Factoring Sum and Difference of Cubes

Factoring the Sum and
Difference of Cubes
Essential Question
Compare/contrast sum &
difference of cubes with
difference of squares.
Sum of Two Cubes
3
3
2
2
π‘Žπ‘Ž + 𝑏𝑏 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Sum (addition) sign
Two Cubes
Difference of Two Cubes
3
3
2
2
π‘Žπ‘Ž βˆ’ 𝑏𝑏 = (π‘Žπ‘Ž βˆ’ 𝑏𝑏)(π‘Žπ‘Ž + π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Difference (subtraction) sign
Two Cubes
Use this pattern:
3
3
2
2
π‘Žπ‘Ž + 𝑏𝑏 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Write a new binomial without the exponents.
Use the new binomial to create the trinomial.
1. Square the first and last terms of the
binomial to create the first and last terms
of the trinomial.
2. Multiply the terms of the binomial to
create the middle term of the trinomial.
3. Sign of the 2nd term is opposite of the
binomial.
3
3
2
2
π‘Žπ‘Ž + 𝑏𝑏 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Factor:
Write as a sum of
2 cubes:
Write the binomial
without the cubes:
3
π‘₯π‘₯
3
+8
3
= π‘₯π‘₯ +2
= (π‘₯π‘₯ + 2)(
)
3
3
2
2
π‘Žπ‘Ž + 𝑏𝑏 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
= (π‘₯π‘₯ + 2)(
Square the first
and last terms:
Multiply the terms
in the binomial:
Opposite signs:
= (π‘₯π‘₯ +
= (π‘₯π‘₯ +
= (π‘₯π‘₯ +
2
2)(π‘₯π‘₯
2
2)(π‘₯π‘₯
2
2)(π‘₯π‘₯
)
+ 4)
2π‘₯π‘₯ + 4)
βˆ’ 2π‘₯π‘₯ + 4)
3
3
2
2
π‘Žπ‘Ž βˆ’ 𝑏𝑏 = (π‘Žπ‘Ž βˆ’ 𝑏𝑏)(π‘Žπ‘Ž + π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Factor:
Write as the
difference of
2 cubes:
Write the binomial
without the cubes:
=
3
8π‘₯π‘₯
βˆ’ 27
3
(2π‘₯π‘₯)
3
βˆ’3
= (2π‘₯π‘₯ βˆ’ 3)(
)
π‘Žπ‘Ž3 + 𝑏𝑏 3 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž2 βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 2 )
= (2π‘₯π‘₯ βˆ’ 3)(
Square the first
and last terms:
= (2π‘₯π‘₯ βˆ’
2
3)(4π‘₯π‘₯
= (2π‘₯π‘₯ βˆ’
2
3)(4π‘₯π‘₯
Multiply the terms
in the binomial:
Opposite signs:
= (2π‘₯π‘₯ βˆ’ 3)(4π‘₯π‘₯
2
)
The sign of the
last term in the
trinomial is
always positive!
+ 9)
6π‘₯π‘₯ + 9)
+ 6π‘₯π‘₯ + 9)
Hint
β€’ Don’t try to factor the trinomial after
factoring the sum or difference of two
cubes.
β€’=
2π‘₯π‘₯ βˆ’ 3 4π‘₯π‘₯ 2 + 6π‘₯π‘₯ + 9
β€’ If the greatest common factor has already
been taken out, the resulting trinomial
cannot be factored using integers.
3
3
2
2
π‘Žπ‘Ž + 𝑏𝑏 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Factor:
Write as a sum of
2 cubes:
Write the binomial
without the cubes:
=
=
6
π‘₯π‘₯ + 125𝑦𝑦
2
3
(π‘₯π‘₯ )
2
(π‘₯π‘₯
3
3
+(5𝑦𝑦)
+ 5𝑦𝑦)(
)
3
3
2
2
π‘Žπ‘Ž + 𝑏𝑏 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Square the first
and last terms:
=
=
2
(π‘₯π‘₯
2
(π‘₯π‘₯
Multiply the terms
2
in the binomial:= (π‘₯π‘₯
Opposite signs:
+
+ 5𝑦𝑦)(
4
5𝑦𝑦)(π‘₯π‘₯
4
2
+
)
2
25𝑦𝑦 )
2
+ 5𝑦𝑦)(π‘₯π‘₯ 5π‘₯π‘₯ 𝑦𝑦 + 25𝑦𝑦 )
= (π‘₯π‘₯ 2 + 5𝑦𝑦)(π‘₯π‘₯ 4 βˆ’ 5π‘₯π‘₯ 2 𝑦𝑦 + 25𝑦𝑦 2 )
3
3
2
2
π‘Žπ‘Ž βˆ’ 𝑏𝑏 = (π‘Žπ‘Ž βˆ’ 𝑏𝑏)(π‘Žπ‘Ž + π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Factor:
Write as the
difference of
2 cubes:
Write the binomial
without the cubes:
=
1βˆ’
3
(1)
= (1 βˆ’
9
3
216π‘₯π‘₯ 𝑦𝑦
βˆ’
3
3
6π‘₯π‘₯ 𝑦𝑦
3
6π‘₯π‘₯ 𝑦𝑦)(
)
3
3
2
2
π‘Žπ‘Ž + 𝑏𝑏 = (π‘Žπ‘Ž + 𝑏𝑏)(π‘Žπ‘Ž βˆ’ π‘Žπ‘Žπ‘Žπ‘Ž + 𝑏𝑏 )
Square the first
and last terms:
3
= (1 βˆ’ 6π‘₯π‘₯ 𝑦𝑦)(
3
= (1 βˆ’ 6π‘₯π‘₯ 𝑦𝑦)(1
Multiply the terms
in the binomial:
3
3
+
)
6
2
36π‘₯π‘₯ 𝑦𝑦 )
6 2
= (1 βˆ’ 6π‘₯π‘₯ 𝑦𝑦)(1 6π‘₯π‘₯ 𝑦𝑦 + 36π‘₯π‘₯ 𝑦𝑦 )
Opposite signs:
= (1 βˆ’ 6π‘₯π‘₯ 3 𝑦𝑦)(1 + 6π‘₯π‘₯ 3 𝑦𝑦 + 36π‘₯π‘₯ 6 𝑦𝑦 2 )