80/160-GHz Transceiver and 140GHz Amplifier in SiGe Technology Ekaterina Laskin1, Pascal Chevalier2, Alain Chantre2, Bernard Sautreuil2, Sorin Voinigescu1 cUniversity of Toronto dSTMicroelectronics Paper RMO2C-5 Monday June 4, 2007 Outline Motivation Transceiver overview Circuit blocks Passives Measurement setup and results Conclusions and future work June 4, 2007 Paper RMO2C-5 Page 2/22 Motivation High resolution imaging transceiver More information about the object due to different absorption in 80 & 160 GHz bands Possible astronomy imaging applications ALMA† band 3: 84 - 116 GHz ALMA band 4: 125 - 163 GHz Possible dental imaging applications † Atacama Large Millimetre Array Radio Telescope project June 4, 2007 Paper RMO2C-5 Page 3/22 Transceiver Overview Transmit and receive in 80- and 160-GHz bands June 4, 2007 Paper RMO2C-5 Page 4/22 80/160-GHz Oscillator 4 coupled Colpitts oscillators Differential @ 160 GHz, Quadrature @ 80 GHz June 4, 2007 Paper RMO2C-5 peak-fT bias 70mA, 3.3V Page 5/22 160-GHz Mixer Double-balanced Gilbert cell topology On-chip transformers employed at LO and RF June 4, 2007 Paper RMO2C-5 peak-fT bias 15mA, 3.3V Page 6/22 140-GHz Amplifier Cascodes Æ gain, CE stages Æ output power At 140GHz RE+RB≈50Ω Æ No input degeneration June 4, 2007 Paper RMO2C-5 Page 7/22 140-GHz Amplifier Degeneration in 2nd stage for interstage matching Ratioed inductors and split loads for gain control Biased at peak-fT for max power transfer June 4, 2007 Paper RMO2C-5 Page 8/22 160-GHz Transformer Top 2 metal layers of a standard backend Optimized for lowest loss at 160 GHz 2-pi model used includes substrate model 2.5 µm width P1+ 3.6pH 20pH 0.6Ω k=0.75 0.6Ω 20pH 3.6pH k=0.75 P2+ P23.5pH 20 µm June 4, 2007 P1- 22pH 0.38Ω 0.38Ω 22pH 3.5pH model from ASITIC Paper RMO2C-5 Page 9/22 Transformer Meas. vs. Sims June 4, 2007 Paper RMO2C-5 Page 10/22 Fabrication 180 µm 270 µm STM 130nm SiGe HBT with BiCMOS9 backend fT=230 GHz, fMAX=300 GHz, + process splits 340 µm 270 µm June 4, 2007 Paper RMO2C-5 Page 11/22 80/160-GHz Transceiver 650 µm 700 µm June 4, 2007 Paper RMO2C-5 Page 12/22 Measurement Setup June 4, 2007 Paper RMO2C-5 Page 13/22 Results - Oscillator Breakout 80-GHz Output: 160-GHz Output: -110.4 dBc/Hz @ 10MHz offset low-noise power supply losses not deembedded June 4, 2007 Page 14/22 improper bias (60 mA)Paper RMO2C-5 Transmitter Output Power TX Frequency (GHz) Single-ended TX power increases with VCC Measured using the power sensor 165 -5 164 -10 163 -15 162 -20 161 -25 160 -30 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 TX Output Power (dBm) 4 VCC (V) June 4, 2007 Paper RMO2C-5 Page 15/22 Results - Receiver -5 Conversion Gain (dB) -10 2nd harmonic 160.5 GHz -15 -20 -25 fundamental 82.3 GHz -30 Measured Simulated -35 -40 60 June 4, 2007 80 100 120 140 RF Frequency ( GHz) Paper RMO2C-5 160 180 Page 16/22 Amplifier - Measured vs. Sim S21, S11, S22 (dB) 30 20 simulation die 1 die 2 die 3 PSA P. Sensor S21 10 0 S11 -10 -20 S22 -30 80 June 4, 2007 105 130 155 180 Frequency (GHz) Paper RMO2C-5 205 230 Page 17/22 Amplifier Over Temperature Nominal wafer, measured using power sensor 25 20 Gain (dB) 15 10 5 25°C 50°C 75°C 100°C 125°C 0 -5 -10 -15 110 June 4, 2007 120 130 140 150 Frequency (GHz) Paper RMO2C-5 160 170 Page 18/22 Amplifier Process Splits Same die location on 14 wafers with varied fT/fMAX 25 20 wafer 05E7 wafer 07D5 wafer 06E2 wafer 03G1 wafer 02G6 wafer 25F6 wafer 20B4 wafer 19A7 wafer 18B4 wafer 15D3 wafer 14E0 wafer 12F2 wafer 07H1 wafer 04B5 nominal Gain (dB) 15 10 5 0 -5 -10 110 June 4, 2007 120 130 140 Frequency (GHz) Paper RMO2C-5 150 Page 19/22 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 S21 (dB) 25 23 21 19 17 15 13 11 9 7 5 S21 @ 130 GHz P1dB @ 130 GHz -40 June 4, 2007 -35 -30 -25 -20 Pin (dBm) Paper RMO2C-5 -15 Pout (dBm) Amplifier Linearity - 130GHz -10 Page 20/22 Conclusions First 80/160 GHz imaging transceiver First oscillator with a differential signal at 160GHz, -10 dBm output power First 140-GHz amplifier in silicon with gain > 15 dB, Psat = +1dBm Highest frequency monolithic transformer designed and verified up to 180 GHz June 4, 2007 Paper RMO2C-5 Page 21/22 Acknowledgements CITO, NSERC for funding STMicroelectronics for fabrication ECTI, CFI, OIF for equipment Jaro Pristupa and CMC for CAD support June 4, 2007 Paper RMO2C-5 Page 22/22 Extra Slides June 4, 2007 Paper RMO2C-5 Page 23/22 Inductor Design and Modeling 44-pH inductor for the oscillator tank Shunted top metals for low loss Designed using ASITIC, SRF > 400 GHz metal 6 + alucap metal 5 June 4, 2007 Paper RMO2C-5 Page 24/22 70 2.1 60 1.8 50 1.5 40 1.2 30 0.9 20 0.6 10 0.3 0 0.0 0 June 4, 2007 10 20 30 Frequency (GHz) 40 Paper RMO2C-5 R (Ohm) L (pH), Qeff Inductor Model Verification Q R L 2-pi model measured asitic 50 Page 25/22 Measurement Setup On-wafer with waveguide probes ×12 multiplier signal source Æ harmonics PSA+mixer or power sensor at output June 4, 2007 Paper RMO2C-5 Page 26/22 Measurement Setup Multiplier produces harmonics of input frequency Power sensor integrates power of all harmonics PSA allows reading power of only one harmonic Example measurement at 156 GHz: input spectrum from ×12: 117 130 143 156 169 amplifier: output spectrum: Power sensor reading includes amplified signals June 4, 2007 Paper RMO2C-5 Page 27/22 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 S21 (dB) 25 23 21 19 17 15 13 11 9 7 5 S21 @ 135 GHz P1dB @ 135 GHz -40 June 4, 2007 -35 -30 -25 -20 Pin (dBm) Paper RMO2C-5 -15 Pout (dBm) Amplifier Linearity - 135GHz -10 Page 28/22 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 S21 (dB) 25 23 21 19 17 15 13 11 9 7 5 S21 @ 140 GHz P1dB @ 140 GHz -40 June 4, 2007 -35 -30 -25 -20 Pin (dBm) Paper RMO2C-5 -15 Pout (dBm) Amplifier Linearity - 140GHz -10 Page 29/22 Amplifier Measurements Zoom to 1MHz BW, 100 averages calibration thru June 4, 2007 amplifier Paper RMO2C-5 Page 30/22 Results - Transmitter 80-GHz Output: 160-GHz Output: -100.5 dBc/Hz @ 10MHz offset low-noise power supply losses not deembedded improper bias (60 mA)Paper RMO2C-5 June 4, 2007 Page 31/22
© Copyright 2026 Paperzz