Formula Sheet

Formula Sheet
Vectors: Ax = Acosθ ; Ay = Asinθ; A = Ax2  Ay2
 Ay
 Ax
;   tan 1 


 
 ; A  Ax i  Ay j

One dimensional motion with constant acceleration
v  v0  at ; x  x 0  v 0 t 
1
2
at 2 ; v 2  v02  2ax 
Free-Fall
v v 0  gt ; y  y0  v0t 
1 2
gt ; v 2  v02  2 g (y )
2
Projectile Motion
x  v0 x t ;
R
v y2  v 2 0 y
1 2
y  v0 y t  gt ; v y  v0 y  gt ; y 
2
 2g
v02 sin 2
g
;
y  tan  x 
gx 2
2v0 cos 
Constants and Trigonometry
C
B
g = 9.8 m/s
2

A
B
sin  =
C
A
cos  =
C
B
tan  =
A
C=
A2 + B 2
Motion in a Straight Line
 =  0 + at
x - x0 =  0 t +
1 2
at
2
 2   0 2  2a ( x - x 0 )
Page 1/3
Force and Motion


Newton Laws: Fnet  ma


Fnet   Fi
all
Fnet, x  ma x
Fnet, y  ma y
Fg  mg
Gravitational force:
fs  s N
Force of static friction:
Force of kinetic friction:
f s ,max   s N
fk  k N
Uniform Circular Motion
Centripetal acceleration:
Centripetal force:
Fc  m
ac 
v2
r
v2
r
Work
 

W  F  d  F d cos
Work-Energy Theorem Wtot =Kf -Ki
Kinetic Energy K = 1/2mv2
Power P = W/∆t = F.v
Potential Energy for gravity Ug = mg (y-y0 )
Potential Energy for spring: Us =
1 2
kx
2
Mechanical Energy Em =U + K
Conservation of Mechanical Energy: ∆Em = ∆U + ∆K
Work Done by non-conservative forces: Wnc = Em,f –Em,I
Page 2/3
Momentum and Impulse


p  mv
 



I  Ft  p  mv f  mvi
Conservation of momentum




m1v1i  m2v2i  m1v1 f  m2v2 f
Collisions
Elastic Collision
m1v1i  m2v2i  m1v1 f  m2v2 f
1
1
1
1
2
m1v1i  m2v22i  m1v12f  m2v22 f
2
2
2
2
v1i  v2i  v1 f  v2 f 
Perfectly inelastic collision
m1v1i  m2v2i  m1  m2 v f
Page 3/3