Diastereoselective Construction of Remote Stereocenters: The use of Chiral Allylstannes & Claisen Rearrangements Y X R' R Scott Peterson Evans' Group Friday Seminar May 24, 2002 01-Title 5/24/02 11:03 AM Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond Coupling of Chiral Fragments Asymmetric Induction by Reagent Control Useful references: Warren, S. Perkin I. 1999, 1899 Asymmetric Induction by Substrate Control Chirality Transfer Methodology 02-Overview 5/23/02 5:47 PM Thomas, E.J. Chemtracts. 1994, 7, 207 Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond S Me N OAc Me Coupling of Chiral Fragments OMe MeO Me OP' OP Asymmetric Induction by Reagent Control Me I i) 9-BBN ii) PdCl2(dppf)2, Cs2CO3, Ph3As Asymmetric Induction by Substrate Control Chirality Transfer Methodology S Me N Me OAc OMe OMe Epothilone A OP' OP Me Danishefsky, S.J. ACIEE 1996, 35, 2801 03-Overview-Coupling-1 5/23/02 5:47 PM Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond O O Coupling of Chiral Fragments Asymmetric Induction by Reagent Control THPO O Asymmetric Induction by Substrate Control H Chirality Transfer Methodology N Ph Ph O BH3•THF B CH3 O O THPO OH 9:1 Corey, E.J. J. Am. Chem Soc. 1987, 109, 7925 04-Overview-Reagent-1 5/23/02 5:47 PM Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond Coupling of Chiral Fragments OTBS Me O 13 9 H OTBS Me O 13 9 H OPMB OPMB Asymmetric Induction by Reagent Control O O O N Asymmetric Induction by Substrate Control Me O Me Bn Chirality Transfer Methodology Cy2BCl, EtNMe2 -78 °C OTBS Me OH O OTBS Me O OH O O Xp Xp OPMB Me Me diastereoselection 55:45 OPMB Me Me diastereoselection 92:8 Evans, D.A. J. Am. Chem. Soc. 2002, 124, 5654 05-Overview-Substrate-1 5/23/02 5:49 PM Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond OTBDPS Coupling of Chiral Fragments CH3 Asymmetric Induction by Reagent Control Asymmetric Induction by Substrate Control MeO2CCHO SnCl4, -78 oC Chirality Transfer Methodology MeO2C H OH TBDPSO H H H O CH3 CH3 O MeO OTBDPS 1,5 syn:anti 94:6 76% yield SnCl4 Mikami, K. J. Org. Chem. 1992, 57, 6105 06-Overview-Substrate-2 5/23/02 5:57 PM Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond Coupling of Chiral Fragments Bu3Sn OBn Asymmetric Induction by Reagent Control Asymmetric Induction by Substrate Control i.) SnCl4, 5 min, -78 oC ii.) PhCHO, 1 hour Chirality Transfer Methodology OH Ph OBn 1,5 syn:anti >98:2 Z olefin formed exclusively 90% yield Thomas, E.J. Tetrahedron Lett. 1990, 31, 6239 07-Overview-Substrate-3 5/23/02 6:01 PM SnCl4 Catalyzed Allylstannane Reactions OH OH SnCl4, -78 oC Bu3Sn R CH3 RCHO R CH3 CH3 E and Z R and S syn and anti Bu3Sn CH3 Cl3Sn SnCl4 CH3 RCHO RCHO OH OH R R CH3 CH3 H CH3 RCHO OH H 3C Cl3Sn R CH3 H SnBu3 O O R 08-SnCl4 Cat allylstannane 5/23/02 6:06 PM CH3 SnCl3 R Keck, G.E. Tetrahedron Lett. 1984, 25, 3927 Keck, G.E. J. Am. Chem. Soc. 1989, 111, 8136 Denmark, S.E. J. Am. Chem Soc. 1988, 110, 984 1,5-Asymmetric Induction Using 4-Alkoxy-allylstannanes OH i.) SnCl4, 5min, -78 oC Bu3Sn OBn R ii.) RCHO, 1 hour OBn 1,5 syn favored Aldehydes PhCHO p-ClC6H4CHO p-NO2C6H4CHO p-MeOC6H4CHO furfural CH3CH2CH2CHO (CH3)2CHCHO (CH2)5CHCHO PhCH=CHCHO MeO2CCHO Yield 90 77 77 77 72 84 84 78 64 68 1,5 syn : anti 98 : 2 94 : 6 95 : 5 97 : 3 95 : 5 95 : 5 93 : 7 92 : 8 95 : 5 95 : 5 Thomas, E.J. Tetrahedron Lett. 1990, 31, 6239 Thomas, E.J. Chemtracts 1994, 7, 207 09-initial allylstannane 1,5 5/23/02 6:08 PM Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes CH3 Bu3Sn i.) SnCl4, -78 oC OH ii.) RCHO OBn CH3 R OBn syn : anti >95:5 Bu3Sn CH3 CH3 SnCl4 OH RCHO CH3 R OBn Cl3Sn OBn OBn RCHO H Cl R O H 2O Cl Sn H H Cl Cl R O OBn H CH3 Cl Sn H Cl OBn H CH3 Thomas, E.J. Tetrahedron Lett. 1990, 31, 6239 10-1,5 mechanism 1 5/23/02 6:09 PM Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes CH3 Bu3Sn CH3 SnCl4 OBn H 3C ii) PhLi iii.) N N OBn H O H H 3C CH3 Ph3SnLi H 3C Ph3Sn CH3 H O Ph3Sn H 3C CH3 SnPh3 H CH3 H 3C Ph3Sn CH3 SnPh3 NaH, BnBr OH OH Ph3SnLi OBn H OH CH3 CH3 H 3C OBn H H 3C OBn Ph3Sn i) SnCl4, -78 oC, 5 min CH3 Ph3Sn Cl3Sn NaH, BnBr H 3C CH3 OH Thomas, E.J. Chem. Commun. 1998, 8, 899 11-1,5 mecanism allyltintric 5/23/02 6:11 PM Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes CH3 Bu3Sn OBn CH3 SnCl4 Cl3Sn OBn Cl Cl Cl3Sn Bu3Sn OBn H H Cl3Sn CH3 OBn Cl Favored: A1,3 minimized H Bu3Sn H 3C H A1,3 Cl Disfavored Thomas, E.J. Chem. Commun. 1998, 8, 899 12-1,5 mecanism form allyltin 5/23/02 6:13 PM Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes H CH3 Cl3Sn RCHO Cl R O OBn Cl Sn H CH3 R OBn H OCH3 HO OCH3 OBn CH3 CH2O Cl3Sn OH Cl HO OCH3 favored Cl Cl H 2.222 Sn H O 2.370 Cl H 2.380 OCH3 ∆E = 1.9 kcal•mol-1 2.182 H Cl Cl H O Sn Cl 3.297 OCH3 2.374 H ∆E = 12.0 kcal•mol-1 (GAUSSIAN94 Calculation, split valence basis) Thomas, E.J. Chem. Commun. 1998, 8, 899 13-1,5 mecanism calculations 5/23/02 6:15 PM 1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes Bu3Sn OBn CH3 OH i.) SnCl4, 5min, -78 oC OBn R ii.) RCHO, 1 hour CH3 1,5 anti Aldehydes PhCHO p-ClC6H4CHO p-MeOC6H4CHO CH3CH2CHO (CH3)2CHCHO Yield 1,5-anti : 1,5 syn 86 67 65 70 81 96 : 4 96 : 4 96 : 4 95 : 5 95 : 5 Thomas, E.J. Synlett 1992, 585 14-init 5-o-allylstannane 1,5 5/23/02 8:06 PM 1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes OH o Bu3Sn i.) SnCl4, 5min, -78 C OBn CH3 OBn R ii.) RCHO, 1 hour CH3 1,5 anti Bu3Sn OBn Cl3Sn SnCl4 OBn OH RCHO R CH3 OBn CH3 CH3 RCHO Cl Cl H Cl Sn BnO H 3C H 2O Cl Cl R O H H Cl Sn BnO H 3C R O H Thomas, E.J. Synlett 1992, 585 15-mech 5-o-allylstan 1,5 5/23/02 8:07 PM 1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes OH i.) Lewis Acid, -78 oC Bu3Sn OBn CH3 OBn Ph ii.) PhCHO, -78 oC CH3 1,5 anti Lewis Acids Yield SnCl4 BuSnCl3 SnBr4 Bu2SnCl2 TiCl4 BF3•OEt2 AlCl3•i-PrOH 86 40 75 low low low low 1,5-anti : 1,5 syn 96 : 4 95 : 5 99 : 1 ----- Thomas, E.J. Synlett 1992, 585 16-LA Screen 5-o-allylstan 1,5 5/23/02 8:07 PM 1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes Bu3Sn OR CH3 OH i.) SnCl4, -78 oC ii.) PhCHO, -78 oC OR Ph CH3 1,5 anti R p-MeOC6H4CH2 MOM SEM SiMe2tBu SiPh2tBu Yield 80 66 71 60 61 1,5-anti : 1,5 syn 95 : 5 93 : 7 80 : 20 81 : 19 80 : 20 Thomas, E.J. Tetrahedron Lett. 1993, 34, 3933 17-OP - 5-o-allylstan 1,5-cor 5/24/02 8:45 AM 1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes E or Z Bu3Sn OP CH3 OH CH3 i.) SnCl4, -78 oC CH3 P=MOM, H, Bn OP R ii.) RCHO, -78 oC CH3 1,5 anti : syn >99:1 yield >70% R=Ph, Aliphatic Cl3Sn OBn Cl3Sn OBn H 3C H 3C Bu3Sn H CH3 H CH3 Bu3Sn E-isomer Z-isomer Thomas, E.J. Perkin Trans. I ,1993, 2863 18-2 sub 5-o-allylstan 1,5 5/24/02 8:42 AM 1,5-Asymmetric Induction with Imines HN i.) SnCl4, -78 oC Bu3Sn ii.) OBn N OBn BuO2C X 1,5 anti, E olefin BuO2C X Yield CHPh2 79 75 67 72 73 CMe2Ph OBn (1) ent - (1) X anti : syn 90 : 10 90 : 10 90 : 10 90 : 10 Mismatched 96 : 4 Matched Me N BuO2C Ph (1) 19-initial 1,5 4-O imine 5/23/02 8:15 PM Thomas, E.J. Chem. Commun. 1995, 6, 657 Thomas, E.J. Tetrahedron. Assym. 1995, 4, 2575 1,5-Asymmetric Induction with Imines HN i.) SnCl4, -78 oC Bu3Sn OBn ii.) N R OBn BuO2C Rr 1,5 anti, E olefin BuO2C CH3 H Ph H 3C H N Cl3Sn H CO2Bu Cl3Sn CH3 CH3 H OBn N BuO2C OBn BuO2C Me OBn Ph SnCl3 N H CH3 Ph Thomas, E.J. Chem .Commun. 1995, 6, 657 20-mech 1,5 4-O imine 5/23/02 8:15 PM Limitations of the Allylstannane Chemistry CH3 Bu3Sn OH i.) SnCl4, -78 oC Ph ii.) PhCHO OTBS HO CH3 OTBS CH3 Ph OTBS 1: 2 product ratio CH3 Bu3Sn CH3 SnCl4 OH RCHO CH3 R OTBS Cl3Sn OTBS OTBS SnCl4 H OTBS H RCHO Ph CH3 Cl3Sn OTBS HO SnCl3 O CH3 Ph OTBS CH3 H Thomas, E.J. Tet rahedron Assym. 1995, 6, 2579 21-1,5 limitations, TBS-1 5/23/02 8:17 PM Limitations of the Allylstannane Chemistry CH3 Bu3Sn i.) SnCl4, -78 oC ii.) OR N X NHX OR NHX CH3 BuO2C Stannane (R) Imine (X) Bn Bn Bn CHPh2 TBS TBS TBS CH3 BuO2C 1,5-anti BuO2C OR 1,5-syn Yield 1,5-anti : 1,5 syn (S)-CHMePh (R)-CHMePh 79 73 72 90 : 10 96 : 4 90 : 10 CHPh2 (S)-CHMePh (R)-CHMePh 74 76 93 25 : 75 25 : 75 33 : 67 Thomas, E.J. Tet rahedron Assym. 1995, 6, 2579 22-1,5 limitations, TBS-2 5/23/02 8:19 PM Limitations of the Allylstannane Chemistry Bu3Sn OR CH3 i.) SnCl4, -78 oC ii.) N X NHX OR NHX CH3 BuO2C CH3 BuO2C 1,5-syn OR 1,5-anti BuO2C Stannane (R) Imine (X) Bn Bn Bn SiMe2tBu SiMe2tBu SiMe2tBu CHPh2 (S)-CHMePh (R)-CHMePh CHPh2 (S)-CHMePh (R)-CHMePh Yield 78 82 73 77 80 74 1,5 syn : 1,5-anti 95 : 5 98 : 2 90 : 10 80 : 20 67 : 33 75 : 25 Thomas, E.J. Tetrahedron Assym. 1995, 6, 2579 23-1,5 limitations, TBS-3 5/23/02 8:24 PM 1,5-Asymmetric Induction with 4/5-Alkoxy-allylstannanes OH i.) Lewis Acid, -78 oC Bu3Sn R o ii.) RCHO, -78 C OP OP 1,5 syn selective, Z olefin OH o R' i.) Lewis Acid, -78 C Bu3Sn OP R' CH3 ii.) RCHO, -78 oC OP R CH3 1,5 anti selective, Z olefin SnCl4 or SnBr4 Chelating protecting group on oxygen is necessary Other heteroatoms are also effective (N, S) 2-Substitution on the olefin is acceptable SM olefin geometry is not important High selectivities for a range of aldehydes and imines Generally >95:5 diastereoselctivity 24-general 1,5 aldehyde 4,5-O 5/24/02 8:43 AM 1,6-Asymmetric Induction Using 5-Alkoxy-allylstannanes OR Bu3Sn CH3 (3:2 E:Z) Bu3Sn Br3Sn OH OH RCHO CH3 CH3 CH3 1,6 syn >90:10 yields >70% R'=aromatic, aliphatic SnBr4 OR R' ii.) R'CHO, 1 hour R=Me, H OH OH i.) SnBr4, 10 min, -78 oC OR R' CH3 RCHO H Br3Sn CH3 O H R Cl O H 2O H Cl Cl Cl Sn O HH H 3C H R O Cl Cl Sn O H H 3C H H Thomas, E.J. Tet rahedron Lett. 1993, 24, 3935 25-init 5-o-allylstannane 1,6 5/23/02 8:27 PM 1,7-Asymmetric Induction Using 6-Alkoxy-allylstannanes OH i.) SnBr4, 10 min, -78 oC Bu3Sn ii.) RCHO, 1 hour OH OH 1,7 syn >90:10 yield >50% R=aromatic, aliphatic CH3 Bu3Sn Br3Sn O H CH3 CH3 R OH H Br Br Br HO Sn O R H O OH RCHO SnBr4 OH Br3Sn CH3 R CH3 H 3C H Br Br Br HO Sn O R H 3C Thomas, E.J. Chem. Commun. 1994, 3, 283 26-mech 6-o-allylstan 1,7 5/23/02 8:28 PM Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond O OP O Coupling of Chiral Fragments Ph OBn Asymmetric Induction by Reagent Control i) LiHMDS, TMSCl ii) TMSCHN2, MeOH Asymmetric Induction by Substrate Control O Chirality Transfer Methodology Ph OCH3 OBn OP I OP OP OP OP C1 - C16 - Amphidinol 3 27-Overview-Transfer 5/23/02 8:30 PM OP 2-Step 1,8-Asymmetric Induction via Chirality Transfer (Ireland-Claisen Rearrangement) O BnO OH O CH3 CH3 OSEM O [3,3] CH3 CH3O OSEM OSEM OBn 1,5 syn : anti 96:4 1,8 anti H TMSO CH3 BnO O H OSEM Thomas, E.J. Tetrahedron Lett. 1999, 40, 471 28-initial 1,8 5/23/02 8:37 PM 2-Step 1,8-Asymmetric Induction Synthesis of (±)-Patulolide H 3C O OH O O OH CH3 OSEM BnO BnOCH2COCl CH3 Et3N, DMAP 84% OSEM CH3O H i) 80% H N O N CH3 CH3O CH3 OTBDPS ii) TMSCl, -78 to RT iii)TMSCHN2 OSEM 1,5 syn : anti 96:4 77% from (±)-stannane O i) LiHMDS, -78 oC O ii) H2 / Pd iii) TBDPSCl, imid 71% OSEM OBn 1,8 anti : syn 86:14 Thomas, E.J. Tetrahedron Lett. 1999, 40, 471 29-1,8-claisen-pat-1 5/24/02 8:47 AM 2-Step 1,8-Asymmetric Induction Synthesis of (±)-Patulolide H 3C O OH O O OSEM CH3O OSEM i) DIBAl-H CH3 ii) Swern iii) PH3P=CHCO2Me OTBDPS 1,8 syn:anti 86:14 MeO2C CH3 OTBDPS 72% i) MgBr2, BuSH, K2CO3 ii) LiOH, MeOH-H2O Cl O 81% Cl H 3C i) O Cl Cl HO2C OH O (±)-Patulolide OH , Et3N ii) DMAP, ∆ (separate isomers) iii) TBAF, THF CH3 OTBDPS 27% 15 steps from stannane Thomas, E.J. Tetrahedron Lett. 1999, 40, 471 30-1,8-claisen-pat-2 5/24/02 8:49 AM 2-Step 1,8-Asymmetric Induction via Chirality Transfer (2,3 Wittig Rearrangement) OH CH3 OSEM 1,5 syn : anti 96:4 NaH, cinnamyl-Br O n-BuLi Ph CH3 Bu4NI OSEM 70% CH3 Ph -78 oC OH OSEM 74% 1,8 syn : anti 90:10 O Ph H H CH3 OSEM Thomas, E.J. Tet rahedron Lett. 1999, 40, 475 31-1,8-wittig-1 5/23/02 8:40 PM 2-Step 1,8-Asymmetric Induction Synthesis of (±)-Epipatulolide Ph CH3 OH OSEM 1,8 syn : anti 90 : 10 OSEM t i) VO(acac)2, BuOOH Ph O ii) TBDPSCl, imid iii) N H CH3 OTBDPS N H i) SmI2 ii) O3, DMS iii) PH3P=CHCO2Me 34% H 3C OSEM 5 steps O MeO2C OH O 22 % CH3 OTBDPS (±)-Epipatulolide 14 steps from stannane Thomas, E.J. Tet rahedron Lett. 1999, 40, 475 32-1,8-wittig-2 5/23/02 8:42 PM 2-Step 1,8-Asymmetric Induction Syntheses of Epothilones B and D CH3 n I O O CH3 O CH3 i) Amberlyst DMPU, BuLi O ii) TBDMSCl, imid iii) Bu3SnH SO2Ph PhSO2 SnBu3 TBSO OH 1:1 E:Z 53 % 86 % i) SnBr4 ii) O H iii) TBAF O CH3 O OPMB CH3 O MeO OMe Me i) OH CH3 O ii) OPMB HO O CH3 DIC, DMAP 1,6 anti 85:15 60% of desired HO OH 66 % Thomas, E.J. Tetrahedron Lett. 2001, 42, 8373 33-Epothilone-1 5/23/02 8:42 PM 2-Step 1,8-Asymmetric Induction Syntheses of Epothilones B and D O Me OPMB O Me Me i) LiHMDS, TMSCl CO2Me Me ii) TMSCHN2 O 78 % O OPMB O O i) MCPBA ii) H2/PtO2 iii)KSeCN 68 % Me Me i) DDQ ii) LiAlH4 iii) NaIO4, NaBH4 Me O OH O 46 % Me O O OPMB CO2Me Me S Me Me N OH Me O Me O 34-Epothilone-2 5/23/02 8:45 PM OH O Thomas, E.J. Tet rahedron Lett. 2001, 42, 8373 1,9-Relationship Constructed by 1,7 Induction Followed by a Claisen Rearrangement i.) SnBr4, 10min, -78 oC OH Bu3Sn CH3 OH Ph ii.) PhCHO, 1 hour CH3 OH 60% ee 1,7 syn 90:10 yield 64% i) TBDPSCl, imid ii) NaH, PMBCl iii) TBAF iiii) Ac2O, NEt3 49 % O CH3 Ph O i) LDA, TBSCl OCH3 O Ph CH3 CH3 ii) CH2N2 OPMB OPMB 1,9 anti:syn 90:10 60% ee 73 % Thomas, E.J. Tetrahedron. 1999, 55, 3723 35-initial 1,9 5/23/02 8:56 PM Fe(CO)3 Complexes as Chiral Transfer Groups HO OH O O R OC Fe CO CO R' [1,3] [R] HO base R OC Fe CO CO HO H R' OC R R' Fe CO CO [O] OH Fe(CO)3 moiety shifts to the electron deficient olefin Hydride is delivered from opposite face of Fe complex R' R OH 1,8 anti diol Takemoto, Y. Chem. Commun. 2000, 15, 1445 36-FeCO3 1,3 shift initial 5/23/02 8:57 PM Fe(CO)3 Complexes as Chiral Transfer Groups: Formal Synthesis of Epipatulolide TBSO O HWE TBSO i) KHMDS O H 3C OC Fe CO CO H H 3C 54% OC Fe CO CO OPMB TBSO ii) NaBH4 51% 86% ee OH H 3C H OC Fe CO CO OPMB i) H2O2, NaOH ii) H2, Pt 89% OH CO2Me H 3C OTBDPS OTBS i) TBDPSCl, imid ii) DDQ iii) Swern iv) Ph3P=CHCO2Me v) AcOH, THF, H2O H 3C OPMB OH >98:2 dr 86%ee 24 % H 3C O OH O 37-FeCO3 1,3 shift epipat 5/23/02 9:01 PM Epipatulolide C 15 steps from aldehyde Takemoto, Y. Chem. Commun. 2000, 15, 1445 Thomas, E.J. Tetrahedron Lett. 1999, 40, 475 Fe(CO)3 Complexes as Chiral Transfer Groups O Fe(CO)3 O O R R O H Fe2(CO)9 CH3 O CH3 O O Fe(CO)3 X2AlR'' O R H Fe(CO)3 O H CH3 Ba(OH)2, MeOH endo : exo 4:1 X2AlR'' = Me3Al Et3Al Bu3Al Fe(CO)3 R Bu Bu R'' CH3 dr >99:1 yield >70% O R OH AlMe2 OH R'' CH3 AlMe2 Ley, S.V. Perkin Trans. I 1997, 3299 38-Ley-1,5 5/23/02 9:02 PM Possibility for 1,10-Asymmetric Combining the Work of Ley and Takemoto O Fe(CO)3 O R Fe2(CO)9 O CH3 O PO R O OP CH3 Ba(OH)2, MeOH PO OP R OH R OC Fe CO CO O CH3 39-Ley-1,5-PROP 5/23/02 9:04 PM Possibility for 1,10-Asymmetric Induction Using Fe(CO)3 Complexes O TBSO KHMDS C5H11 OC Fe CO O CO TBSO OC 70 % Fe CO CH3 CO C5H11 CH3 NaBH4 72 % OH TBSO (S) C5H11 H CH3 OH i) H2O2, NaOH ii) H2, Pt TBSO OC Fe CO CO CH3 C5H11 89 % Stereochemistry determined by Mosher Ester Analysis Takemoto, Y. Chem. Commun. 2000, 15, 1445 40-1,10-proposal-1 5/23/02 9:04 PM Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond Coupling of Chiral Fragments Asymmetric Induction by Reagent Control Asymmetric Induction by Substrate Control Chirality Transfer Methodology OR Bu3Sn n CH3 HO R OC Fe CO 41-Summary 5/23/02 9:05 PM CO OH i.) SnCl4, 5min, -78 oC ii.) RCHO, 1 hour O i.) B- R' ii) [R] iii.) [O] R OR n 1,5 to 1,9 Induction CH3 OH R' R OH 1,8 & 1,10 Induction
© Copyright 2026 Paperzz