8/7/2012 SIMPLE SOLID REGIONS Section 16.9 The Divergence Theorem AregionE iscalledasimplesolidregion ifit issimultaneouslyoftypes1,2,and3.(For example,regionsboundedbyellipsoidsor rectangularboxesaresimplesolidregions.) NotethattheboundaryofE isaclosed surface.Weusetheconventionthatthe positiveorientationisoutward,thatis,the unitnormalvectorn isdirectionoutward fromE. THE DIVERGENCE THEOREM LetE beasimplesolidregionandletS bethe boundarysurfaceofE,givenwithpositive(outward) orientation.LetF beavectorfieldwhosecomponent functionshavecontinuouspartialderivativesona openregionthatcontainsE.Then ⋅ EXAMPLES 1. LetE bethesolidregionboundedbythecoordinate planesandtheplane2 2 6,andlet .Find ⋅ whereS isthesurfaceofE. div 2. LetE bethesolidregionbetweentheparaboloid NOTE:Thetheoremissometimesreferredtoas Gauss’sTheorem orGauss’sDivergenceTheorem. 4 andthe ‐plane.VerifytheDivergenceTheoremfor , , AN EXTENSION EXAMPLES (CONTINUED) 3. LetE bethesolidboundedbythecylinder 4,theplane 6,andthe ‐ plane,andletn betheouterunitnormaltothe boundaryS ofE.If , , sin findthefluxofF acrossE. cos 2 TheDivergenceTheoremalsoholdsforasolid withholes,likeaSwisscheese,providedwe alwaysrequiren topointawayfromthe interiorofthesolid. Example:Compute∬ ⋅ if , , 2 andS isthe boundaryE isthesolidcylindricalshell 1 4, 0 2 1 8/7/2012 FLUID FLOW FLUID FLOW (CONTINUED) Let , , bethevelocityfieldofafluidwith constantdensityρ.Then istherateof flowperunitarea.If , , isapointin thefluidflowand isaball(sphere)with centerP0 andverysmallradiusa,then div div forallpointP in since divF iscontinuous. Weapproximatethefluxovertheboundary sphere asfollows: ⋅ div div div FLUID FLOW (CONCLUDED) Theapproximationbecomesbetteras → 0 and suggeststhat div lim → 1 ⋅ Thisequationsaysthatdiv isthenetrateof outwardfluxperunitvolumeatP0.Thisisthereason forthenamedivergence.IfdivF >0,thenetflowis outwardnearP andP iscalledasource.IfdivF <0, thenetflowisinwardnearP andP iscalledasink. 2
© Copyright 2026 Paperzz