Solutions to the Homework III I601 Logic and Discrete Mathematics 1. Show that (p → q) ∨ (p → r) and p → (q ∨ r) are logically equivalent. Try the sequent calculus inference rules. S o l u t i o n. We need to show provability of both (p → q) ∨ (p → r) → (p → (q ∨ r)) and (p → (q ∨ r)) → (p → q) ∨ (p → r). p, q ` q, r p ` p, q, r p, r ` q, r p, ` p, q, r (→L) (→L) p, (p→q) ` q, r p, (p→r) ` q, r (∨L) (p → q)∨(p → r), p ` q, r (∨R) (p → q) ∨ (p → r), p ` q∨r (→R) (p → q) ∨ (p → r) ` p→(q ∨ r) (→R) ` (p → q) ∨ (p → r)→(p → (q ∨ r)) and q, p ` q, r r, p ` q, r (∨L) q∨r, p ` q, r p ` p, q, r (→L) p→(q ∨ r), p ` q, r (→R) p → (q ∨ r), p ` q, p→r (→R) p → (q ∨ r) ` p→q, p → r (∨R) p → (q ∨ r) ` (p → q)∨(p → r) (→R) ` (p → (q ∨ r))→(p → q) ∨ (p → r) 2. Show that (p ∨ q) ∧ (p ∨ r) → (q ∨ r) is not tautology. S o l u t i o n. p ` q, r p, r ` q, r (∨L) p, p∨r ` q, r q, p ∨ r ` q, r p∨q, p ∨ r ` q, r (∧L) (p ∨ q)∧(p ∨ r) ` q, r (∨R) (p ∨ q) ∧ (p ∨ r) ` q∨r (→R) ` (p ∨ q) ∧ (p ∨ r)→(q ∨ r) (∨L) This formula is false for an interpretation that assigns p true and both q and r false: (T ∨ F) ∧ (T ∨ F) → (F ∨ F) ≡ T ∧ T → F ≡ T → F ≡ F. 3. Determine the truth values of the statements ∀x∃y(xy = 1) and ∃x∀y(x 6 y 2 ) if the domain for the variables consists of a) the nonzero real numbers; b) the nonzero integers; c) the positive real numbers. S o l u t i o n. Let P = ∀x∃y(xy = 1) and Q = ∃x∀y(x 6 y 2 ). a) The domain of the function y = 1/x is all non-zero real numbers, therefore P = T. Any perfect square is a non-negative number, so −1 6 y 2 for every y, and thus, Q = T. b) y cannot be an integer for any x > 1 and P = F, but Q = T as for the case a). c) P = T for same reason as in case a). Whatever x > 0 we choose, the inequality x 6 y 2 is invalid for y < x = 4, then x 6 y 2 is not satisfied for 0 < y < 2. So, Q = F. √ x. For example, if
© Copyright 2026 Paperzz