5.2 Verifying Trigonometric Identities 2 sec x ! 1 2 = sin x 2 sec x 2 sec x 1 ! = 2 2 sec x sec x 1 - cos2 x = sin2 x = sin2 x Place sec2 x under both terms. 1 1 - sin x + 1 1 + sin x = 2 sec2 x 1 + sin x + 1 ! sin x = (1 ! sin x )(1 + sin x ) 2 = 2 1 ! sin x 2 = 2 cos x 2 2 2 sec x = 2 sec x (tan2 x + 1)(cos2 x - 1) = -tan2 x (sec2 x)(-sin2 x) = 2 sin x ! = 2 cos x 2 2 ! tan x = ! tan x tan x + cot x = sec x csc x sin x cos x + = cos x sin x Get common denominators. sin 2 x + cos 2 x = cos x sin x 1 = cos x sin x sec x cscx = sec x csc x cos y sec y + tan y = 1 ! sin y 1 sin y + = cos y cos y 1+ sin y cos y & 1 ' sin y # $$ !! = % 1 ' sin y " 1 ! sin 2 y = cos y (1 ! sin y ) cos y cos y cos y = cos y (1 ! sin y ) 1 ! sin y 2 We need a (1 – sin y) in the denominator so let’s put one there. cot 2 x 1 ! sin x = 1 + csc x sin x 2 csc x ! 1 = 1 + csc x (csc x ! 1)(csc x + 1) = 1 + csc x csc x – 1 = 1 1! sin x !1 = sin x sin x tan4 x = tan2 x sec2 x - tan2 x (tan2 x)(tan2 x) = Look at the right side. How can we break up tan4 x? tan2 x(sec2 x - 1) = tan2 x sec2 x - tan2 x = tan2 x sec2 x - tan2 x
© Copyright 2026 Paperzz