DIFFERENTIAL CALCULUS One marks Questions 1. If y = sin ( log x ) find dy / dx 2. Y 3. Y = = esin x e logx x 4. Y = loge e(1 + sin h x ) 5. Y = loge ( coshx) 6. If f ( x ) = 3 cos x + 4 sin x find f ` ( π/2) = 7. If y = sin ( log x ). Then show that 1 2 8. If y = 7x . x7 then find dy / dx = 9. If y = πx . xπ then find dy / dx. 10. Differentiate x w.r.t. logex. 11. Define the left hand derivative of a function y = f ( x ) at x = a Two marks Questions: 12. If y = Tan-1 – then find dy / dx 13. If y = log5 √ secx then find dy / dx 14. If y = e√x sinx find dy / dx 15. If y = log [ x + √ x2 + a2 ]. Prove that dy / dx, √ 16. If y = ( x + √ x2 + 1 )5 then show that ( x2 + 1 ( dy / dx)2 = 25 y2 17. If y = log 18. If y = sin-1 1 1 cos prove that dy / dx = 2cosecx then find dy / dx √1+x2 – 1 19. If y = Tan-1 x -1 20. If y = Tan 3 3 2 1 3 21. If x5 y3 = ( x + 4 )8 then Prove that dy / dx. = y / x 22. If siny = x sin ( a + y ) prove that = 23. If y = sinhx + coshx then, find 1 / y dy / dx 24. If y = √ sin ( msin-1 √x ) then find dy / dx 25. If y = log [ x + √ x2 + a2 ] then show that dy / dx = 26. If √ then Prove that dy / dx = - cosech2 x y = 27. If y = Tan-1 then find dy / dx 28. If y = Tan-1 then find dy / dx 29. If y = sec-1 1 1 2 then find dy / dx 2 30. If x2 + y2 = a2 then find dy / dx Three marks Questions: 31. If y = √ 32. If y = Tan-1 33. If √ 1 sin-1 ( x / a) prove that dy / dx = + + √ √ √ √ 1 then show that dy / dx = a ( ( x – y ), prove that dy / dx = 2 2 √ √ 34. If x = a [ cost + loge Tan t / 2 ]., y = a sint. Then prove that dy / dx = Tan t. 35. Differentiate Tan-1 w,r,t cos-1 ( 2t2 – 1 ) 36. If y = ( 1 + x )1/x + x (1 + x ) then find dy / dx x + ( sin-1 x )x then find dy / dx 37. If y = 38. If xm yn = ( x + y )m+n. then Prove that dy / dx = y / x 39. If xy = ey-x prove that dy / dx = w,r,t Sin 40. Differentiate Tan-1 √ 2 41. If x = a [ sin t – t cos t ] y = a [ cost + t sin t ] then prove that dy / dx at t = 3π/4 is “ – 1” 42. If y = Tan-1 √ √ then show that dy / dx = √ 43. If x = 3 cos t – 2 cos3t, y = 3 sint – 2 sin3 t. Prove that dy / dx = cot t. 44. If x = 3 sin2θ + 2 sin3 θ, y = 2 cos 3 θ – 3 cos2 θ prove that dy / dx = - Tan θ/2 45. Find the derivative of cos-1 w,r,t cot-1 46. If y = ( log x )x + ( sin-1 x)sinx then find dy / dx 47. If xy = yx prove that dy/dx = 48. If x2 + 2xy + 3y2 = 1 Prove that = 49. If x = a (θ - sin θ), y = a ( 1 – cos θ ) prove that = 50. If y = x sinx , prove that x2 y2 – 2xy1 + ( x2 + 2 ) y = 0 51. If y = x sin h x . Prove that xy2 – 2y1 – xy + 2 sinhx = 0 52. If y = x cos ( log x ) + x logx, prove that x2 y2 – xy1 + 2y = x logx. / 53. If y = ex logx. Prove that xy2 – ( 2x – 1 ) y1 + ( x – 1 ) y = 0 54. If y = Prove that ( 1 – x2 ) y2 – xy1 – m2y = 0 55. If y = ( cos-1 x)2 prove that ( 1 – x2) y2 – xy1 – 2 = 0 56. If y = eax sinbx. Prove that y2 – 2ay1 + ( a2 + b2 ) y = 0
© Copyright 2026 Paperzz