80/160-GHz Transceiver and 140- GHz Amplifier in SiGe Technology

80/160-GHz Transceiver and 140GHz Amplifier in SiGe Technology
Ekaterina Laskin1, Pascal Chevalier2, Alain
Chantre2, Bernard Sautreuil2, Sorin Voinigescu1
cUniversity of Toronto
dSTMicroelectronics
Paper RMO2C-5
Monday June 4, 2007
Outline
„
„
„
„
„
„
Motivation
Transceiver overview
Circuit blocks
Passives
Measurement setup and results
Conclusions and future work
June 4, 2007
Paper RMO2C-5
Page 2/22
Motivation
„
„
„
High resolution imaging transceiver
More information about the object due to different
absorption in 80 & 160 GHz bands
Possible astronomy imaging applications
„
„
„
ALMA† band 3: 84 - 116 GHz
ALMA band 4: 125 - 163 GHz
Possible dental imaging applications
†
Atacama Large
Millimetre Array
Radio Telescope
project
June 4, 2007
Paper RMO2C-5
Page 3/22
Transceiver Overview
„
Transmit and receive in 80- and 160-GHz bands
June 4, 2007
Paper RMO2C-5
Page 4/22
80/160-GHz Oscillator
„
„
4 coupled Colpitts oscillators
Differential @ 160 GHz, Quadrature @ 80 GHz
„
„
June 4, 2007
Paper RMO2C-5
peak-fT bias
70mA, 3.3V
Page 5/22
160-GHz Mixer
„
„
Double-balanced Gilbert cell topology
On-chip transformers employed at LO and RF
„
„
June 4, 2007
Paper RMO2C-5
peak-fT bias
15mA, 3.3V
Page 6/22
140-GHz Amplifier
„
„
Cascodes Æ gain, CE stages Æ output power
At 140GHz RE+RB≈50Ω Æ No input degeneration
June 4, 2007
Paper RMO2C-5
Page 7/22
140-GHz Amplifier
„
„
„
Degeneration in 2nd stage for interstage matching
Ratioed inductors and split loads for gain control
Biased at peak-fT for max power transfer
June 4, 2007
Paper RMO2C-5
Page 8/22
160-GHz Transformer
„
„
„
Top 2 metal layers of a standard backend
Optimized for lowest loss at 160 GHz
2-pi model used includes substrate model
2.5 µm width
P1+
3.6pH
20pH
0.6Ω
k=0.75
0.6Ω
20pH
3.6pH
k=0.75
P2+
P23.5pH
20 µm
June 4, 2007
P1-
22pH 0.38Ω
0.38Ω 22pH
3.5pH
model from ASITIC
Paper RMO2C-5
Page 9/22
Transformer Meas. vs. Sims
June 4, 2007
Paper RMO2C-5
Page 10/22
Fabrication
„
180 µm
270 µm
„
STM 130nm SiGe HBT with BiCMOS9 backend
fT=230 GHz, fMAX=300 GHz, + process splits
340 µm
270 µm
June 4, 2007
Paper RMO2C-5
Page 11/22
80/160-GHz Transceiver
650 µm
700 µm
June 4, 2007
Paper RMO2C-5
Page 12/22
Measurement Setup
June 4, 2007
Paper RMO2C-5
Page 13/22
Results - Oscillator Breakout
80-GHz Output:
160-GHz Output:
-110.4 dBc/Hz @
10MHz offset
low-noise power supply losses not deembedded
June 4, 2007
Page 14/22
improper
bias (60 mA)Paper RMO2C-5
Transmitter Output Power
TX Frequency (GHz)
„
Single-ended TX power increases with VCC
Measured using the power sensor
165
-5
164
-10
163
-15
162
-20
161
-25
160
-30
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
TX Output Power (dBm)
„
4
VCC (V)
June 4, 2007
Paper RMO2C-5
Page 15/22
Results - Receiver
-5
Conversion Gain (dB)
-10
2nd harmonic
160.5 GHz
-15
-20
-25
fundamental
82.3 GHz
-30
Measured
Simulated
-35
-40
60
June 4, 2007
80
100
120
140
RF Frequency ( GHz)
Paper RMO2C-5
160
180
Page 16/22
Amplifier - Measured vs. Sim
S21, S11, S22 (dB)
30
20
simulation
die 1
die 2
die 3
PSA
P. Sensor
S21
10
0
S11
-10
-20
S22
-30
80
June 4, 2007
105
130
155
180
Frequency (GHz)
Paper RMO2C-5
205
230
Page 17/22
Amplifier Over Temperature
„
Nominal wafer, measured using power sensor
25
20
Gain (dB)
15
10
5
25°C
50°C
75°C
100°C
125°C
0
-5
-10
-15
110
June 4, 2007
120
130
140
150
Frequency (GHz)
Paper RMO2C-5
160
170
Page 18/22
Amplifier Process Splits
„
Same die location on 14 wafers with varied fT/fMAX
25
20
wafer 05E7
wafer 07D5
wafer 06E2
wafer 03G1
wafer 02G6
wafer 25F6
wafer 20B4
wafer 19A7
wafer 18B4
wafer 15D3
wafer 14E0
wafer 12F2
wafer 07H1
wafer 04B5
nominal
Gain (dB)
15
10
5
0
-5
-10
110
June 4, 2007
120
130
140
Frequency (GHz)
Paper RMO2C-5
150
Page 19/22
2
0
-2
-4
-6
-8
-10
-12
-14
-16
-18
S21 (dB)
25
23
21
19
17
15
13
11
9
7
5
S21 @ 130 GHz
P1dB @ 130 GHz
-40
June 4, 2007
-35
-30
-25
-20
Pin (dBm)
Paper RMO2C-5
-15
Pout (dBm)
Amplifier Linearity - 130GHz
-10
Page 20/22
Conclusions
„
„
„
„
First 80/160 GHz imaging transceiver
First oscillator with a differential signal at
160GHz, -10 dBm output power
First 140-GHz amplifier in silicon with gain
> 15 dB, Psat = +1dBm
Highest frequency monolithic transformer
designed and verified up to 180 GHz
June 4, 2007
Paper RMO2C-5
Page 21/22
Acknowledgements
„
„
„
„
CITO, NSERC for funding
STMicroelectronics for fabrication
ECTI, CFI, OIF for equipment
Jaro Pristupa and CMC for CAD support
June 4, 2007
Paper RMO2C-5
Page 22/22
Extra Slides
June 4, 2007
Paper RMO2C-5
Page 23/22
Inductor Design and Modeling
„
„
„
44-pH inductor for the oscillator tank
Shunted top metals for low loss
Designed using ASITIC, SRF > 400 GHz
metal 6 +
alucap
metal 5
June 4, 2007
Paper RMO2C-5
Page 24/22
70
2.1
60
1.8
50
1.5
40
1.2
30
0.9
20
0.6
10
0.3
0
0.0
0
June 4, 2007
10
20
30
Frequency (GHz)
40
Paper RMO2C-5
R (Ohm)
L (pH), Qeff
Inductor Model Verification
Q
R
L
2-pi model
measured
asitic
50
Page 25/22
Measurement Setup
„
„
„
On-wafer with waveguide probes
×12 multiplier signal source Æ harmonics
PSA+mixer or power sensor at output
June 4, 2007
Paper RMO2C-5
Page 26/22
Measurement Setup
„
„
„
„
Multiplier produces harmonics of input frequency
Power sensor integrates power of all harmonics
PSA allows reading power of only one harmonic
Example measurement at 156 GHz:
input spectrum from ×12:
117 130 143 156 169
amplifier:
output spectrum:
„
Power sensor reading includes amplified signals
June 4, 2007
Paper RMO2C-5
Page 27/22
2
0
-2
-4
-6
-8
-10
-12
-14
-16
-18
S21 (dB)
25
23
21
19
17
15
13
11
9
7
5
S21 @ 135 GHz
P1dB @ 135 GHz
-40
June 4, 2007
-35
-30
-25
-20
Pin (dBm)
Paper RMO2C-5
-15
Pout (dBm)
Amplifier Linearity - 135GHz
-10
Page 28/22
2
0
-2
-4
-6
-8
-10
-12
-14
-16
-18
S21 (dB)
25
23
21
19
17
15
13
11
9
7
5
S21 @ 140 GHz
P1dB @ 140 GHz
-40
June 4, 2007
-35
-30
-25
-20
Pin (dBm)
Paper RMO2C-5
-15
Pout (dBm)
Amplifier Linearity - 140GHz
-10
Page 29/22
Amplifier Measurements
„
Zoom to 1MHz BW, 100 averages
calibration thru
June 4, 2007
amplifier
Paper RMO2C-5
Page 30/22
Results - Transmitter
80-GHz Output:
160-GHz Output:
-100.5 dBc/Hz @
10MHz offset
low-noise power supply losses not deembedded
improper
bias (60 mA)Paper RMO2C-5
June 4, 2007
Page 31/22