ASCIIMathJax: Simple ASCII math notation

ASCIIMathJax: Simple ASCII math notation
Thanks to MathJax, ASCIIMath now works in most browsers
To see this
Type that
Comment
34
x2 + y1 + z12
`x^2+y_1+z_12^34`
subscripts as in TeX, but numbers are treated
as a unit
sin−1 (x)
`sin^-1(x)`
function names are treated as constants
f(x + h) − f(x)
d
f(x) = lim
h→0
dx
h
`d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h`
complex subscripts are bracketed, displayed
under lim
$\frac{d}{dx}f(x)=\lim_{h\to
0}\frac{f(x+h)-f(x)}{h}$
standard LaTeX notation is an alternative
`f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n`
f^((n))(a) must be bracketed, else the
numerator is only a
$f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(a)}{n!}
(x-a)^n$
standard LaTeX produces the same result
`int_0^1f(x)dx`
subscripts must come before superscripts
`[[a,b],[c,d]]((n),(k))`
matrices and column vectors are simple to type
`x/x={(1,if x!=0),(text{undefined},if x=0):}`
piecewise defined functions are based on
matrix notation
a/b
`a//b`
use // for inline fractions
a
b
c
d
`(a/b)/(c/d)`
with brackets, multiple fraction work as
expected
a c
/
b d
`a/b/c/d`
without brackets the parser chooses this
particular expression
`((a*b))/c`
only one level of brackets is removed; * gives
standard product
`sqrt sqrt root3x`
spaces are optional, only serve to split strings
that should not match
`<< a,b >> and {:(x,y),(u,v):}`
angle brackets and invisible brackets
(a, b] = {x ∈ R|a < x ≤ b}
`(a,b]={x in RR | a < x <= b}`
grouping brackets don't have to match
abc − 123.45−1.1
`abc-123.45^-1.1`
non-tokens are split into single characters, but
decimal numbers are parsed with possible sign
. ..
ˆ¯xy
⃗
¯¯¯−
ab
A
−vxy
`hat(ab) bar(xy) ulA vec v dotx ddot y`
accents can be used on any expression (work
well in IE)
AB3. AB. A B. AB. AB. AB
`bb{AB3}.bbb(AB].cc(AB).fr{AB}.tt[AB].sf(AB)`
font commands; can use any brackets around
argument
`stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=)`
symbols can be stacked
`{::}_(\ 92)^238U`
prescripts simulated by subsuperscripts
d
dx
f(x) = limh→0
∞
f(x) = ∑
f
n=0
f(x) = ∑∞
n=0
∫
1
0
[
f(x+h)−f(x)
h
(n)
(a)
(x − a)n
n!
f (n) (a)
n!
(x − a)n
f(x)dx
a b
n
]( )
c d
k
x
1
={
x
undefined
if x ≠ 0
if x = 0
(a ⋅ b)
c
−−−
−
−−
−−
3
x
√√√
⟨a, b⟩ and
def
=
Δ
or =
238
92 U
x y
u v
(or :=)
If you are familiar with MathML, you can appreciate that this ASCII input form is less verbose and more readable. If you are familiar with
LaTeX, this is still somewhat less cluttered. ASCIIMath input notation is close to graphing calculator notation, so that it can be used on
webpages, emails and in computer algebra systems without having to learn another specialized syntax. Here is a list of all symbols:
Operations
Relations
Type See
Type See
Logical
Miscellaneous
Functions
Greek
Arrows
Type
See
↑
alpha
α
darr
↓
beta
β
tan
rarr
→
chi
χ
Type
See
Type
See
Type
See
Type See
int
∫
sin
sin
uarr
cos
cos
tan
+
+
=
=
and
and
-
−
!=
≠
or
or
*
⋅
<
<
not
¬
oint
∮
**
⋆
>
>
=>
⇒
del
∂
csc
csc
->
→
delta
δ
//
/
<=
≤
if
if
grad
∇
sec
sec
|->
↦
epsilon
ε
\\
\
>=
≥
iff
⇔
+-
±
cot
cot
larr
←
eta
η
xx
×
-<
≺
AA
∀
O/
∅
sinh
sinh
harr
↔
gamma
γ
-:
÷
>-
≻
EE
∃
oo
∞
cosh cosh
rArr
⇒
iota
ι
@
∘
in
∈
_|_
⊥
aleph
ℵ
tanh tanh
lArr
⇐
kappa
κ
o+
⊕
!in
∉
TT
⊤
/_
∠
log
log
hArr
⇔
lambda
λ
ox
⊗
sub
⊂
|--
⊢
:.
ln
ln
mu
μ
o.
⊙
sup
⊃
|==
⊨
∴
|...|
|...|
det
det
nu
ν
|cdots|
|⋯|
dim
omega
ω
vdots
⋮
lim
phi
φ
varphi
ϕ
pi
π
psi
ψ
sum ∑
prod ∏
^^
^^^
vv
vvv
nn
nnn
uu
uuu
∧
⋀
∨
⋁
∩
⋂
∪
⋃
sube
supe
-=
⊆
Brackets
⊇
Type See
≡
(
ddots
⋱
dim
Type
See
lim
Delta
Δ
mod
Gamma
Γ
gcd
gcd
Lambda
Λ
lcm
lcm
Omega
Ω
min
min
Phi
Φ
ρ
max
Π
rho
Pi
sigma
Ψ
σ
Psi
τ
Sigma
Σ
tau
θ
Theta
Θ
theta
υ
Xi
Ξ
upsilon
xi
ξ
zeta
ζ
mod
~=
≅
(
~~
≈
)
)
|\ |
||
∝
[
[
|quad|
| |
]
]
diamond
⋄
{
{
square
□
}
}
|__
⌊
Fonts
<<
⟨
__|
⌋
Type See
⟩
|~
⌈
bb A
A
prop
Accents
Type See
max
hat x
x̂
bar x
x̄
>>
ul x
{:
~|
⌉
bbb A
:}
CC
C
A
vec x
x
−
x⃗
cc A
A
dot x
x
tt A
A
fr A
A
sf A
A
ddot x
.
..
x
NN
QQ
RR
ZZ
N
Q
R
Greek
Z
Peter Jipsen --- February 2014 --- Chapman University