M4 Lesson 20

Lesson 20
Hart Interactive – Algebra 1
M4
ALGEBRA I
Exit Ticket Sample Solutions
Complete the square: π’‚π’‚π’™π’™πŸπŸ + 𝒙𝒙 + πŸ‘πŸ‘.
𝟏𝟏
𝟏𝟏 𝟐𝟐
𝟏𝟏
𝒂𝒂 �𝒙𝒙 + 𝒙𝒙� + πŸ‘πŸ‘ β†’ 𝒂𝒂 �𝒙𝒙 + οΏ½ + πŸ‘πŸ‘ βˆ’
𝒂𝒂
𝟐𝟐𝟐𝟐
πŸ’πŸ’πŸ’πŸ’
𝟐𝟐
Homework Problem Set Sample Solutions
S.147
For each equation below, complete the square and then identify the vertex of the quadratic function.
1. y = 3x2 – 24x – 1
2. y = 5x2 + 20x + 7
3. y = 4x2 – 12x + 9
y = 3(x2 – 8x) – 1
y = 5(x2 + 4x) + 7
y = 4(x2 – 6x) + 9
Y = 3(x2 – 8x + _) – 1 - __
Y = 5(x2 + 4x + _) + 7 - __
Y = 4(x2 – 6x + _) + 9 - __
Y = 3(x2 – 8x + 16) – 8 – 48
Y = 5(x2 + 4x + 4) + 7 – 20
Y = 4(x2 – 6x + 9) + 9 – 36
Y = 3(x – 4)2 – 56
Y = 5(x + 2)2 – 13
Y = 4(x – 3)2 – 27
Vertex: ( 4, -56 )
Vertex: ( -2, -13 )
4. y = 7x2 – 14x + 10
5. y = 3x2 – 6x – 4
Vertex: ( 3, -27 )
6. y = 2x2 + 8x + 1
y = 7(x2 – 2x) + 10
y = 3(x2 – 2x) – 4
y = 2(x2 + 4x) + 1
Y = 7(x2 – 2x + _) + 10 - __
Y = 3(x2 – 2x + _) – 4 - __
Y = 2(x2 + 4x + _) + 1 - __
Y = 7(x2 – 2x + 4) + 10 – 28
Y = 3(x2 – 2x + 4) – 4 – 12
Y = 2(x2 + 4x + 4) + 1 – 8
Y = 7(x – 2)2 – 18
Y = 3(x – 2)2 – 16
Y = 2(x + 2)2 – 7
Vertex: ( 2, -18 )
Lesson 20:
Unit 12:
Vertex: ( 2, -16 )
Complicated Quadratics
Completing the Square & The Quadratic Formula
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG I-M4-TE-1.3.0-09.2015
Vertex: ( -2, -7 )
272
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 20
Hart Interactive – Algebra 1
M4
ALGEBRA I
7. y = 5x2 – 10x + 15
8. y = 2x2 – 12x – 13
9. y = x2 + 8x + 19
y = 5(x2 – 2x) + 15
y = 2(x2 – 6x) – 13
y = (x2 + 8x) + 1 9
Y = 5(x2 – 2x + _) + 15 - __
Y = 2(x2 – 6x + _) – 13 - __
Y = (x2 + 8x + _) + 19 - __
Y = 5(x2 – 2x + 1) + 15 – 5
Y = 2(x2 – 6x + 9) – 13 – 9
Y = (x2 + 8x + 16) + 19 – 16
Y = 5(x – 1)2 + 10
Y = 2(x – 3)2 – 22
Y = (x + 4)2 + 3
Vertex: ( 1, 10 )
Vertex: ( -2, -22 )
Vertex: (-4, 3 )
S.148
CHALLENGE PROBLEMS
Rewrite each expression by completing the square.
10. βˆ’πŸπŸπ’™π’™πŸπŸ + πŸ–πŸ–π’™π’™ + πŸ“πŸ“
βˆ’πŸπŸοΏ½π’™π’™πŸπŸ βˆ’ πŸ’πŸ’πŸ’πŸ’ + πŸ’πŸ’οΏ½ + πŸ“πŸ“ + πŸ–πŸ– β†’ βˆ’πŸπŸ(𝒙𝒙 βˆ’ 𝟐𝟐)𝟐𝟐 + 𝟏𝟏𝟏𝟏
11. 𝟐𝟐. πŸ“πŸ“π’Œπ’ŒπŸπŸ βˆ’ πŸ•πŸ•. πŸ“πŸ“π’Œπ’Œ + 𝟏𝟏. 𝟐𝟐𝟐𝟐
πŸ’πŸ’
πŸ‘πŸ‘
𝟐𝟐. πŸ“πŸ“οΏ½π’Œπ’ŒπŸπŸ βˆ’ πŸ‘πŸ‘πŸ‘πŸ‘ + 𝟐𝟐. 𝟐𝟐𝟐𝟐� + 𝟏𝟏. 𝟐𝟐𝟐𝟐 βˆ’ πŸ“πŸ“. πŸ”πŸ”πŸ”πŸ”πŸ”πŸ” β†’ 𝟐𝟐. πŸ“πŸ“(π’Œπ’Œ βˆ’ 𝟏𝟏. πŸ“πŸ“)𝟐𝟐 βˆ’ πŸ’πŸ’. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
12. π’ƒπ’ƒπŸπŸ + πŸ”πŸ”π’ƒπ’ƒ βˆ’ πŸ“πŸ“
πŸ–πŸ–πŸ–πŸ–
𝟐𝟐𝟐𝟐 πŸ’πŸ’
πŸ—πŸ— 𝟐𝟐 πŸ’πŸ’πŸ’πŸ’
πŸ’πŸ’ 𝟐𝟐 πŸ—πŸ—
�𝒃𝒃 + 𝒃𝒃 + οΏ½ βˆ’ πŸ“πŸ“ βˆ’
β†’ �𝒃𝒃 + οΏ½ βˆ’
𝟐𝟐
𝟏𝟏𝟏𝟏
πŸ’πŸ’
πŸ‘πŸ‘
πŸ’πŸ’
πŸ’πŸ’
πŸ‘πŸ‘
13. πŸπŸπŸπŸπŸπŸπŸπŸπ’„π’„πŸπŸ βˆ’ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 + πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”
πŸπŸπŸπŸπŸπŸπŸπŸοΏ½π’„π’„πŸπŸ βˆ’ 𝟏𝟏. 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟎𝟎. πŸ”πŸ”πŸ”πŸ”πŸ“πŸ“πŸπŸ οΏ½ + πŸ”πŸ”πŸ”πŸ”πŸ”πŸ” βˆ’ πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘. πŸ”πŸ”πŸ”πŸ”πŸ”πŸ” β†’ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏(𝒄𝒄 βˆ’ 𝟎𝟎. πŸ”πŸ”πŸ”πŸ”πŸ”πŸ”)𝟐𝟐 + πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
14. πŸ–πŸ–π’π’πŸπŸ + 𝟐𝟐𝟐𝟐 + πŸ“πŸ“
𝟏𝟏
𝟏𝟏
𝟏𝟏
𝟏𝟏 𝟐𝟐
πŸ•πŸ•
πŸ–πŸ– οΏ½π’π’πŸπŸ + 𝒏𝒏 + οΏ½ + πŸ“πŸ“ βˆ’ β†’ πŸ–πŸ– �𝒏𝒏 + οΏ½ + πŸ’πŸ’
πŸ’πŸ’
πŸ”πŸ”πŸ”πŸ”
πŸ–πŸ–
πŸ–πŸ–
πŸ–πŸ–
Lesson 20:
Unit 12:
Complicated Quadratics
Completing the Square & The Quadratic Formula
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from ALG I-M4-TE-1.3.0-09.2015
273
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.