04 Index Difference (Nz-Nx) ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 89 Example Example 5- low k on Si.dat” Fit data with “uniaxial” anisotropy. ©2014 J.A. Woollam Co., Inc. www.jawoollam.com 90 Low-K, Result Uniaxial Nz (cauchy)/100% (dNz) dNz cauchy si_jaw 1179.971 nm 0.000 nm 0.000 nm 0.000 nm 1 mm MSE=15 1.80 Generated and Experimental 100 Model Fit Exp E 60° Exp E 75° in degrees 80 60 40 20 0 300 nx nz 1.70 1.65 1.60 1.55 1.50 300 600 900 1200 Wavelength (nm) 1500 600 1800 Generated and Experimental 900 1200 Wavelength (nm) 1500 1800 Generated and Experimental 300 80 Model Fit Exp E 60° Exp E 75° 60 %Depolarization 200 D in degrees Uniaxial Optical Constants 1.75 Index of refraction ' n' 4 3 2 1 0 100 0 Model Fit Exp dpolE 60° Exp dpolE 75° 40 20 0 -100 300 91 600 ©2014 J.A. Woollam Co., Inc. 900 1200 Wavelength (nm) 1500 1800 -20 300 600 900 1200 Wavelength (nm) www.jawoollam.com 1500 1800 91
© Copyright 2025 Paperzz