Gini and Stolarsky means in geometric problems Alfred Witkowski University of Technology and Life Sciences, Bydgoszcz, Poland CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary What is n-frustum? Truncated cone with n-dimensional object as its base: Trapezoid is an 1-frustum El Castillo in Chichen Itza is a 2-frustum CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Problem How does the n-volume of selected horizontal sections (s) depend on n-volumes of its bases (x,y). Case n=1 was considered by Howard Eves in Means Appearing in Geometric Figures, Math. Magazine, 76, 4, (2001), 292-294 x s y π₯π + π¦π πΊ π, π ; π₯, π¦ = π π₯ + π¦π 1 (πβπ ) π π₯π β π¦π πΈ π, π ; π₯, π¦ = β π π₯π β π¦π 1 (πβπ ) CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Cylinder with the same (n+1)-volume and height x s y s Formula discovered (in case n=2) in 50 BC by Heron of Alexandria, thatβs why we call them Heronian means. CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Frusta of equal (n+1)-volumes x x s s y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary s y Equal heights x x s s ` s y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary y x Similar frusta x s s s y y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Equal lateral volume x x s s s y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary y Centroid (center of mass of solid frustum) x s y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Center of mass of bases (or βinnerβ cones of equal (n+1)-volume) x x s s y y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Similar βinnerβ cones (or intersection of βdiagonalsβ) x x s y y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Lagrangean point Point where gravitational attraction of x cancels that of y x s y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary (n+1)- volume of frustum equals sum of (n+1)-volumes of cylinders x s y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Cylinders of equal lateral volume x s y CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Order of means (n>3) n>3 Lagrangean point Similar inner cones Similar frusta Equal heights Cylinder of the same volume Vol two cylinders=vol frustum Centroid Frusta of equal lateral vol. Frusta of equal volume Equal lateral vol of cylinders Centers of masses CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Order of means (n=3) n=3 Lagrangean point Similar inner cones Similar frusta Equal heights Cylinder of the same volume Vol two cylinders=vol frustum Frusta of equal lateral vol. Centroid Frusta of equal volume Equal lateral vol of cylinders Centers of masses CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Order of means (n=2) n=2 Similar inner cones Lagrangean point Similar frusta Equal heights Cylinder of the same volume Vol two cylinders=vol frustum Frusta of equal lateral vol. Centroid Frusta of equal volume Equal lateral vol of cylinders Centers of masses CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Order of means (n=1) n=1 Similar inner cones Similar frusta Lagrangean point Equal heights Cylinder of the same volume Frusta of equal lateral vol. Vol two cylinders=vol frustum Equal lateral vol of cylinders Centroid Frusta of equal volume Centers of masses CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary Homework CIA'10, September 19--25, 2010; Hajdúszoboszló, Hungary
© Copyright 2026 Paperzz