Chem 1000A Final Examination - Solutions December 9th, 2003: 9:00 to 12.00 am Your name _______________ Instructor: Dr. M. Gerken Student ID _______________ Time: 3h No. of pages: 3 + 2 Total achievable marks: 114 Report all your answers using the correct number of significant figures. Show all units and their conversions throughout your calculations. Use SI units for your calculations. WRITE ALL YOUR ANSWERS INTO THE EXAMINATION BOOKLET! Question 1 (5 Marks) Complete the following table. 223 + Fr Symbol Number of electrons __86_______ Number of neutrons __136______ Number of protons __87_______ Overall charge 1+ _219At-_____ 86 134 _85________ 1- Question 2 (4 Marks) What is the maximum number of electrons that can be associated with the following combinations of quantum numbers? Zero is a possible answer. (a) n = 3, l =1, ml = -1 This is one of the 3p orbitals: two electrons (b) n = 2, l = 2, ml = -1, ms = ½ no electrons, since l cannot be the same as n. (c) n = 2 2s, 2p orbitals: eight electrons (d) n = 4, l = 3 These are the 4f orbitals: fourteen electrons. Question 3 (4 Marks) Draw a 2pz, a 1s, and a 3dz2 orbital. z z z x x x Question 4 (7 Marks) Borazine (B3N3H6) is sometimes called “inorganic benzene”. Its Lewis structure (one resonance structure) is drawn below. (a) Indicate formal charges and partial charges in the Lewis structure. (b) Will a chloride ion attack the boron or the nitrogen atoms in borazine? Explain your answer. 1 (a) δ− H H δ+ _ H δ− Bδ+ δ− H δ+ H + B + H N N N N Bδ+ Bδ+ _ _ B + B N Hδ− H δ− H N H δ− H H δ+ (b) Chloride, Cl-, would attack on an atom with a positive partial charge: boron. Question 5 (8.5 Marks) Balance the following redox reaction in a basic aqueous solution and show that the final equation has the correct electron, material, and charge balance. Give the half-reactions and show as many steps as possible. What is the name for this kind of redox reaction? NO2 → NO3-(aq) + NO2-(aq) N+IVO-II2(g) → N+VO-II3-(aq) + N+IIIO-II2-(aq) oxidation half-reaction (unbalanced): NO2 → NO3reduction half-reaction (unbalanced): NO2 → NO2principle element balance: oxidation half-reaction (unbalanced): NO2 → NO3reduction half-reaction (unbalanced): NO2 → NO2oxygen balance: oxidation half-reaction (unbalanced): H2O + NO2 → NO3reduction half-reaction (unbalanced): NO2 → NO2hydrogen balance (basic solution): oxidation half-reaction (unbalanced): H2O + 2OH- + NO2 → NO3- + 2H2O reduction half-reaction (unbalanced): NO2 → NO2Inserting electrons: oxidation half-reaction (balanced): H2O + 2OH- + NO2 → NO3- + 2 H2O+ ereduction half-reaction (balanced): NO2 + e- → NO2electron balanced combination: H2O + 2OH- + NO2 + NO2 +e-→ NO3- + 2H2O + e- + NO2simplification: 2OH- + 2NO2 → NO3- + NO2- + H2O material balance: 2H, 6O, 2N|2H, 2N, 6O charge balance: (2-) = 2|(-)+(-)=2correct electron, material, and charge balance! This reaction is a disproportionation reaction. 2 Question 6 (11 Marks) Hydrogen fluoride is a gas which readily dissolves in water. Aqueous HF is usually stored in plastic bottles and cannot be handled in glass since it reacts with glass (SiO2), producing the gas, SiF4, and H2O. SiO2(s) + HF(aq) → SiF4(g) + H2O(l) Inside a polyethylene beaker, 5.00 g of quartz wool (pure SiO2) is combined with 100. mL of 10.0 M HF(aq). (a) Balance the above equation. SiO2(s) + 4HF(aq) → SiF4(g) + 2H2O(l) (b) Which reactant is the limiting reagent? M(SiO2) = 60.0843 g/mol n(SiO2) = 5.00g/ (60.0843 g/mol) = 0.0832 mol n(HF) = 0.100 L × 10.0 mol/L = 1.00 mol mole ratio: SiO2 : HF = 0.0832:1.00 = 1.00:12.0 SiO2 is the limiting reagent, HF is present in excess. (c) What is the mass and the volume (in m3 and L) of SiF4(g) produced at 25.0 °C and 685 Torr? M(SiF4) = 104.0791 g/mol n(SiF4) = 0.0832 mol SiO2 ×(1mol SiF4/1mol SiO2) = 0.0832 mol m(SiF4) = 0.0832 mol×104.0791 g/mol = 8.66 g p = 685 Torr ×(101325 Pa/760 Torr) =91300Pa; T = (25.0 + 273.15)K = 298.2K pV = nRT, V = nRT/p = 0.0832 mol ×8.314 JK-1 mol-1×298.2 K/91300Pa = 2.26× 10-3 J/Pa= 2.26× 10-3 (kg m2 s-2)(kg-1ms2) = 2.26× 10-3 m3 × (1L/0.001 m3 )= 2.26 L (d) You would like to react the 5.00 g of SiO2 with anhydrous HF, which is a gas at 25.0 °C. What is the volume (in m3 and L) of stoichiometric amounts of HF gas that you need at 25.0 °C at 685 Torr. n(HF) = 0.0832 mol SiO2 ×(4mol HF/1mol SiO2) = 0.333 mol HF pV = nRT, V = nRT/p = 0.333 mol ×8.314 JK-1 mol-1×298.2 K/91300Pa = 6.78× 10-3 J/Pa= 6.78× 10-3 (kg m2 s-2)(kg-1ms2) = 6.78× 10-3 m3 × (1L/0.001 m3 )= 6.78 L Question 7 (21 Marks) (i) Draw Lewis structures for the following compounds. (Central atom is underlined) (ii) What are the electron-pair geometries and molecular geometries according to the VSEPR model. (iii) Do these molecules have molecular dipole moments. Indicate the dipole moment if applicable. (iv) Specify the intermolecular forces present in these compounds. (a) BrF5 .. .. : : F : .. .. F: .. .. :F :F .. : .. .. ..: .. Br ..F ..F .. :F Br .. :F.. .. _ F..: F..: .. electron pair geometry: octahedral molecular geometry: square planar this molecule has a dipole. intermolecular forces: dipole-dipole, dipole-induced dipole, London dispersion 3 (b) NOF3 .. :O :.. .. + N F : .. :..F :..F: .. :O :.. .. + N F : .. :..F :..F: _ electron pair geometry: tetrahedral molecular geometry: tetrahedral this molecule has a dipole. intermolecular forces: dipole-dipole, dipole-induced dipole, London dispersion (c) XeO3F2 .. :F : .. .. O.. .. O .. Xe O .. : .. F: electron pair geometry: trigonal bipyramidal molecular geometry: trigonal bipyramidal no dipole moment intermolecular forces: London dispersion (d) XeOF3.. .. ..- ..F:.. .. .. Xe ..F : .. .. ..- ..F:.. ..O : F .. ..O.. Xe ..F : : F.. .. electron pair geometry: octahedral molecular geometry: square planar (seesaw is an acceptable answer) dipole moment intermolecular forces: dipole-dipole, dipole-induced dipole, London dispersion + ion ion/ion dipole/ion induced dipole Question 8 (11 Marks) Draw the Lewis structures and determine the oxidation states for all individual atoms in the following compounds. (a) H-O-F (connectivity as indicated) :O : H : F.. : H: +I, O: 0, F: -I 4 (b) XeOF5- (central atom:Xe) .. :O : ..: F.. : ..F .. Xe ..F..: : F.. .. ..F : Xe: +VI, O: -II, F: -I + (c) NF4 (central atom: N) .. :F : .. N+ F..: :F .. .. :..F : N: +V, F: -I (d) [O3S-S-S-SO3]2- (connectivity as indicated, oxygens bonded to sulfur) .. .. :O O: .. .. .. -: .. O S S .. : .. ..S S O .. :O O .. .. : + several resonance structures O-II3S+V-S0-S0-S+VO-II32Question 9 (6 Marks) Pure iodine (105 g) is dissolved in 325 g of CCl4 at 65 °C. (a) Given that the vapour pressure of CCl4 at 65 °C is 531 Torr, what is the vapour pressure (in Torr) of this solution at 65 °C. Assume I2 does not contribute to the vapour pressure. (b) Calculate the boiling point of CCl4 in this solution. The boiling point of CCl4 is 76.7 °C and Kb.p. = 5.03 K kg mol-1. (a) M(CCl4) = 153.822 g/mol M(I2) = 253.810 g/mol n(CCl4) =325 g/(153.822 g/mol) = 2.11 mol n(I2) =105 g/(253.810 g/mol) = 0.414 mol X(CCl4) = 2.11mol/(2.11 mol + 0.414 mol) = 0.836 p(CCl4) = X(CCl4) × p0(CCl4) = 0.836 × 531 Torr = 444 Torr (b) molality(I2) =0.414 mol/0.325 kg= 1.27 mol/kg ∆Tb.p. = Kb.p. × molality = 5.03 K kg mol-1 ×1.27 mol/kg = 6.41 K = 6.41 °C Tb.p. = 76.7 °C + 6.41 °C = 83.1 °C Question 10 (4 Marks) State which species in each of the following pairs is expected to have the larger radius: (a) O or O2Oxide is larger. (b) Si or Cl Silicone is larger. (c) S2- or Ar Sulfide is larger. 5 Question 11 (12.5 Marks) Oxygen is oxidized by the strong oxidizer, PtF6, to the dioxygenyl cation, O2+ and the PtF6- anion (a) Write the balanced reaction equation. (b) Determine oxidation states for the atoms that are oxidized and reduced. (c) Give the half reaction for this redox reaction and show that the electron balance in your reaction equation from (a) is correct. (d) Draw the MO diagram (correlation diagram) for O2+. (e) Calculate the bond order for the O2+ cation and compare it to that of O2. (f) What kind of magnetism does the O2+ cation exhibit? (g) Give the valence electron configuration of the O2+ cation. (a) O2(g) + PtF6(g) → O2+PtF6-(s) (b) O02(g) + Pt+VIF6(g) → O+0.52+Pt+VF6-(s) (c) O2 → O2+ + ePtF6 + e- → PtF6electron balance is correct, since one electron appears on both sides. d) Draw the MO diagram for O2+. O O2+ O+ E σ2p* ↑ π2p* ↑↓ ↑ ↑ 2p ↑ ↑ ↑ 2p ↑↓ ↑↓ π2p ↑↓ σ2p ↑↓ σ2s* ↑↓ 2s ↑↓ 2s ↑↓ σ2s 6 (e) Bond order = ½(number of electrons in bonding MO’s – number of electrons in antibonding MO’s) = ½(8-3) = 2.5 The bond order for the O2+ cation is one, compared to the bond order in O2 of two. The removal of one electron from O2 strengthens the O-O bond. (f) The O2+ cation is paramagnetic. (g) (σ2s)2(σ2s*)2(σ2p)2(π2p)4(π2p*)1 Question 12 (3 Marks) Write the electron configuration of Neodymium (Nd) in the orbital box notation. Nd: ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 1s 2s 2p 3s 3p 4s 3d 4p ↑↓ 5s ↑↓ ↑↓ ↑↓↑↓ ↑↓ 4d ↑↓↑↓ ↑↓ 5p ↑↓ 6s ↑ ↑ ↑ 4f Question 13 (3 Marks) Write the electron configurations of Tc and Tc2+ using the noble-gas notation. What are the magnetic properties of Tc and Tc2+. Tc: [Kr]5s1 4d6, but [Kr]5s2 4d5 acceptable Tc2+: [Kr]5s0 4d5 Both, Tc and Tc2+ are paramagnetic. Question 14 (4 Marks) Magnesium is composed of three isotopes, 24Mg, 25Mg, and 26Mg. The isotopes 25Mg and 26Mg have natural abundances of 10.00 % and 11.01 %, respectively. The isotopic masses of 25Mg and 26Mg are 24.985839 u and 25.983595 u, respectively. Calculate the natural abundance and the isotopic mass of 24Mg. Average atomic mass of Mg: 24.3050 u Abundance of 25Mg: 10.00% Abundance of 26Mg: 11.01 % Abundance of 24Mg: 100 % - 10.00% - 11.01 % = 78.99 % 24.3050 u = 0.7899 × x u + 0.1000 × 24.985839 u + 0.1101 × 25.983595 u = 0.7899 × x u + 2.498 u + 2.861 u 18.946 u = 0.7899 × x u xu = 23.99 u 24 The Mg isotope has a natural abundance of 78.99 % and an isotopic mass of 23.99 u. Question 15 (6 Marks) Phosgene (COCl2) is a highly toxic gas. Describe the bonding situation in phosgene using the valence bond theory. (a) What is the hybridization of the carbon atom? (b) Draw energy diagram indicating the formation of the hybrid orbitals on carbon starting from the atomic orbitals on C, generating the hybrid orbitals on C. (c) Describe the bonding (all bonds) in phosgene in terms of orbital overlap. 7 :O : .. C .. :Cl Cl .. .. : (a) C: sp2 hybridization (b) Carbon: E ↑ ↑ ↑ 2p ↑ ↑ ↑ pyz sp2 ↓↑ 2s (c) C-Cl bonds: overlap between the sp2 hybrid orbital on C and the 3p orbital on Cl C=O bond: overlap between the sp2 hybrid orbital on C and a 2p orbital on O, forming the σ bond and overlap between the 2pz orbital on C with a 2p orbital on O, forming the π bond Question 16 (4 Marks) What is the longest wavelength (in nm) of electromagnetic radiation that is necessary to ionize Li2+ to give Li3+? ∆E = (Efinal - Einitial) = Ry(Z2/nfinal2 – Z2/ninitial2) For Li: Z=3 ∆E = En=∞ -En=1 = -Ry(9/∞ - 9/1) = 9Ry =9 × 2.1799 × 10-18 J = 1.9619 × 10-17 J E = hc/λ λ = hc/E = 6.626 × 10-34 Js × 2.998× 108 m s-1/ 1.9619 × 10-17 J = 1.013 × 10-8 m = 10.13 nm 8 Prefixes Pico, p 10-12; nano, n 10-9; micro, µ 10-6 ;milli, m 10-3; centi, c Fundamental Constants Planck's constant, h 6.626 × 10-34 J s Avogadro's number 6.022 × 1023 mol-1 Elementary charge, e 1.6022 × 10-19 C Electron mass 9.1095 × 10-28 g Gas constant, R 8.314 J K-1mol-1 n= 10-2; deci, d Rydberg Constant, RRy Proton mass Neutron mass Speed of light in vacuum, C 1 Ry = 2.1799 × 10-18 J 10-1 1.097 x 107 m-1 1.67252 × 10-24 g 1.6749 × 10-24 g 2.998 x 108 m s-1 m m hc h c ; λ = ; E = mc 2 ; λ = ; ρ = ; pV = nRT ; Ptot = ∑ p i ; p i = X i ⋅ Ptot ; E = hν = ; ν M V λ mv i 2 n p + a [V − nb] = nRT ; V u 2 = u rms = 3RT 1 Z2 h ; E kin = mv 2 ; ∆x ⋅ ∆(mv ) > ; E n = −Ry 2 ; M 2 4π n Z2 Z2 Z2 Z2 ∆E = (E final − E initial ) = − R Ryd hc 2 − 2 = −Ry 2 − 2 ; ∆Tb.p. = K b.p. ⋅ molality ; n final n initial n final n initial ∆Tf .p. = K f .p. ⋅ molality ; p i = X i ⋅ Pi0 Physical quantity Unit Symbol Definition Frequency, f or ν hertz Hz s-1 Energy , W or E joule J kg m2 s-2 Force, F newton N J m-1 = kg m s-2 Pressure, p pascal Pa N m-2 = kg m-1 s-2 Temperature: 0 K = -273.15 °C; 0 °C = 273.15 K Pressure: 1 atm = 760 Torr = 760 mmHg = 1.01325 bar = 101325 Pa; 1 bar = 105 Pa Volume: 1 mL = 1 cm3; 1 L = 1000 cm3 = 1 dm3 = 0.001 m3 9 1 Electronegativities 18 2.1 H 1 1.0 Li 3 1.0 Na 11 0.9 K 19 0.9 Rb 37 0.8 Cs 55 0.8 Fr 87 2 13 1.5 2.0 Be 5 1.5 Mg Ca 20 1.0 3 1.3 Ba 56 1.0 Ra 88 4 1.4 Sc 21 1.2 Sr 38 1.0 2.5 B 4 1.2 12 1.0 14 Y 39 1.1 La 57 1.1 5 1.5 Ti 22 1.3 V 23 1.5 Zr 40 1.3 Nb 41 1.4 Hf 72 Ta 73 6 1.6 Cr 24 1.6 Mo 42 1.5 W 74 7 1.6 Mn 25 1.7 Tc 43 1.7 Re 75 8 1.7 Fe 26 1.8 Ru 44 1.9 9 1.7 1.8 Co 27 1.8 Ni 28 1.8 Rh 45 1.9 Os 76 10 Pd 46 1.8 Ir 77 Pt 78 11 1.8 Cu 29 1.6 Ag 47 1.9 Au 79 12 1.6 Zn 30 1.6 Ga 31 1.6 Cd 48 1.7 In 49 1.6 Hg 80 Tl 81 3.0 C 6 1.8 Al 13 1.7 15 Ge 32 1.8 Sn 50 1.7 7 2.1 As 33 1.9 Sb 51 1.8 Bi 83 17 8 2.5 F 9 3.0 S 16 2.4 Se 34 2.1 Cl 17 2.8 Po 84 Ar 18 2.9 Br 35 2.5 Te 52 1.9 Ne 10 3.3 Kr 36 2.3 I 53 2.1 At 85 Xe 54 Rn 86 Ac 89 1 Chem 1000 Standard Periodic Table 18 1.0079 1H He 2 4.0 O P 15 2.1 Pb 82 3.5 N Si 14 1.9 16 4.0026 2He hydrogen 2 13 14 15 16 17 helium 6.941 9.0122 10.811 12.011 14.0067 15.9994 18.9984 20.1797 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg lithium berrylium 22.9898 24.3050 boron 26.9815 3 4 5 6 7 8 9 10 11 12 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.693 63.546 65.39 21Sc 22Ti 23V 24Cr 25Mn 26Fe 29Cu 30Zn 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 72Hf 73Ta 74W sodium magnesium 39.0983 40.078 44.9559 19K 20Ca 37Rb 38Sr 55Cs 56Ba La-Lu 88Ra Ac-Lr potassium calcium scandium titanium vanadium chromium manganese iron 85.4678 (98) 101.07 87.62 88.9059 91.224 92.9064 95.94 rubidium strontium 132.905 137.327 cesium (223) 87Fr francium yttrium zirconium niobium 178.49 180.948 barium 226.025 molybdenum technetium 183.85 hafnnium tantalum tungsten (261) (263) (262) 104Rf rutherfordium radium zinc 112.411 45Rh 46Pd 47Ag 48Cd 75Re rhenium (262) 76Os 78Pt 79Au 77Ir osmium (265) iridium (266) 107Bh hassium meitnerium 108Hs 109Mt 144.24 (145) 150.36 151.965 140.908 58Ce 59Pr 89Ac 90Th platinum (269) 15P phosphorus 31Ga 32Ge 49In 50Sn 16S fluorine 35.4527 neon 39.948 17Cl 18Ar 74.9216 sulfur 78.96 chlorine 79.904 33As 34Se 35Br 51Sb 52Te 83Bi gallium germanium arsenic selenium bromine 114.82 118.710 121.757 127.60 126.905 tin 207.19 antimony tellurium 208.980 (210) 53I 85At 86Rn 81Tl 82Pb 158.925 162.50 164.930 167.26 168.934 173.04 174.967 66Dy 67Ho dysprosium holmium 68Er 69Tm 70Yb 71Lu 65Tb 231.036 238.029 237.048 (240) (243) (247) 91Pa 92U 93Np 94Pu 95Am 96Cm 97Bk uranium neptunium plutonium americium curium (251) (252) erbium (257) 54Xe 84Po thallium bismuth polonium astatine 110Ds 157.25 36Kr krypton 131.29 xenon (222) mercury lead argon 83.80 iodine (210) gold terbium (247) 10 14Si silicon 72.61 oxygen 32.066 darmstadtium 60Nd 61Pm 62Sm 63Eu 64Gd praesodymium neodymium promethium samarium europium gadolinium protactinium 80Hg nitrogen 30.9738 aluminum 69.723 ruthenium rhodium palladium silver cadmium indium 186.207 190.2 192.22 195.08 196.967 200.59 204.383 106Sg 140.115 actinium9 thorium copper 107.868 105Db 57La 28Ni nickel 106.42 dubnium seaborgium bohrium 138.906 lanthanum cerium 227.028 232.038 27Co cobalt 102.906 13Al carbon 28.0855 thulium ytterbium lutetium (259) (258) (260) 98Cf 99Es 100Fm 101Md 102No 103Lr berkelium californium einsteinium fermium mendelevium nobelium lawrencium radon
© Copyright 2026 Paperzz