MATH1130: Calculus II Exercise Sheet 5: Limits, derivatives and integrals of vector functions Please hand solutions in at the lecture on Tuesday 2nd March. 1.) Let r : R → R3 be defined by r(t) = sin(t) 2 , cos(t), 3 t . t Evaluate the following limits. (a) limt→π r(t) (b) limt→1 r(t) (c) limt→0 r(t) 2.) Discuss the continuity of each of the following functions (a) r(t) = (t2 + 1, cos(2 t), sin(3 t)) √ (b) r(t) = t + 1, tan(t) √ (c) r(t) = t21−1 , 1 − t2 , 1t (d) r(t) = cos(4 t), 1 − √ 3 t + 1, sin(5 t), sec(t) 3.) Find the derivative of each of the following functions. (a) r(t) = (t3 , t, 2 t + 4) (b) r(t) = (3 t cos(2 t), 4 t sin(2 t)) (c) r(t) = (4 t3 − 3, sin(t), e−2 t ) (d) r(t) = (e−t sin(3 t), e−t cos(3 t), t e−t ) d For (b) compare dt kr(t)k and kr 0 (t)k. For (d) let f (t) = e−t and p(t) = (sin(3 t), cos(3 t), t) and verify that df (t) · p(t) + f (t) · dp (t). dt dt d dt (f (t) · p(t)) = Please turn over! 4.) Evaluate the following integrals. R1 (a) −1 r(t) dt where r(t) = (t, −t e−t ). (b) R2 (c) R2 1 1 r(t) dt where r(t) = r(t) dt where r(t) = √ t . √1 , − t3 1 , −t t √ t2 + 1, (t − 1) sin(t/2) .
© Copyright 2026 Paperzz