Soil moisture effects on soil carbon cycling – a 13CO2 pulse labelling experiment in a sandy heathland ecosystem Sabine Reinsch, Per Ambus, Iver Jakobsen Risø, Technical University of Denmark NordSIR | Holbæk | 05 October 2011 1 Carbon, Microbes and Climate Change Amundson, 2001 new carbon a) Temperature effect old carbon Briones et al., 2009 c) Effects of increasing [CO2] b) Effects of water stress decreasing C storage as a result of a changed microbial community Carney et al., 2007 slower C mineralization Andresen et al., 2010 2 Microbes turn the wheel of carbon and nutrient turnover in soils 13 CO CO22uptake uptakevia via photosynthesis C losses C inputs to the soil Manipulation 13C 12C = 1.11 % = 98.89 % 50 % 50 % Plant respiration Soil respiration (SR) Roots Microbes Fauna Leaf litter Ecosystem respiration (ER) Rhizodeposition Delayed C transport into roots SOM Rhizosphere bacteria Fungi Roots directly colonized/consumed by Rhizoplane bacteria Mycorrhizal fungi Soil fauna Microbial functional groups AM fungi Saprophytic fungi Gram negative bacteria Gram positive bacteria Actinomycetes 3 In-situ climate manipulations to study future C turnover Pilot experiment Climate experiment Treatments C, D, I D, T, eCO2 in full combination Replicates 5 6 September 2010 May 2011 7h 4h Labell (aim) Labell (achieved) 45 atom% 13C 13 atom% 13C 50 atom% 13C 45 atom% 13C CO2 concentration 390 ppm 390 and 510 ppm Time Labelling time Measurements Soil and ecosystem respiration, microbial fatty acids, microbial biomass, plant labell CO2 CO2 +T CO2 +D CO2 + D+ T www.climaite.dk 4 In-situ 13CO 2 pulse-labelling Flow-Through-System Air reservoir (air with ~45 atom% 13CO2; ~390 ppm [CO2]) Air flow rate: 12.3 l*min-1 to achieve a gas exchange in the chamber ~every 10 min chamber pump 5 Constant Labell over time in the air reservoir :) 13C atom% over time Pilot experiment 13C atom% over time Climate experiment 50 balloon chamber 50 50 40 40 40 reservoir chamber 30 30 30 30 20 20 20 10 10 10 40 13C atom% atom% 13C atom% 40 13C 50 50 30 20 20 10 10 balloon chamber 0 0 11 22 33 44 55 66 Sampling time points [h] 77 0 0 0 11 22 Sampling over time [hours] 33 44 55 Sampling time points [h] 6 Stable Carbon Dioxide concentration in the air reservoir CO2 concentration Ambient (390 ppm) over time in non [CO2] in ppm CO2concentration concentration[ppm] [ppm] CO 2 600 600 reservoir 600 CO2 concentration Elevated (510 ppm) over time in CO 600 600 500 500 500 500 500 400 400 400 400 400 300 300 300 300 300 200 200 200 200 200 chamber 11 22 33 44 Sampling time points [h] 55 11 22 Sampling over time [hours] 33 44 55 Sampling time points [h] 7 Chamber technique – CO2 flux measurements 13Catom% 1) Keeling plots (Keeling, 1958) intercept = source C 13Catom% ”signal” 2) Two-endmember mixing model source1 Source2 = recently fixed C SOM δ13C chamber δ13C mix 1/[CO2] ”Keeling” δ13C (source1 – mix) (source1 – source2) = % Source2 3) CO2 flux calculations with the new HMR package in R for closed chamber measurements linear and non-linear estimates of carbon (and N2O) efflux (Pedersen et al. 2010) 8 Short term carbon flow affected by water stress Tendency towards a slower recent C turnover under drought – reasons? 13 4 0.04 0.08C0.08 W 0.060.06 D 0.040.04 3 0.03 2 0.02 C D C D 320320 300 280280 260 240240 220 200200 C Treatment CC.1 DD.1 D I I Treatment day 6 day 12 day 1 D C I I 0.01 0 0.00 Microbial C (ug C g-1 dry soil) deDato, 2010 0.100.10 5 0.05 1 Microbial C (μg C g-1 dry soil) -1 Respired KgCorrected CO2 m-2plant periodCatom% Recently fixed carbon Recently (%) released fixed carbon (%) by SR 6 0.06 Corrected plant 13Catom% excess Treatments effects on recently fixed carbon (Soil respiration) Treatment influence on microbia Treatment effects on 13C incorpora Microbial biomass C Plant 13Catom% excess day 29 day 30 day 2 II.1 C.2 C DD.2 II.2 C.6 C DD.6 II.6 C.12 C DD.12 II.12 C.29 D.29 C D I.29 I CC.30 DD.30 II.30 Treatments over time Treatments over time (days after labelling) 9 CO2 flux [umol CO2/m2*sec] CO2 flux [μmol CO2/m2 sec] CO2 flux [umol CO2/m2*sec] Carbon dioxide fluxes under future climatic conditions Soil respiration fluxes over time Soil respiration 4 A CO2 A CO2 D D DCO2 DCO2 T TCO2 T TCO2 TD TDCO2 TD TDCO2 4 4 2 2 2 0 0 0 -2 -2 -2 11 00 22 88 Days after labelling respiration fluxes over time EcosystemEcosystem respiration Plant respiration fluxes over time Plant respiration 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2 2 2 2 1 1 3 2 1 1 1 0 0 0 0 0 -1 -1 -1 -1 22 88 2 Days after labelling 2 8 8 Days after labelling Time after labelling (days) 10 Effects of climate on recently fixed carbon [%] Treatments effects on recently fixed carbon (Soil respiration) Recently fixed carbon (%) 0.02 Day 1 0.020 Day 8 Day 2 0.015 0.015 A TD TDCO2 T TCO2 D CO2 T DCO2 TD TDCO2 A 0.0050.005 0 CO2 CO2 TCO2 A TDCO2 T TCO2 D 0.010 DCO2 0.01 DCO2 D TD 0.000 A.11 D.11 T.11 TD.11 A.12 D.12 T.12 TD.12 A.13 D.13 T.13 TD.13 Treatments over time Treatments over(days) time 11 Conclusions and outlook 1) The heathland was probably not water limited during autumn (anymore) microbes not water stressed because we lack a faster C turnover in irrigated plots 2) Drought stressed plots stored more recent carbon aboveground probably due to a time lag in plant development. 3) Future contribution of soils to atmospheric CO2 concentrations might not be different from todays. Drought and high temperature periods might influence the global carbon balance… PLFA and NLFA analyses are pending will give information about fungal:bacterial ratios and microbial community activity according to treatments 12 Thanks to… Special thanks to: Per Ambus Helge Egsgaard (FA) Marie Merrild (FA) Climaite PhDs and researchers Risø gasification group Risø eco group technicians and student helpers 13 Microbial fatty acids (FA) as biomarkers coupled with GC-c-IRMS PLFAs and NLFAs roots/soil CHCl3MeOHbuffer mix prepacked columns C17:0 13C 13C 13C GC-c-IRMS i15:0 13C 13C 13C Intensity [mV] a15:0 16:0 Mild alkaline methanolysis C19:0 C18:1 i15:0 13C FA coupled with stable isotopes - culture independent Time [sec] 14 Microbial community composition and C cycling activity Ambient Elevated CO2double bond position: pending fatty acid identification: determination of the Plant δ13C C16:1 can be C16:1ω5 – AM fungi C16:1ω7 – gram negative bacteria C16:1ω9 – bacteria in general rhizosphere soil is not sufficiently labelled for microbial activity analysis root samples are the next step - definitely labelled :) Jin & Evans 2010 15 Amundson (2001) Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P and Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevaleted CO2, temperature and drought. Plant Soil 328: 381-396. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. GeochimicaCosmochimicaActa 13: 322334. Selsted MB (2010) Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions. PhD thesis, Risø DTU. Carney KM, Hungate BA, Drake BG and Megonigal P (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. PNAS 104: 4990-4995. Mikkelsen TN, Beier C, Jonasson S, Holmstrup M, Schmidt IK, Ambus P, Pilegaard K, Michelsen A, Albert K, Arndal MF, Bruun N, Christensen S, Danbæk S, Gundersen P, Jørgensen P, Linden LG, Kongstad J, Maraldo K, Priemè A, Riis-Nielsen T, Ro-Poulsen H, Stevnbak K, Selsted MB, Sørensen P, Larsen KS, Carter MS, Ibrom A, Martinussen I, Miglietta F and Sverdrup H (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project Pedersen AR, Petersen SO and Schelde K (2010) A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Europ J Soil Sci61: 888-902. Good review on pulse and long-term labelling: Meharg A (1994) A critical review of labelling techniques used to quantify rhizosphere carbon flow. Plant Soil 166:55-62 Denmark map (slide2): http://www.google.dk/imgres?imgurl=http://mappery.com/maps/DenmarkMap.mediumthumb.jpg&imgrefurl=http://metagini.com/location/Denmark/Gistrup/70663/Pictures/&usg=__ucT6UYpP83YPsIvkSZVcPyNnJ8=&h=492&w=600&sz=104&hl=da&start=21&zoom=1&tbnid=w5Mm75bCEKpiFM:&tbnh=151&tbnw=184&ei=4I8JTo7dCMvrObm1zLIB&prev=/search%3Fq%3Dden mark%26um%3D1%26hl%3Dda%26client%3Dfirefox-a%26sa%3DN%26rls%3Dorg.mozilla:enGB:official%26biw%3D1274%26bih%3D841%26tbm%3Disch&um=1&itbs=1&iact=rc&dur=506&page=2&ndsp=20&ved=1t:429,r:17,s:21&tx=136&ty=83&biw=1274&bih=841 Gram positive cell : http://www.ncbi.nlm.nih.gov/books/NBK1945/
© Copyright 2026 Paperzz