Phase-field simulations of solidification structures Denis Danilov HS Karlsruhe HS Karlsruhe Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 1/20 Introduction: Real Structures Experimental solidification structures: Snowflakes and Frost http://www.its.caltech.edu/˜atomic/snowcrystals/ HS Karlsruhe Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 2/20 Real Structures Experimental solidification structures: Dendrites in transparent materials M. E. Glicksman organic material HS Karlsruhe J. H. Bilgram, ETH Zürich Xenon Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 3/20 Diffuse solid-liquid interface SOLID LIQUID ϕ=1 ϕ=0 interface thickness (MD) ∼ 10Å W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma. Annu. Rev. Mater. Res. 32 (2002) 163 HS Karlsruhe Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 4/20 Phase-field model – entropy functional S(e, c, ϕ) = Z 1 s(e, c, ϕ) − εa(∇ϕ) + ε w(ϕ) dx, 0.06 |∇ϕ| = 0 w(ϕ) |∇ϕ| ≠ 0 0.04 ϕ=1 0.02 |∇ϕ| = 0 ϕ=0 a(∇ϕ) = γ(∇ϕ)2 , HS Karlsruhe w(ϕ) = 9γg(ϕ), 0 0.2 0.4 0.6 0.8 1 ϕ g(ϕ) = ϕ2 (1 − ϕ)2 . Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 5/20 Phase-Field Model – evolution of phase field δS , ∂t ϕ ∼ δϕ 2 2ωε∂t ϕ = 2εγ∇ ϕ − 9γ ε g,ϕ (ϕ) − 1 T f,ϕ (c, ϕ), phase-field parameters: ε, γ, ω. – free energy density (T = const) 2 X 2 T − Ti RT X f (c, ϕ) = ci Li h(ϕ) + ci ln ci , Ti vm i=1 i=1 h(ϕ) = ϕ2 (3 − 2ϕ). HS Karlsruhe Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 6/20 Phase-Field Model – chemical potential µi = f,ci T − Ti RT = Li h(ϕ) + (ln ci + 1), Ti vm – mass fluxes Ji = 2 X j=1 Lij (c, ϕ) = vm R Di ci Lij ∇ −µj T , δij − P2 Dj cj k=1 Dk ck ! , c1 + c2 = 1. H. Garcke, B. Nestler, B. Stinner, A diffuse interface model for alloys with multiple components and phases, SIAM J. Appl. Math. 64(3) (2004) 775–799. HS Karlsruhe Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 7/20 Binary alloy Equilibrium phase diagram 1728 K liquid phase cL cS solid phase 1358 K Ni HS Karlsruhe 0.2 0.4 0.6 0.8 Cu Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 8/20 Binary alloy: Evolution equations – phase field (nonconserved field) ∂ϕ ∂t Λ(c, u) = (1 − c0 c) = ε2 L2 2 ∇ ϕ− 9 dg 2 dϕ − ε 2γ LA u + (T0 − TA )/TQ TA u + T0 /TQ Λ(c, u) + c0 c dh dϕ LB u + (T0 − TB )/TQ TB u + T0 /TQ – concentration field (conserved field) ∂c ∂t Θ(u) = HS Karlsruhe = ∇ D̄∇c − ∇ D̄c(1 − c0 c)∇(Θ(u)h(ϕ)) vm R D ε2 D̄ = ν L2 LA u + (T0 − TA )/TQ TA u + T0 /TQ − LB u + (T0 − TB )/TQ TB u + T0 /TQ Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 9/20 Different length scales Concentration profiles at different growth velocities 0.5 1.0 0.4 0.8 a 0.3 0.6 0.2 0.4 b 0.1 Phase field ϕ(0) Concentration c(1) ϕ(0) 0.2 c 0 HS Karlsruhe -2 -1 0 1 2 3 Coordinate ξ 4 5 6 0 Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 10/20 Adaptive grid spacing E= 1 X α phase−field 0.8 0.6 + EC Non−uniform adaptive mesh ∆ x2<∆ x1 ∆ x2 0 HS Karlsruhe −5 |∇cj |d2 + ET |∇T |d2 . ∆ x1 −10 X j 0.4 0.2 |∇φα |d2 0 x/ε 5 10 The cell will be refined if E > Emax and coarsened if E < Emin . √ By this choice, d ∼ 1/ E. Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 11/20 FEM: phase field and concentration field phase field HS Karlsruhe concentration field Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 12/20 FEM: Adaptive grid | ←− HS Karlsruhe L −→ | L ∆xmin = 2048 Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 13/20 Anisotropy of the interface gradient energy a(∇ϕ) = γ(1 + δγ cos β)(∇ϕ)2 δγ = 0 HS Karlsruhe δγ = 0.04 Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 14/20 Noise driving force → (1 + αr)× driving force, −1 < r < +1 δγ = 0, α = 0.25 HS Karlsruhe δγ = 0.04, α = 0.25 Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 15/20 Further examples ∼80 h (AMD Opteron) 10000 time steps 637 → 1140883 active cells L ∆xmin HS Karlsruhe = 8192 Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 16/20 Further examples 1 805 380 active cells 9000 time steps, HS Karlsruhe 1 862 719 active cells L ∆xmin = 4096 Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 17/20 Further examples 70 % of computational time 60 50 40 30 20 Matrix & RHS Linear Solver Grid Refinement 10 0 0 5e+05 1e+06 1.5e+06 2e+06 Number of active cells HS Karlsruhe Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 18/20 Further examples 4600 time steps 1303 → 347992 active cells L ∆xmin HS Karlsruhe = 256 Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 19/20 Features request ■ ■ ■ Periodic boundary conditions. Output to binary OpenDX-files. Platform-independent binary format in Vector<Number>::block_write/block_read. HS Karlsruhe Deal.II User Workshop, 3-5.01.2006, Heidelberg, p. 20/20
© Copyright 2025 Paperzz