Lesson 20 Hart Interactive β Algebra 1 M4 ALGEBRA I Exit Ticket Sample Solutions Complete the square: ππππππ + ππ + ππ. ππ ππ ππ ππ ππ οΏ½ππ + πποΏ½ + ππ β ππ οΏ½ππ + οΏ½ + ππ β ππ ππππ ππππ ππ Homework Problem Set Sample Solutions S.147 For each equation below, complete the square and then identify the vertex of the quadratic function. 1. y = 3x2 β 24x β 1 2. y = 5x2 + 20x + 7 3. y = 4x2 β 12x + 9 y = 3(x2 β 8x) β 1 y = 5(x2 + 4x) + 7 y = 4(x2 β 6x) + 9 Y = 3(x2 β 8x + _) β 1 - __ Y = 5(x2 + 4x + _) + 7 - __ Y = 4(x2 β 6x + _) + 9 - __ Y = 3(x2 β 8x + 16) β 8 β 48 Y = 5(x2 + 4x + 4) + 7 β 20 Y = 4(x2 β 6x + 9) + 9 β 36 Y = 3(x β 4)2 β 56 Y = 5(x + 2)2 β 13 Y = 4(x β 3)2 β 27 Vertex: ( 4, -56 ) Vertex: ( -2, -13 ) 4. y = 7x2 β 14x + 10 5. y = 3x2 β 6x β 4 Vertex: ( 3, -27 ) 6. y = 2x2 + 8x + 1 y = 7(x2 β 2x) + 10 y = 3(x2 β 2x) β 4 y = 2(x2 + 4x) + 1 Y = 7(x2 β 2x + _) + 10 - __ Y = 3(x2 β 2x + _) β 4 - __ Y = 2(x2 + 4x + _) + 1 - __ Y = 7(x2 β 2x + 4) + 10 β 28 Y = 3(x2 β 2x + 4) β 4 β 12 Y = 2(x2 + 4x + 4) + 1 β 8 Y = 7(x β 2)2 β 18 Y = 3(x β 2)2 β 16 Y = 2(x + 2)2 β 7 Vertex: ( 2, -18 ) Lesson 20: Unit 12: Vertex: ( 2, -16 ) Complicated Quadratics Completing the Square & The Quadratic Formula This work is derived from Eureka Math β’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG I-M4-TE-1.3.0-09.2015 Vertex: ( -2, -7 ) 272 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Lesson 20 Hart Interactive β Algebra 1 M4 ALGEBRA I 7. y = 5x2 β 10x + 15 8. y = 2x2 β 12x β 13 9. y = x2 + 8x + 19 y = 5(x2 β 2x) + 15 y = 2(x2 β 6x) β 13 y = (x2 + 8x) + 1 9 Y = 5(x2 β 2x + _) + 15 - __ Y = 2(x2 β 6x + _) β 13 - __ Y = (x2 + 8x + _) + 19 - __ Y = 5(x2 β 2x + 1) + 15 β 5 Y = 2(x2 β 6x + 9) β 13 β 9 Y = (x2 + 8x + 16) + 19 β 16 Y = 5(x β 1)2 + 10 Y = 2(x β 3)2 β 22 Y = (x + 4)2 + 3 Vertex: ( 1, 10 ) Vertex: ( -2, -22 ) Vertex: (-4, 3 ) S.148 CHALLENGE PROBLEMS Rewrite each expression by completing the square. 10. βππππππ + ππππ + ππ βπποΏ½ππππ β ππππ + πποΏ½ + ππ + ππ β βππ(ππ β ππ)ππ + ππππ 11. ππ. ππππππ β ππ. ππππ + ππ. ππππ ππ ππ ππ. πποΏ½ππππ β ππππ + ππ. πππποΏ½ + ππ. ππππ β ππ. ππππππ β ππ. ππ(ππ β ππ. ππ)ππ β ππ. ππππππ 12. ππππ + ππππ β ππ ππππ ππππ ππ ππ ππ ππππ ππ ππ ππ οΏ½ππ + ππ + οΏ½ β ππ β β οΏ½ππ + οΏ½ β ππ ππππ ππ ππ ππ ππ ππ 13. ππππππππππππ β ππππππππππ + ππππππ πππππππποΏ½ππππ β ππ. ππππππ + ππ. ππππππππ οΏ½ + ππππππ β ππππππ. ππππππ β ππππππππ(ππ β ππ. ππππππ)ππ + ππππππ. ππππππ 14. ππππππ + ππππ + ππ ππ ππ ππ ππ ππ ππ ππ οΏ½ππππ + ππ + οΏ½ + ππ β β ππ οΏ½ππ + οΏ½ + ππ ππ ππππ ππ ππ ππ Lesson 20: Unit 12: Complicated Quadratics Completing the Square & The Quadratic Formula This work is derived from Eureka Math β’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG I-M4-TE-1.3.0-09.2015 273 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
© Copyright 2026 Paperzz