Friday, 12 February Math 105, section 207 Quiz 5 Name: Student number: Time: 13 minutes 1. Compute the region between the graph of y = 3x−6 and the x-axis, for 0 ≤ x ≤ 6: a)30 b)18 c)12 d)96 2. (Midterm 2 Sample 3) Compute the Midpoint Riemann sum for the function f (x) = x2 on the interval [−5, 5] using n = 5 equal subintervals? a)130 b)90 c)80 d)40 R √3 1 dx? 1 + x2 π π π π a) b) c) d) 12 4 3 2 Rx 4. Let F (x) = 0 tan t dt. What is the derivative of G(x) = F (x2 )? a)tan(x2 ) b)1 + tan2 (x2 ) c)2x(1 + tan2 (x2 )) d) 2xtan(x2 ) 3. 1 Rπ 5. Evaluate 04 sin x cos x dx: a) 41 b) 12 c) −1 d) 34 4 R 6. cos3 x dx? a) 41 cos4 x + C b)− 14 sin4 x + C 7. π 4 sec2 x tan1/2 x dx a) b) 32 R 0 2 3/2 3π c) 12 π 2 d) −1 3 c)sin x − 13 sin3 x + C d)cos 4x + C Friday, 12 February Math 105, section 207 Quiz 5 Some formulae: 1 + cos2x 1 − cos2x , sin2 x = , 2 2 1 1 secx = , (tanx)0 = 1 + tan2 x = = sec2 x, cosx cos2 x Z Z tanx dx = −ln|cos x| + C = ln|sec x| + C, cotx dx = ln|sinx| + C, cos2 x = Z Z secx dx = ln|secx + tanx| + C, cscx dx = −ln|cscx + cotx| + C, 1 − sin2 x = cos2 x, 1 + tan2 (x) = sec2 x, sec2 (x) − 1 = tan2 x, sin2x = 2sinx cosx, cos2x = cos2 x − sin2 x = 2cos2 x − 1 = 1 − 2sin2 x
© Copyright 2026 Paperzz