Mnemonics Angle addition and Wigner-Eckart We write the natural notation: j1 ⊗ j2 ≡ (j1 + j2 ) ⊕ (j1 + j2 − 1) ⊕ ... ⊕ |j1 − j2 | and we have | j1 j2 , jm % = coefficients • Clebsch-Gordan Spin-orbit coupling • Thomas precession • Wigner-Eckart theorem • ! m1 ,m2 | j1 j2 , m1 m2 % & j1 j2 , m1 m2 | j1 j2 , jm % with m = m1 + m2 and |j1 − j2 | ≤ j ≤ |j1 + j2 | . – p.8/12 1 What we are doing is block diagonalizing the rotation matrices: 2 Clebsch Gordon: spin half so that D j1 +j2 . | 1, 1 ! = D(R) = Dj1 +j2 −1 1 1 ! 2 2 | 1 − 1 ! 2 2 | −1 1 ! 2 2 | − 12 − 12 ! | X X X = | = | 1 2 1 2 1 2 1 2 !" ! 1 1 | 2 2 " 12 − 12 | " − 12 12 | " − 12 − 12 | " 1 2 1 2 | 1, 1 ! (3) | 1, 1 ! Dj1 −j2 . – p.10/12 3 4 | 12 12 , 00 ! | 12 12 , 10 ! Example: the two spin 12 singlet: X | 12 12 ! " 12 12 | 1 1 1 1 . | 2 − 2 ! " 2 − 2 | o 0! = 1 1 | 1, 1, 0 ! |o |− ! " − 12 12 | 2 2 X| − 12 − 12 ! " − 12 − 12 | Expample: The state with Sz = 0 and Stot = 1 with two spin 12 . | 12 12 ! " 12 12 | X 1 1 1 1 . | 2 − 2 ! " 2 − 2 | | 1, 0 ! = (4) | 1, 0 ! | −1 1 ! " −1 1 | 2 2 2 2 X| − 12 − 12 ! " − 12 − 12 | (5) = | −12 12 !" −12 12 | 0, 0 ! + | 12 −12 !" 12 −12 |o1, 0 ! 1 = √ ( | 12 −12 ! − | −12 12 !) 2 = | − 12 12 !" − 12 12 | 1, 0 ! + | 12 − 12 !" 12 − 12 | 1, 0 ! 1 = √ ( | −12 12 ! + | 12 −12 !) 2 Look CG coefficients up: we shall not derive them. They are called “Clebsch Gordan” in Mathematica. . – p.11/12 . – p.12/12 5 6 34. Clebsch-Gordan coefficients 34. Clebsch-Gordan coefficients 34. Clebsch-Gordan coefficients 010001-1 34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, 34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS ! Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read − 8/15. 1/2 "1/2 1 0 +1 1 0 0 + 1/2 + 1/2 1 + 1/2 ! 1/2 1/2 1/2 1 ! 1/2 + 1/2 1/2 ! 1/2 ! 1 + 1 + 1/2 3/2 + 3/2 3/2 1/2 1 + 1/2 + 1/2 + 1 ! 1/2 0 + 1/2 J J M M m1 m2 " 3 cos θ m 1 m 2 Coefficien t s 2" 1/2 + 5/2 5/2 5/2 3/2 4π . . " + 2 +1/2 1 + 3/2 + 3/2 . . 3 . . Y11 = − sin θ eiφ + 2 ! 1/2 1/5 4/5 5/2 3/2 8π + 1 + 1/2 4/5 ! 1/5 + 1/2 + 1/2 " # + 1 ! 1/2 2/5 3/5 5/2 3/2 5 3 1$ 0 2 Y2 = cos θ − 0 + 1/2 3/5 ! 2/5 ! 1/2 ! 1/2 4π 2 2 " 0 ! 1/2 3/5 2/5 5/2 3/2 15 ! 1 + 1/2 2/5 ! 3/5 ! 3/2 ! 3/2 Y21 = − sin θ cos θ eiφ 2 ! 1 ! 1/2 4/5 1/5 5/2 8π 3/2 "1/2 + 2 2 1 " ! 2 + 1/2 1/5 ! 4/5 ! 5/2 1 15 + 3/2 +1/2 1 + 1 + 1 ! 2 ! 1/2 1 Y22 = sin2 θ e2iφ 4 2π 1 + 3/2 ! 1/2 1/4 3/4 2 Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read − AND d FUNCTIONS " 1/3 2/3 3/2 1/2 2/3 ! 1/3 ! 1/2 ! 1/2 0 ! 1/2 2/3 1/3 3/2 ! 1 + 1/2 1/3 ! 2/3 ! 3/2 0 + 1/2 + 1/2 3/4 ! 1/4 0 3 ! 1 ! 1/2 1 1 + 1/2 ! 1/2 1/2 1/2 3/2 "1 + 5/2 2 +3 3 2 5/2 5/2 3/2 ! 1/2 + 1/2 1/2 ! 1/2 ! 1 ! 1 1 +2 +2 + 3/2 + 1 1 + 3/2 + 3/2 2 + 2 0 1/3 2/3 1 3 ! 1/2 ! 1/2 3/4 1/4 2 3/2 1/2 + 3/2 0 2/5 3/5 5/2 + 1 + 1 2/3 !1/3 +1 +1 +1 ! 3/2 + 1/2 1/4 ! 3/4 ! 2 + 1/2 + 1 3/5 ! 2/5 + 1/2 + 1/2 + 1/2 + 2 !1 1/15 1/3 3/5 ! 3/2 ! 1/2 1 2/5 1/2 + 3/2 ! 1 1/10 + 1 0 8/15 1/6 ! 3/10 2 1 3 + 1/2 0 3/5 1/15 ! 1/3 5/2 3/2 1/2 1 2 0 + 1 2/5 ! 1/2 1/10 0 0 0 ! 1/2 + 1 3/10 ! 8/15 1/6 ! 1/2 ! 1/2 ! 1/2 +1 +1 + 1 ! 1 1/5 1/2 3/10 + 1/2 ! 1 3/10 8/15 1/6 0 1/2 1/2 2 1 2 1 0 ! 2/5 0 0 3/5 3 ! 1/2 0 3/5 ! 1/15 ! 1/3 5/2 3/2 0 0 1/2 ! 1/2 0 ! 1 + 1 1/5 ! 1/2 3/10 !1 !1 !1 ! 3/2 + 1 1/10 ! 2/5 1/2 ! 3/2 ! 3/2 ! 1/2 ! 1 3/5 2/5 5/2 + 1 ! 1 1/6 1/2 1/3 0 ! 1 2/5 1/2 1/10 ! 3/2 0 2/5 ! 3/5 ! 5/2 2 ! 1 0 8/15 ! 1/6 ! 3/10 3 0 0 2/3 0 ! 1/3 2 1 ! 2 + 1 1/15 ! 1/3 3/5 ! 2 ! 2 ! 1 + 1 1/6 ! 1/2 1/3 ! 1 ! 1 ! 3/2 ! 1 1 1 0 +1 1 0 0 + 1/2 + 1/2 1 + 1/2 ! 1/2 1/2 1/2 1 ! 1/2 + 1/2 1/2 ! 1/2 ! 1 1/2"1/2 +2 +1 +1 +1 2 +2 1 +1 0 0 +1 Y"−m = (−1)m Y"m∗ j d m! ,m m−m! = (−1) 0 ! 1 1/2 1/2 2 ! 1 0 1/2 ! 1/2 ! 2 !1 !1 1 j d m,m! 2 " 3/2 = d "m,0 = +2 !1 +1 0 0 +1 ! 1 +2 1 + cos θ θ cos 2 2 √ 1 + cos θ θ 3/2 d 3/2,1/2 = − 3 sin 2 2 √ 1 − cos θ θ 3/2 d 3/2,−1/2 = 3 cos 2 2 1 − cos θ θ 3/2 d 3/2,−3/2 = − sin 2 2 3 cos θ − 1 θ 3/2 d 1/2,1/2 = cos 2 2 3 cos θ + 1 θ 3/2 d 1/2,−1/2 = − sin 2 2 3/2 d 3/2,3/2 = ! 1 ! 1 2/3 1/3 3 ! 2 0 1/3 ! 2/3 ! 3 !2 !1 1 4π Y m e−imφ 2# + 1 " ! 1/2 ! 1/2 1 "j1 j2 m1 m2 |j1 j2 JM # = (−1)J−j1 −j2 "j2 j1 m2 m1 |j2 j1 JM # θ 1 + cos θ 1/2 1 = cos θ 2 d 0,0 d 1/2,1/2 = cos d 11,1 = 2 2 +2 θ sin θ 1/2 1/2 3 2 1 1/2 d 1/2,−1/2 = − sin d 11,0 = − √ 1/2 ! 1/2 + 1 +1 +1 2 2 + 3/2 ! 1/2 1/5 1/2 3/10 1 − cos θ 0 3 2 1 + 1/2 + 1/2 3/5 0 ! 2/5 d 11,−1 = 0 0 0 ! 1/2 + 3/2 1/5 ! 1/2 3/10 0 2 2/5 + 3/2 ! 3/2 1/20 1/4 9/20 1/4 5/2 3/2 1/2 ! 2/5 7/2 + 1/2 ! 1/2 9/20 1/4 ! 1/20 ! 1/4 1/5 + 1/2 + 1/2 + 1/2 + 1/2 1 3 2 ! 1/2 + 1/2 9/20 ! 1/4 ! 1/20 1/4 !1 ! 3/2 + 3/2 1/20 ! 1/4 9/20 ! 1/4 ! 1 ! 1 ! 3/2 1/35 6/35 2/5 2/5 0 ! 3/10 ! 1/2 12/35 5/14 + 1/2 ! 3/2 1/5 1/2 3/10 5/2 3/2 1/2 +1/2 18/35 ! 3/35 ! 1/5 1/5 7/2 0 ! 2/5 ! 1/2 ! 1/2 3/5 2 3 +3/2 4/35 ! 27/70 2/5 ! 1/10 ! 1/2 ! 1/2 ! 1/2 ! 1/2 ! 3/2 + 1/2 1/5 ! 1/2 3/10 ! 2 ! 2 + 1 ! 3/2 4/35 27/70 2/5 1/10 ! 1/2 ! 3/2 1/2 1/2 3 4 3 2 1 0 ! 1/2 18/35 3/35 ! 1/5 ! 1/5 ! 3/2 ! 1/2 1/2 ! 1/2 ! 3 +1 +1 +1 +1 ! 1 +1/2 12/35 ! 5/14 5/2 3/2 0 3/10 7/2 ! 3/2 ! 3/2 1 ! 2 +3/2 1/35 ! 6/35 2/5 ! 2/5 ! 3/2 ! 3/2 ! 3/2 1/14 3/10 3/7 1/5 3/7 1/5 ! 1/14 ! 3/10 0 ! 3/2 2/7 18/35 1/5 3/7 ! 1/5 ! 1/14 3/10 1 0 4 3 2 ! 1 ! 1/2 4/7 ! 1/35 ! 2/5 7/2 5/2 0 0 0 1/14 ! 3/10 3/7 ! 1/5 0 0 ! 2 + 1/2 1/7! 16/35 2/5 ! 5/2 ! 5/2 + 2 ! 2 1/70 1/10 2/7 2/5 1/5 ! 1 ! 3/2 4/7 3/7 7/2 + 1 ! 1 8/35 2/5 1/14 ! 1/10 ! 1/5 ! 2 ! 1/2 3/7 ! 4/7 ! 7/2 0 ! 2/7 0 1/5 0 0 18/35 ! 2 ! 3/2 1 8/35 ! 2/5 1/14 1/10 ! 1/5 4 ! 1 +1 2 1 3 ! 2 +2 1/70 ! 1/10 2/7 ! 2/5 1/5 !1 !1 !1 !1 7/2 + 7/2 7/2 5/2 + 2 + 3/2 1 + 5/2 + 5/2 5/2 + 2 + 1/2 3/7 4/7 7/2 + 1 + 3/2 4/7 ! 3/7 + 3/2 + 3/2 + 2 ! 1/2 1/7 16/35 + 1 +1/2 4/7 1/35 0 +3/2 2/7 ! 18/35 2 "2 +44 4 3 +2 +2 +2 1 +3 +3 +1 3 2 + 2 + 1 1/2 1/2 4 0 + 1 + 2 1/2 ! 1/2 + 2 +2 +2 !1 + 2 0 3/14 1/2 2/7 + 1 +1 4/7 0 ! 3/7 0 +2 3/14 ! 1/2 2/7 " 3/2 " 3/2 j d −m,−m! d 22,2 = 3 +3 3 1 +2 + 3/2 + 3/2 + 3/2 + 1/2 + 1/2 + 3/2 3/2 + 3/2 3/7 1/5 + 1 ! 2 1/14 3/10 1/5 ! 1/14 ! 3/10 0 ! 1 3/7 ! 1 0 3/7 ! 1/5 ! 1/14 3/10 ! 2 +1 1/14 ! 3/10 3/7 ! 1/5 # 1 + cos θ $2 2 1 + cos θ d 22,1 = − sin θ 2 √ 6 2 = d 2,0 sin2 θ 4 1 − cos θ d 22,−1 = − sin θ 2 # 1 − cos θ $2 d 22,−2 = 2 1 + cos θ (2 cos θ − 1) 2 " 3 d 21,0 = − sin θ cos θ 2 1 − cos θ d 21,−1 = (2 cos θ + 1) 2 d 21,1 = 4 !2 3 !2 2 !2 0 ! 2 3/14 1/2 2/7 ! 1 ! 1 4/7 0 ! 3/7 4 3 ! 2 0 3/14 ! 1/2 2/7 ! 3 ! 3 ! 1 ! 2 1/2 1/2 4 ! 2 ! 1 1/2 ! 1/2 ! 4 !2 d 20,0 = #3 2 cos2 θ − 1$ 2 !2 1 Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957), and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients here have been calculated using computer programs written independently by Cohen and at LBNL. 1 "1/2 + 1 + 1/2 3/2 + 3/2 3/2 1/2 1 + 1/2 + 1/2 + 1 ! 1/2 0 + 1/2 1/3 2/3 3/2 1/2 2/3 ! 1/3 ! 1/2 ! 1/2 0 ! 1/2 ! 1 + 1/2 3 +3 3 2 +2 +1 1 +2 +2 2" 1 2/3 1/3 1/3 ! 2/3 ! 1 ! 1/2 2 + 2 0 1/3 2/3 1 3 + 1 + 1 2/3 !1/3 +1 +1 +1 + 2 !1 1/15 1/3 3/5 2 1/6 ! 3/10 3 1" 1 + 22 2 1 + 10 + 01 8/15 2/5 ! 1/2 1/10 0 0 +1 +1 1 +1 +1 + 1 ! 1 1/5 1/2 0 + 1 0 1/2 1/2 2 1 0 0 0 3/5 0 + 1 1/2 ! 1/2 0 0 0 ! 1 + 1 1/5 ! 1/2 7 + 1 ! 1 1/6 1/2 1/3 0 0 2/3 0 ! 1/3 2 1 ! 1 + 1 1/6 ! 1/2 1/3 ! 1 ! 1 Y"−m = (−1)m Y"m∗ ! 8/15. N ot a t ion : J J M M ... ... m1 m2 34. Clebsch-Gordan coefficients 010001-1 J J ... 3 N otθa t ion : 2" 1/2 5/2 cos m 1 m 2 Coefficien t s M M + 5/2. . .5/2 3/2 4π . . " + 2 +1/2 1 + 3/2 + 3/2 + 1/2 ! 1/2 1/2 1/2 1 . HARMONICS, . 3m 34. COEFFICIENTS, SPHERICAL " 1 θm ! 1/2 ! 1 1/2CLEBSCH-GORDAN ! 1/2 + 1/2 . . Y11 = − sin eiφ2 + 2 ! 1/2 1/5 4/5 5/2 3/2 3 8π + 1 + 1/2 4/5 ! 1/5 + 1/2 + 1/2 ! 1/2 ! 1/2 5/21 Y10 = cos θ " m m 2" 1/2 + 5/2 5/2 3/2 Coefficien t s + 1 ! 1/2 2/5 3/5 5/2 3/2 #AND $ 1 2 d1 FUNCTIONS 5 3 4π J J ... Y20 = . cos2 θ. − 0 + 1/2 !3/5 ! 2/5 ! 1/2 " N ot!a1/2 t ion : + 3/2 + 2 3/2 +1/2 sign 1 +is3/2 Note: A square-root to be understood over 4π every2. coefficient, M M ... . 2 e.g., for −8/15 read − 8/15. 1"1/2 3 " 0 ! 1/2 3/5 2/5 5/2 3/2 3/2 1/2 . . Y11 = − sin θ eiφ + 1 + 1/2 + 3/2 ! 1/2 1/5 4/5 5/2 3/2 15 m m 2/5 ! 1 + 1/2 ! 3/5 ! 3/2 ! 3/2 " 11++21/2 1 2 + 1/2 Y+211/2 = −3 sin θ cos θ eiφ 1/2 "1/2 + 1 + 11 + 1/2 8π ! 1/5 + 1/2 4/5 2 ! 1 ! 1/2 4/5 1/5 5/2 5/2 + 1 ! 1/2 1/3 02/3 3/2 1/2 " # Y10 = " 8π cos θ m 2 Coefficien t s "1/2 + 2 2 1 2" 1/23/2 !m 2 1+ 1/2 1/5 ! 4/5 ! 5/2 + 5/2 5/2 3/2 02/3 !01/3 ! 1/2 + 1/21+$ 1/2 1 0 + 1/2 + 1 !1/2 1/2 2/5 3/51 4π 5/2 5 3 15 3/2 . . +1/2+ 3/2 1 +1 +1 2 θ e2iφ + 2 +1/2 + 3/2 1 + 3/2 1 Y20 = cos2 θ − + 1/2 ! 1/2 1/2 01/2 Y!222/5 = " sin . . ! 2 ! 1/2 3/5 0 + 1/2 ! 1/2 ! 1/2 1/3 3/2 ! 1/21 2/3 3 4 2π sin θ eiφ ! 1 1/3 ! 2/3 ! 3/2 Y 1 = − !2 1/2 + 1/2 1/2 !!11/2 4π 2 . + 2 ! 1/2+ 3/2 1/5! 1/2 4/5 1/4 5/2 3/4 3/2 2 . 1 + 1/2 1 8π 2/5 5/2 3/2 " 0 0 ! 1/2 3/5 + 1 + 1/2+ 1/2 1/5 3/4 + 1/2! 1/4 + 1/2 0 4/5+!1/2 !31/2 ! 1/2 1 " # 5/2 ! 1 ! 1/2 1 2" 1 $ 15 2/5 ! 1 + 1/2 ! 3/5 ! 3/2 ! 3/2 1/2 5/2 1/2 3/22 1 ! 1/2 3/2 "15 +35/2 25/2 13/2 + 1 ! 1/2+ 1/2 2/5 3/5 Y21 = − sin θ cos θ +e2iφ+ 1 + 31 + 23 + 22 Y20 = cos θ − 3/5 ! 2/5 + 1/2 1/2!!1/2 1/2! 1/2 !1 !1 2 ! 12 !11/2 + 3/2 4/5 8π + 3/24π +1 +23/2 1/5 5/2 0 + 1/2! 1/2 1"1/2+ 2 + 3/2 3/2 " 0 ! 1/2 3/5 5/2 23/2 " 2+ 2 1 2 0 1/3 2/3"1/2 1 ! 1/2 ! 1/2 2/5 3/4 1/4 1/2 3 3/2 3/2 2 +01/22/5 1/5 5/2 5/2 !3/2 1/2 +! 3/2 3/5 ! 4/5 15 2/5 ! 1 + 1/2 3/2 !!23/2 !1/3 +1 +1 1 + 1 1 + 1+ 1 Y+11= − + 1/2 2/3 1 15 + 1 + 1/2 + 1/2 1/2+ 1 ! 3/2 + 1/2! 3/5 1/4 !!3/4 +sin 1 θ3/5 1/2 + 1/2 + 1/2 +1/2 ++3/2 cos!θ!2/5 e2iφ!+1/2 2 2 1 2 sin2 θ e2iφ + 1 ! 1/2 +1/3 ! 1 ! 1/2 4/5 1/5 5/2 8π 3/2 Y2 = 1/153/21/31/2 3/5 2 !12/3 ! 3/2 ! 1/2 1 2/5"1/2 + 3/2 ! 1 1/10 3/2 1/2 + 2 4 2π 2 1 ! 2 + 1/2 1/5 ! 4/5 ! 5/2 + 3/2 !!1/2 1/4 33/4 2 2"1 1 ! 1/21/6 1/2 8/15 +2/3 1 ! 01/3 ! 3/10 ! 3/2 + 1/2 0 3/5 1/15 ! 1/3 5/2 3/2 1/2 1 15 1" 1 + 22 2 0 + 1/2 + 3/2 +1/2 1 + 1 + 1 2 0 0 0 0 2iφ + 1 3/10 ! 8/15 1 3/4 +2/5 1/2 + 1/2 ! 1/4 00+! 11/2 ! 1/2 ! 2 ! 1/2 1 sin2 θ!e1/2 1/6 ! 1/2 ! 1/2 ! 1/2 2/3 1/31/10 3/2 0Y2 = 43/102π +1 +1 1 +1 +1 1 1 + 3/2 ! 1/2 1/4 3/4 2 ! 1 + 1/2 1/3 ! 2/3 1/21/2 + 1+!1/2 !3/2 1 1/5 + 1/2 ! 1 3/10 8/15 1/6 1/2 1 ! 1/2 3/2 "1 + 5/2 2 3/4 ! 1/4 0 0 + 1/20 + 1/2 0 + 1 0 3/2 1/2 1/2 3 2 1 5/2 5/2 2 1 0 ! 2/5 0 3/5 3 ! 1/2 3/5 ! 1/15 ! 1/3 5/2 3/2 ! 1 ! 1/20! 1/2 1 2" 1 5/2 + 1/2 0 + 1+ 3/2 1/2 ! 1/2 3/10 ! 1 + 1 1/5 !3/2 1/21/2 1 ! 3/2 + 1 1/10 3/2 ! 3/2 + 1/2! 2/5 ! 1/2 1/2 !1/2 "1! 1/2! 1 ! 1! 1 ! !11 2 + 3 03 02 0 + 3/2 + 1 1 + 3/2 1/2"1/2 + 11 1 0 ! 0 Y1 = Note: A square-root sign is to be understood over every coefficient, e.g.,1 for read − 8/15. 0 0 −8/15 + 1/2 + 1/2 2" 1 1"1 AND d FUNCTIONS 34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, ... ... Y10 = ! 1/2 ! 1/2 1 1 "1/2 N ot a t ion : 010001-1 010001-1 0 ! 1 1/2 1/2 2 ! 1 0 1/2 ! 1/2 ! 2 !1 !1 1 " + 5/2 5/2 3/2 ! 1/2 + ! 1/2 1 !1 + 2 + 1 1 11/6 +2 + 2 1/2 3/5 !2/5 1/21/2 ! 1 ! 1/2 5/2 2/513/4 1/10 0 !! +1/2 3/2 1/4 3/2 +111/2 + 3/2 2 !+1/2 3/2 1/31/2 + 3/2 0 2/5 3/5+ 1 !5/2 2/5 ! ! 3/2 0 ! 1/2 3/5 1/4 ! 5/22 8/150 ! 1/6 23/2 1/2 ! 1 +03/2 ! 3/10 3 +02 0 02/3 1 1/3 2/3 0 ! 1/3 3 2 2 1 ! 1/2 3/4 2/5 3/5 ! 25/2 ! 3/2 + 1/2 1/4 ! 3/4 + 1/2 + 1 3/5 ! 2/5!+11++1/2 1/2 1/3 ++1/2 1/15 ! 1/3 ! 2 ! 2 3/5 ! 2 ++11/2 + 11/6 1! 1 + 1! 1 + 1 2/3!+!1/3 1 1/2 ! 3/2 + 1/2 1/4!!13/4 ! ! 3/2 12 + 1 3/5 ! 2/5 + 1/2 + 1/2 + 1/2 1 1/32/53 1/2 ! 3/2+!3/2 !101/15 + 3/2 ! 1 1/10 + 22/5 ! 11/2 !1/2 1 ! 1 2/3 1/21/3 1/2 3/5 2 ! 3/2 ! 1/2 1 1/10 −m 2 0 m3/5 1 1 ! 018/15 ! 3/10 21/2 3 ! 2 0 1/3 ! 3 ! 1/3 5/2 "j3/2 !01/3 5/2 + 1/2 3/5! 2/3 1/15 ! 1/2 ! 2 3/2 1/21/6 = (−1) Y"m∗ +1/15 " 1 1 j2 m1/2 1 m2 |j1 j2 JM # 1Y"" +11/2 1 +2 2 2/5 0 + 1 ! 1/2 1/10 0 0 0 1/6 ! 1/2 + 1 ! 8/15 ! 1/2 ! 1/2 ! 1/2 3/10 0 ! 1/2 + 1 3/10 ! 8/15 1/6 ! 1! 1/2 ! 1/2 4π Y m e−imφ !2 !1 1 ! 1 1 ! 1/2 " +1 +1 1 +1 +1 = (−1)J−j1 −j2 "j2 j1 m2 m1 |j2 j1 JM # = 3/10 m,0 1/2 + 1 ! 1 d1/5 + 1/2 ! 1 3/10 8/15 1/6 2# + 1 " 3/10 + 1 0 1/2 1/2 2 +11/2 0! 1 3/10 2 1 01/6 ! 2/5 0 0 8/15 3/5 3 ! 1/2 0 3/5 ! 1/15 ! 1/3 5/2 3/2 1 m−m ! 2/5 3j 2 0 + 1 1/2 ! 1/2 ! 0j !01/2 0j 0 3/5 ! 1/15 !3/2 1/3 5/2 3/2 3/10 !1 +1 1/5 ! 1/2 ! 1 ! 1 ! 1 ! 3/2 + 1 ! 2/5 1/2 ! 3/2 ! 3/2θ 1/10 3 " 3/2 + 3 1 + cos θ 1/2 d m,m! = d −m,−m! 3 2 d 10,0 = cos θ ! 1/2 d 1/2,1/2 = cos d 11,1 = 3/10 ! 1d m! ,m ! 1 = (−1) ! 1+ 1 ! 1 1/6 ! 3/2 ! 2/5 1/2 ! 1 3/5 2/5 5/2 13/2 1/2 1/10 1/3+ 1 1/10 2/5 ! 3/2 0 !! 1/2 2 + 3/2 + 3/2 1 +2 +2 83/52 ! 5/2 ! 3/2 0 2/5 ! 8/15 2 ! 1 ! 1/6 ! 3/10 0 3 0 0 0 2 1 2/3 ! 1/3 ! 1/2 ! 1 3/5 2/5 1/25/2 7/2 0 ! 1 2/5 1/2 1/10 θ sin θ 2" 3/2 3 2 1 + 3/2 + 1/2 1/2 1/2 1 1/15 ! 1/3 3/5 ! 2 ! 2 1/3 ! 1 ! 1 ! 1 + 1 1/6 ! 1/2 7/2 d 1/2,−1/2! 3/2 d 1,0 = − √ = −! 1sin 1 ! 3/2 ! 20 + 12/5 3/5 1/2 ! 5/2 + 1/2 +!3/2 ! 1/2 + 1 + 1 +1 2 1 + 5/2 + 5/2 ! 1 0 8/15 ! 1/6 ! 3/10 + 2 +33/2 + 7/2 2 2 5/2 1/2 2 ! 1 ! 1 2/3 1/3 3 0 ! 1 1/2 !1 1/2 1/5 1/2 3/10 2 ! 13/70 1/2 −m 3/5 m! 2m∗ ! 2 + 1 1/15 !Y1/3 ! 3/2 ! 1++!3/2 4/7! 1/2 7/2! 2 5/2 3/2" 01/2 2 + 1/3 !3/5 2/3 ! 30 ! 2/5 = (−1) Y" + 2 +!1/2 1 − cos θ 2 JM # 3"j1 j22m1 m21|j1 j0 1/2 " d 11,−1 = + 3/2 4/7 ! 3/7! 1+ 3/2 + 3/2 4π 2 ! 1! 1/2 1 3/10 0 J−j01 −j20 ! 1/2 + 3/2 !1/5 0 ! 1 1 + 3/2 " m −imφ 3 ! 1 ! 1 2/3 + 11/3 2 = (−1) "j2 j1 m2 m1 |j2 j1 JM # d = Y" e 1/2 1/7 16/35 + 3/2 ! 3/2 1/20 1/4 9/20 1/4 ! 2 0 1/3 ! 2/3 ! 3 ++ 21 !+1/2 "j1m,0 j!22/5 m m2#2+ |j11j5/2 # 1/2 " 2 JM3/2 1/35 2/51 7/2 4/7 + 1/2 ! 1/2 9/20 1/4 ! 1/20 ! 1/4 4 4π 2"2 ! +" 1/2 2/7 ! 18/35 1/5 j ! 2 !j 1 1 0 +3/2 1 1/20 1/4 2 J−j −j+21/2 +31/2 + 1/2 ! 1/2 + 1/2 9/20 ! 1/4 !1/2 3/2 mj −imφ m−m θ3 1 + cos θ 13/2 Spin-orbit interaction Spin-orbit coupling and Thomas precession Now consider a spin circling a nucleus. In the rest-frame of the electron, due to the Lorenz-transformation of the electric £eld, there is a B-£eld Bef f = B v q × E = 3v × r c cr so that assuming the electron is rotating as in the £gure HLS = µBef f · S µZe = 3 (mv × r) · S r mc µZe = − 3 L·S r mc Ze2 = − 3 2 2L · S r mc E . – p.1/5 9 10 Thomas precession Spin-orbit coupling and Thomas precession Now the tricky part is that in the comoving reference frame of the electron with S rotates about L dS = ω0 × S dt 1 = L×S mr2 B However, the frequency is now shifted between the reference frame in the lab and the electron, so the Larmor-freqency is E shifted by a factor γ = √ ≈1+ 1 1−v 2 /c2 which can be expanded as v2 2c2 . – p.2/5 11 12 Thomas precssion, continued Thomas precession, continued In the lab reference frame This gives a contribution to the spin precession in the lab frame of dS 1 v2 = L×S dt mr2 2c2 2 mv 1 = L×S r 2m2 r 2 Ze 1 = L×S r2 2m2 r 2 Ze = L×S 2r3 m2 c2 dS v2 = ω0 × S dt 2c2 v2 = L×S 2mc2 r2 . – p.4/5 13 14 . – p.3/5 Example Spin orbit result Spin coupling example: n = 3 levels of an atom. S = 1/2 and This gives a net result 1/2 of the previous value, giving a net spin-orbit interaction HLS H = γL2 + 2α L · S Ze2 = − 3 2 2L · S 2r m c = γL2 + α(J 2 − L2 − S 2 ) . – p.5/5 15 16 . – p.6/7 Energy levels n=3 Wigner-Eckart theorem This has Lmax = 2 with spin 1/2 multiplicity 2(5 + 3 + 1) = 18 deg = 2 L = 0 J = 1/2 E = 0γ + α( 32 12 − 0 − 34 ) deg = 4 L = 1 J = 3/2 E = 2γ + α( 52 32 − 2 − 34 ) deg = 2 J = 1/2 E = 2γ + α( 32 12 − 2 − 34 ) deg = 6 L = 2 J = 5/2 E = 6γ + α( 72 52 − 6 − 34 ) deg = 4 J = 3/2 E = 6γ + α( 52 32 − 6 − 34 ) sum=18 . – p.7/7 17 18 Operators form representations too! Definition of representation Example: x,y,z Recall we defined the rotation operators: rY10 | a ! ⇒ D(R) | a ! =r ! 3 4π cos θ = rY1+ = r √!2 L+ Yl0 R rY1− = r √!2 L− Yl0 By a representation | j, m ! we we mean exactly j ! | j, m ! ⇒ Dm,m ! (R) | j, m ! ! 3 z 4π ! ! 3 iθ 3 = −r 8π e sin θ = − 8π (x + iy) ! ! 3 −iθ 3 = r 8π e sin θ = 8π (x − iy) Yll (θ, φ)) = cl (x + iy)l R (−1)l cl = l 2 l! ! (2l + 1)(2l)! 4π They transform exactly like wavefunctions. . – p.2/?? 19 . – p.4/?? 20 Transformation of operators Review of angle addition The definition of the operators Tmj is that it transforms exactly like | j, m ! under rotations. i.e. We write the natural notation: j1 ⊗ j2 ≡ (j1 + j2 ) ⊕ (j1 + j2 − 1) ⊕ ... ⊕ |j1 − j2 | j j D† (R)Tmj D(R) = Dm,m ! (R)Tm! and we have | j1 j2 , jm % = ! m1 ,m2 Thus | j1 j2 , m1 m2 % & j1 j2 , m1 m2 | j1 j2 , jm % j ! | j, m ! ⇒ Dm,m ! (R) | j, m ! R with m = m1 + m2 and |j1 − j2 | ≤ j ≤ |j1 + j2 |. We rewrite this as ! | j1 , m1 %⊗ | j2 , m2 % = | j1 j2 j, m % & j1 j2 , jm | j1 j2 , m1 m2 % and j j Tmj ⇒ Dm,m ! (R)Tm! R j,m . – p.5/?? . – p.6/?? 21 Wigner-Eckart Transformation of products j1 j2 | j1 , m 1 ! ⊗ | j2 , m 2 ! ⇒ D m ! Dm ,m! 1 ,m 2 R 1 R 1 2 j1 j2 Tmj11 | j2 , m2 ! ⇒ Dm ! Dm ,m! 1 ,m 2 2 Angle addition formula ! | j1 , m1 !⊗ | j2 , m2 ! = | j1 j2 j, m ! # j1 j2 , jm | j1 j2 , m1 m2 ! | j1 , m!1 ! ⊗ | j2 , m!2 ! Tmj1! 1 22 j,m | j2 , m!2 ! Wigner-Eckart generalization: ! Tmj11 | j2 , m2 ! = Nj1 ,j2 ,j | j, m ! # j1 j2 , jm | j1 j2 , m1 m2 ! Therefore up to normalization Tmj11 | j2 , m2 !, transforms exactly like | j1 , m1 !⊗ | j2 , m2 ! since Tmj11 and | j1 , m1 ! transform iden- j,m tically. (Note that the implicit j1 , j2 is dropped in the W.E. form) Taking the scalar product with # jm | we get # j, m |Tmj11 | j2 , m2 ! = Nj1 ,j2 ,j # j1 j2 , jm | j1 j2 , m1 m2 ! . – p.7/9 23 . – p.8/9 24 Confusing historical notation: For historical reasons one uses Tqk instead of Tmj11 and Nj1 ,j2 ,j ≡ What’s it good for? Confusing historical notation: For historical reasons one uses Nj1 ,j2 ,j ≡ Tqk instead of Tmj11 " j ||T j1 | | j2 # √ 2j2 + 1 leaving us with formula 3.10.31 in the textbook. " j, m |Tmj11 | j2 , m2 # = Nj1 ,j2 ,j " j1 j2 , jm | j1 j2 , m1 m2 # and From only a single number for each pair of representations j and j2 , all matrix elements are determined by Clebsch-Gordan coeffecients, as well as a host of selection rules where we now the CG coefficients vanish. " j ||T j1 | | j2 # √ 2j2 + 1 leaving us with formula 3.10.31 in the textbook. " j, m |Tmj11 | j2 , m2 # = Nj1 ,j2 ,j " j1 j2 , jm | j1 j2 , m1 m2 # . – p.9/9 25 26 . – p.9/9 Electric quadrupole Selection rules - electric dipole As a second example, lets take electric quadrupoletransitions; ! j, m |x2 − y 2 | j2 , m2 # As an example, lets take electric dipole transitions; when is ! j, m |!z | j2 , m2 " nonzero. (I have not bothered working out exactly what value of nonzero so that j1 = 1 and m1 = 0. The answer is equivalent m1 , the operator x2 −y 2 corresponds to.) The answer is equivalent to the question when can ! 2, j2 , j; m | 2, j2 , m1 , m2 # be nonzero. to the question when can ! j1 , j2 , j; m | j1 , j2 , 0, m2 " be nonzero. This means that |j − j2 | ≤ 2 and |m − m2 | ≤ 2. However This means that |j − j2 | ≤ 1 and m = m2 . However, it turns out ! 2, j2 , j; m | 2, j2 , m1 , m2 # is zero unless j + j1 + 2 is even, so that ! 1, j2 , j; m | 1, j2 , 0, m " must be zero by parity, so we have in fact only j = j2 ± 2 or j = j2 is allowed and j = j2 ± 1 is in fact only j = j1 ± 1. forbidden. . – p.11/?? . – p.10/?? 27 28
© Copyright 2026 Paperzz