Tro Chapter 17 - Free Energy and Thermodynamics • Spontaneous and non-spontaneous processes Thermodynamics vs. Kinetics…Equilibrium? • Entropy and the second law of thermodynamics • Gibbs free energy (ΔG˚), entropy (ΔS˚) and enthalpy (ΔH˚) • Gibbs free energy and K On-line HW due Thursday Nov. 11th at 11:59 PM Perpetual motion, energy transactions and nature’s “heat tax” Tro 17.2 Spontaneous vs. nonspontaneous change Tro 17.2 Tro 17.3 Entropy and the second law of thermodynamics Predicting spontaneous change S = K ln W CH4 + 2 O2 CO2 + 2H2O ΔH = -802 kJ 2Fe (s) + 3/2O2 Fe2O3 ΔH = -826 kJ H2O (l) H2O (s) ΔH = -6.02 kJ (spontaneous at T < 0˚C) H2O (s) H2O (l) ΔH = +6.02 kJ (spontaneous at T > 0˚C) NaCl (s) Na+ (aq) + Cl- (aq) ΔH = +3.9 kJ Entropy and Temperature/Phase Change S = entropy K =Boltzmann’s constant (1.38e-23 J/K) W is the number of energetically equivalent ways to arrange the components of a system Tro 17.3 and 17.4 Entropy and the second law of thermodynamics Predicting relative S0 values of a system 1. Temperature changes and S for copper metal The entropy of the universe is always increasing ΔSuniv = ΔSsys + ΔSsurr > 0 Entropy and the third law of thermodynamics A perfect crystal has zero entropy at absolute zero Ssys = 0 at 0 K Tro 17.4 Temperature and its effect on spontaneity T (K) 273 295 298 S (J/molK): 31.0 32.9 33.2 2. Physical states and phase changes and entropy Na H2O C (graphite) S˚ (s or l) 51.4 (s) 69.9 (l) 5.7 (s) S˚ (g) 153.6 188.7 158.0 3. Dissolution of a solid or liquid NaCl AlCl3 CH3OH S˚ (s or l) 72.1 (s) 167 (s) 127 (l) S˚ (aq) 115.1 -148 132 Tro 17.4 Temperature and its effect on spontaneity cont’d • Product favored reactions for exothermic processes with net increase in entropy (+ ΔS) • Reactant favored reactions for endothermic processes with a net decrease in entropy (- ΔS) e.g. consider the freezing of water - spontaneous at low temperatures, nonspontaneous at high temperatures But, what happens with endothermic processes with a net increase in entropy Or What happens with exothermic processes and a decrease in entropy Tro 17.5 Entropy, free energy and work Gibb’s free energy, G, combines a system’s enthalpy and entropy Remembering the second law… ΔSuniv>0 spontaneous ΔSuniv = equilibrium G = H - TS ΔSuniv < 0 non-spontaneous ΔSuniv = ΔSsys + ΔSsurr Since absolute temperature is always positive, ΔSsurr = -ΔHsys/T -TΔSuniv < 0 for spontaneous processes ΔSuniv = ΔSsys -ΔHsys/T and, since ΔG = -TΔSuniv -TΔSuniv = -TΔSsys +ΔHsys ΔG < 0 for a spontaneous process ΔGsys = ΔHsys -TΔSsys = -TΔSuniv ΔG = 0 for a process at equilibrium ΔG > 0 for a non-spontaneous process Gibbs Free energy - “A decrease in G corresponds to a spontaneous process” Tro 17.6 Calculating the change in entropy of a reaction Tro 17.7 Entropy, free energy, and work: Calculating Standard Free Energy changes (see Appendix II B) (using table 17.2 or Appendix IIB) 4KClO3 (s) ΔS˚rxn = ΣmS˚products - ΣnS˚reactants N2 (g) + 3H2 (g) 2NH3 (g) ΔS˚rxn = [(2 mol NH3)(S˚ of NH3)] - [(1 mol N2)(S˚ of N2) + (3 mol H2)(S˚ of H2)] 3KClO4 Δ + KCl ΔH˚f = -397.7 kJ/mol ΔH˚f =-432.8 kJ/mol ΔH˚f = -436.5 kJ/mol S˚ = 143.1 J/molK S˚ = 151.0 J/molK S˚ = 82.6 J/molK Calculate ΔG˚ at 25˚C 1) Calculate ΔH˚ (must know ΔH˚f for each species) = [2(192.8)]-[1(191.6)+3(130.7)] = -198.76 J/K 2) Calculate ΔS˚ (must know S˚ for each species) 3) Calculate ΔG using ΔG˚ = ΔH˚ - TΔS˚ Calculating ΔG˚rxn from ΔG˚f values 4KClO3 (s) ΔG˚f = -296.3 kJ/mol Δ 3KClO4 + ΔG˚f = -303.1 kJ/mol KCl ΔG˚f = -408.5 kJ/mol ΔG˚rxn = ΣmG˚products - ΣnG˚reactants ΔG˚rxn = [3(ΔG˚f KClO4) + ΔG˚f KCl] - [4 ΔG˚f KClO3] Calculating ΔG˚rxn at elevated temperatures 2SO2+ O2 2SO3 At 298 K, ΔG˚ = -141.6 kJ, ΔH˚ = -198.4 kJ and ΔS˚ = -187.9 J/K Is the reaction spontaneous at 25˚C? Is the reaction spontaneous at 900˚C (assume ΔH˚ and ΔS˚ don’t change much with temperature)? Tro 17.8 and 17.9 Free energy for Non-standard states: ΔG˚rxn and ΔGrxn Sign of ΔG˚ allows us to predict spontaneity and thus reaction direction… If Q<K, ln Q/K < 0; ΔG < 0 If Q>K, ln Q/K > 0; ΔG > 0 If Q=K, ln Q/K = 0; ΔG = 0 ΔG = RT ln Q/K = RT ln Q - RT ln K ΔG˚ = -RT ln K (by choosing standard conditions for Q) ΔG = ΔG˚ + RT ln Q Tro 17.9 Free Energy and Equilibrium ΔG˚ = -RT ln K Free Energy and Equilibrium Calculating ΔGrxn at non-standard conditions 2SO2+ O2 2 SO3 At 298 K, ΔG˚ = -141.6 kJ a) Calculate K at 298 K and at 973 K (ΔG˚298 = -141.6 kJ/mol and ΔG˚973 = -12.12 kJ/mol) b) Which direction would the above reaction proceed if we had 0.500 atm of SO2, 0.0100 atm of O2 and 0.100 atm of SO3 at 25˚C? At 700˚C? ΔG = -138.16 kJ mol-1 @ 298 K ΔG = -.906 kJ mol-1 @ 973 K Useless expressions: ΔG˚ = -RTlnK ΔG = ΔG˚ + RTlnQ 1) For each of the following pairs, choose (circle) the substance with the higher entropy per mole at a given temperature: S˚ C2H4 = 219.4 Jmol-1K-1 S˚ C2H6 = 229.5 Jmol-1K-1 S˚ H2 = 130.58 Jmol-1K-1 S˚ N2O4 = 304.3 Jmol-1K-1 S˚ NO2 = 240.45 Jmol-1K-1 a) Ar (l) or Ar (g) 2) Using S˚ values provided above, calculate ΔS˚ values for the following reactions. In each case, account for the sign of ΔS˚. b) He (g) at 3 atm pressure or He (g) at 1.5 atm pressure a) C2H4 (g) + H2 (g) b) N2O4 (g) C2H6 (g) c) 1 mol of Ne (g) in 15.0 L or 1 mol of Ne (g) in 1.50 L d) CO2 (g) or CO2 (s) 2NO2 (g) 3). For a certain chemical reaction, ΔH˚ = -35.4 kJ and ΔS˚ = -85.5 J/K. Is the reaction exothermic or endothermic Does the reaction lead to an increase or decrease in the disorder of the system? Calculate ΔG˚ for the reaction at 298 K The value of Ka for nitrous acid (HNO2) at 25˚C is 4.5x10-4 By using the value of Ka, calculate ΔG˚ for the dissociation of nitrous acid in aqueous solution. What is the value of ΔG at equilibrium Is the reaction spontaneous at 298 K What is the value of ΔG when [H+] = 5.0 x 10-2 M, [NO2-] = 6.0 x 10-4 M, and [HNO2] = 0.20 M?
© Copyright 2026 Paperzz