MATH 32A, BRIDGE 2013 M. Wang Homework 1 Solution −−→ 1. Find the components of P Q. (13.1 Exercises 5, 6) a. P = (3, 2), Q = (2, 7) −−→ Ans: P Q = h2 − 3, 7 − 2i = h−1, 5i b. P = (1, -4), Q = (3, 5) −−→ Ans: P Q = h3 − 1, 5 − (−4)i = h2, 9i 2. Calculate (13.1 Exercises 9, 10, 11) a. h2, 1i + h3, 4i Ans: h2, 1i + h3, 4i = h2 + 3, 1 + 4i = h5, 5i b. h−4, 6i − h3, −2i Ans: h−4, 6i − h3, −2i = h−4 − 3, 6 − (−2)i = h−7, 8i c. 5h6, 2i Ans: 5h6, 2i = h5 × 6, 5 × 2i = h30, 10i 3. Sketch v = h0, 2i, w = h−2, 4i, 3v + w, 2v − 2w. (13.1 Exercises 19) Ans: 11 10 9 8 7 3v+w 6 5 4 3 2 Y Axis w -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 1 v -1 1 2 3 4 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 X Axis 1 2v-2w 5 6 7 8 9 10 11 4. Let R = (-2, 7). Calculate the following: (13.1 Exercises 33, 34, 35, 36) −−→ a. The length of OR p √ −−→ Ans: kORk = (−2 − 0)2 + (7 − 0)2 = 53 −→ b. The components of u = P R, where P = (1, 2). −→ Ans: u = P R = h−2 − 1, 7 − 2i = h−3, 5i −→ c. The point P such that P R has components h−2, 7i. −→ And: Let P = (a, b), therefore P R = h−2 − a, 7 − bi = h−2, 7i, thus P = (a, b) = (0, 0) −−→ d. The point Q such that RQ has components h8, −3i. −−→ And: Let Q = (c, d), therefore RQ = hc − (−2), d − 7i = h8, −3i, thus P = (c, d) = (6, 4) 5. Calculate the linear combination.(13.1 Exercises 49, 50, 51) a. 3j + (9i + 4j) Ans: 3j + (9i + 4j) = 9i + 7j b. − 32 i + 5( 12 j − 12 i) Ans: − 23 i + 5( 12 j − 12 i) = −4i + 25 j c. (3i + j) − 6j + 2(j − 4i) Ans: (3i + j) − 6j + 2(j − 4i) = −5i − 3j 2
© Copyright 2025 Paperzz