Chapter2.AtomsandElements StudentObjectives 2.1ImagingandMovingIndividualAtoms Describescanningtunnelingmicroscopy(STM)andhowatomsareimagedonsurfaces. Defineatomandelement. 2.2EarlyIdeasabouttheBuildingBlocksofMatter Describetheearliestdefinitionsofatomsandmatter(Greeks). Knowthatgreateremphasisonobservationandthedevelopmentofthescientificmethodledtothe scientificrevolution. 2.3ModernAtomicTheoryandtheLawsThatLedtoIt Stateandunderstandthelawofconservationofmass(alsofromSection1.2). Stateandunderstandthelawofdefiniteproportions. Stateandunderstandthelawofmultipleproportions. KnowthefourpostulatesofDalton’satomictheory. 2.4TheDiscoveryoftheElectron DescribeJ.J.Thomson’sexperimentswiththecathoderaytubeandunderstandhowtheyprovide evidencefortheelectron. DescribeRobertMillikan’soil‐dropexperimentandunderstandhowitenablesmeasurementofthe chargeofanelectron. 2.5TheStructureoftheAtom Defineradioactivity,nucleus,proton,andneutron. UnderstandThomson'splum‐puddingmodelandhowErnestRutherford’sgold‐foilexperiment refuteditbygivingevidenceforanuclearstructureoftheatom. 2.6SubatomicParticles:Protons,Neutrons,andElectronsinAtoms Defineatomicmassunit,atomicnumber,andchemicalsymbol. Recognizechemicalsymbolsandatomicnumbersontheperiodictable. Defineisotope,massnumber,andnaturalabundance. Determinethenumberofprotonsandneutronsinanisotopeusingthechemicalsymbolandthe massnumber. Defineion,anion,andcation. Understandhowionsareformedfromelements. 16 Chapter2.AtomsandElements 2.7FindingPatterns:ThePeriodicLawandthePeriodicTable Definetheperiodiclaw. Knowthatelementswithsimilarpropertiesareplacedintocolumns(calledgroups)intheperiodic table. Defineanddistinguishbetweenmetals,nonmetals,andmetalloids. Identifymain‐groupandtransitionelementsontheperiodictable. Knowthegeneralpropertiesofelementsinsomespecificgroups:noblegases,alkalimetals,alkaline earthmetals,andhalogens. Knowandunderstandtherationaleforelementsthatformionswithpredictablecharges. 2.8AtomicMass:TheAverageMassofanElement’sAtoms Calculateatomicmassfromisotopemassesandnaturalabundances. Definemassspectrometryandunderstandhowitcanbeusedtomeasuremassandrelative abundance. 2.9MolarMass:CountingAtomsbyWeighingThem Understandtherelationshipbetweenmassandcountofobjectssuchasatoms. DefinemoleandAvogadro’snumber. Calculateandinterconvertbetweennumberofmolesandatoms. Calculateandinterconvertbetweennumberofmolesandmass. SectionSummaries LectureOutline Terms,Concepts,Relationships,Skills Figures,Tables,andSolvedExamples TeachingTips SuggestionsandExamples MisconceptionsandPitfalls 17 Chapter2.AtomsandElements LectureOutline Terms,Concepts,Relationships,Skills 2.1ImagingandMovingIndividualAtoms Descriptionofscanningtunnelingmicroscopy(STM) Introductiontomacroscopicandmicroscopic perspectives. Definitionsofatomandelement. 2.2EarlyIdeasabouttheBuildingBlocksofMatter Historyofchemistryfromantiquity(~450bc) Scientificrevolution(1400s‐1600s) 2.3ModernAtomicTheoryandtheLawsThatLedtoIt Lawofconservationofmass o Matterisneithercreatednordestroyed. o Atomsatthestartofareactionmayrecombineto formdifferentcompounds,butallatomsare accountedforattheend. o Massofreactants=massofproducts. Lawofdefiniteproportions o Differentsamplesofthesamecompoundhave thesameproportionsofconstituentelements independentofsamplesourceorsize. Lawofmultipleproportions JohnDalton’satomictheory 18 Figures,Tables,andSolvedExamples Introfigure:tipofanSTM movingacrossasurface Figure2.1ScanningTunneling Microscopy Figure2.2ImagingAtoms unnumberedfigure:modelsand photosofNaandCl 2 forming NaCl Example2.1LawofDefinite Proportions unnumberedfigure:modelsof COandCO 2 illustratingthelawof multipleproportions Example2.2LawofMultiple Proportions ChemistryinYourDay:Atoms andHumans Chapter2.AtomsandElements TeachingTips SuggestionsandExamples 2.1ImagingandMovingIndividualAtoms OtherSTMimagescanbefoundreadilyontheInternet. Itisusefultoreiteratetheanalogiesaboutsize;theone usedinthechaptercomparesanatomtoagrainofsand andagrainofsandtoalargemountainrange. 2.2EarlyIdeasabouttheBuildingBlocksofMatter Theviewofmatterasmadeupofsmall,indestructible particleswasignoredbecausemorepopularphilosophers likeAristotleandSocrateshaddifferentviews. LeucippusandDemocritusmayhavebeenprovencorrect, buttheyhadnomoreevidencefortheirideasthan Aristotledid. Observationsanddataledscientiststoquestionmodels; thescientificmethodpromotestheuseofacycleofsuch inquiry. 2.3ModernAtomicTheoryandtheLawsThatLedtoIt Thatmatteriscomposedofatomsgrewfromexperiments andobservations. ConceptualConnection2.1TheLawofConservationof Mass Investigatingthelawofdefiniteproportionsrequires preparingordecomposingasetofpuresamplesofa compoundlikewater. Investigatingthelawofmultipleproportionsrequires preparingordecomposingsetsofpuresamplesfrom relatedcompoundslikeNO,NO 2 ,andN 2 O 5 . ConceptualConnection2.2TheLawsofDefiniteand MultipleProportions 19 MisconceptionsandPitfalls STMisnotactuallyshowing imagesofatomslikeonemight imagineseeingwithalight microscope. Atomsarenotcoloredspheres; theimagesusecolorto distinguishdifferentatoms. Theoriesarenotautomatically acceptedandmaybeunpopular forlongperiodsoftime. Philosophyandreligioncanbe supportedbyarguments; sciencerequiresthattheoriesbe testableandthereforefalsifiable. Measurementstoestablishearly atomictheorieswereperformed atthemacroscopiclevel.The scientistsobservedproperties forwhichtheycouldcollectdata (e.g.,massorvolume). Chapter2.AtomsandElements LectureOutline Terms,Concepts,Relationships,Skills 2.4TheDiscoveryoftheElectron Thomson’scathode‐raytubeexperiments o Highvoltageproducedastreamof particlesthattraveledinstraightlines. o Eachparticlepossessedanegative charge. o Thomsonmeasuredthecharge‐to‐ massratiooftheelectron. Millikan’soil‐dropexperiments o Oildropletsreceivedchargefrom ionizingradiation. o Chargeddropletsweresuspendedin anelectricfield. o Themassandchargeofeachoildrop wasusedtocalculatethemassand chargeofasingleelectron. 2.5TheStructureoftheAtom Thomson’splum‐puddingmodel:negatively chargedelectronsinaseaofpositivecharge Radioactivity o Alphadecayprovidesthealpha particlesforRutherford’sexperiment. Rutherford’sexperiment o Alphaparticlesdirectedatathingold filmdeflectinalldirections,including backatthealphasource. o Onlyaconcentratedpositivecharge couldcausethealphaparticlesto bounceback. Rutherford’snucleartheory o mostmassandallpositivecharge containedinasmallnucleus o mostofatombyvolumeisempty space o protons:positivelychargedparticles o neutralparticleswithsubstantial massalsoinnucleus 20 Figures,Tables,andSolvedExamples Figure2.3CathodeRayTube unnumberedfigure:propertiesofelectrical charge Figure2.4Thomson’sMeasurementofthe Charge‐to‐MassRatiooftheElectron Figure2.5Millikan’sMeasurementofthe Electron'sCharge unnumberedfigure:plum‐puddingmodel Figure2.6Rutherford’sGoldFoilExperiment Figure2.7TheNuclearAtom unnumberedfigure:scaffoldingandempty space Chapter2.AtomsandElements TeachingTips SuggestionsandExamples 2.4TheDiscoveryoftheElectron Reviewtheattraction,repulsion,andadditivityofcharges. Discussthephysicsofelectricfieldsgeneratedbymetal plates. Ademonstrationofacathoderaytubewillhelpstudents betterunderstandThomson’sexperiments. DemonstratehowMillikan’scalculationworksandwhyhe coulddeterminethechargeofasingleelectron. 2.5TheStructureoftheAtom Itmaybeusefultogiveabriefdescriptionof radioactivity.Rutherford’sexperimentmakesmoresense ifoneknowssomepropertiesofthealphaparticleand fromwhereitcomes. Thomsonidentifiedelectronsandsurmisedtheexistence ofpositivechargenecessarytoformaneutralatom.The plum‐puddingmodelisthesimplestwaytoaccountfor theobservations. Thefigureaboutscaffoldingsupportsdiscussionaboutan atombeingmostlyemptyspacebutstillhavingrigidity andstrengthinthemacroscopicview.Thisisanother exampleofapparentdifferencesbetweenthemicroscopic andmacroscopicproperties. 21 MisconceptionsandPitfalls Millikandidnotmeasurethe chargeofasingleelectron;he measuredthechargeofa numberofelectronsand deducedthechargeofasingle electron. Studentsoftendon’tunderstand thesourceofalphaparticlesin Rutherford’sexperiments. Chapter2.AtomsandElements LectureOutline Terms,Concepts,Relationships,Skills 2.6SubatomicParticles:Protons,Neutrons,and ElectronsinAtoms Propertiesofsubatomicparticles o atomicmassunits(amu) proton,neutron:~1amu electron:~0.006amu o charge relativevalue:1forelectron, +1forproton absolutevalue:1.61019C Atomicnumber(numberofprotons): definingcharacteristicofanelement Isotope:sameelement,differentmass (differentnumberofneutrons) Ion:atomwithnonzerocharge o anion:negativelycharged(more electrons) o cation:positivelycharged(fewer electrons) 2.7FindingPatterns:ThePeriodicLawandthe PeriodicTable Periodiclawandtheperiodictable o generallyarrangedbyascendingmass o recurring,periodicproperties; elementswithsimilarproperties arrangedintocolumns:groups(or families) Majordivisionsoftheperiodictable o metals,nonmetals,metalloids o main‐groupelements,transition elements Groups(families) o noblegases(group8A) o alkalimetals(group1A) o alkalineearthmetals(group2A) o halogens(group7A) Ionswithpredictablecharges:basedon stabilityofnoble‐gaselectroncount o group1A:1+ o group2A:2+ o group3A:3+ o group5A:3 o group6A:2 o group7A:1 22 Figures,Tables,andSolvedExamples unnumberedfigure:baseball Table2.1SubatomicParticles unnumberedfigure:lightningandcharge imbalance Figure2.8HowElementsDiffer Figure2.9ThePeriodicTable unnumberedfigure:portraitofMarieCurie Example2.3AtomicNumbers,Mass Numbers,andIsotopeSymbols ChemistryinYourDay:WhereDidElements ComeFrom? unnumberedfigure:discoveryofthe elements Figure2.10RecurringProperties Figure2.11MakingaPeriodicTable unnumberedfigure:stampfeaturingDmitri Mendeleev Figure2.12Metals,Nonmetals,and Metalloids Figure2.13ThePeriodicTable:Main‐Group andTransitionElements unnumberedfigure:thealkalimetals unnumberedfigure:thehalogens Figure2.14ElementsThatFormIonswith PredictableCharges Example2.4PredictingtheChargeofIons ChemistryandMedicine:TheElementsof Life Figure2.15ElementalCompositionof Humans(byMass) Chapter2.AtomsandElements TeachingTips SuggestionsandExamples 2.6SubatomicParticles:Protons,Neutrons,andElectronsinAtoms Theanalogyofthebaseballandagrainofricetoaprotonand an electronismeanttoillustratethedifferenceinmassbutnotsize. Electricalchargecanbedemonstratedwithstaticelectricity. Twoballoonschargedwithwoolorhumanhairwillrepeleach other. Namesofelementscomefromvarioussources.TomLehrer’s “ElementSong”canbefoundontheInternet. Isotopicabundancesareinvariantintypicallab‐sizedsamples becauseofsuchlargenumbersofatoms. ConceptualConnection2.5TheNuclearAtom,Isotopes,andIons Thehistoryofchemistryinvolvesconsiderableculturaland genderdiversity.ExamplesincludebothLavoisiers(French), Dalton(English),Thomson(English),MarieCurie (Polish/French),Mendeleev(Russian),Millikan(American), RobertBoyle(Irish),AmedeoAvogadro(Italian). TheChemistryinYourDayboxgivesabroaddescriptionofthe originofatoms. 2.7FindingPatterns:ThePeriodicLawandthePeriodicTable Otherdisplaysoftheperiodictablecanbefoundinjournals (Schwartz,J.Chem.Educ.2006,83,849;Moore,J.Chem.Educ. 2003,80,847;Bouma,J.Chem.Educ.1989,66,741),books,and ontheInternet. Periodictablesarearrangedaccordingtotheperiodiclawbut cancomparemanyfeatures,e.g.phasesofmatter,sizesofatoms, andcommonions.Thesearepresentedasaseriesoffiguresin thetext. ChemistryandMedicine:TheElementsofLifeprovidesan opportunitytorelatethetopicstoeverydaylife.Someofthe otherelementsinthefigureandtablerepresenttraceminerals thatarepartofgoodnutrition.Theperiodiclawaccountsfor whysomearenecessaryandothersaretoxic. 23 MisconceptionsandPitfalls Studentssometimes confusethemassnumber asbeingequaltothe numberofneutrons,not thenumberofneutrons plusthenumberof protons. Studentslogically(but mistakenly)presumethat themassofanisotopeis equaltothesumofthe massesoftheprotonsand neutronsinthatisotope. Theperiodictableis betteratpredicting microscopicproperties, thoughmacroscopic propertiesarealsooften illustrated. Chapter2.AtomsandElements LectureOutline Terms,Concepts,Relationships,Skills 2.8AtomicMass:TheAverageMassofan Element’sAtoms Averageatomicmassisbasedon naturalabundanceandisotopicmasses. Massspectrometry o atomsconvertedtoionsand deflectedbymagneticfieldsto separatebymass o outputdata:relativemassvs. relativeabundance 2.9MolarMass:CountingAtomsbyWeighing Them MoleconceptandAvogadro’snumber Convertingbetweenmolesandnumber ofatoms Convertingbetweenmassandnumber ofmoles Figures,Tables,andSolvedExamples unnumberedfigure:periodictableboxforCl Example2.5AtomicMass Figure2.16TheMassSpectrometer Figure2.17TheMassSpectrumofChlorine unnumberedfigure:penniescontaining~1molof Cu unnumberedfigure:1tbspofwatercontains~1 molofwater Example2.6ConvertingbetweenNumberof MolesandNumberofAtoms unnumberedfigure:relativesizesofAl,C,He unnumberedfigure:balancewithmarblesand peas Example2.7ConvertingbetweenMassand Amount(NumberofMoles) Example2.8TheMoleConcept–Converting betweenMassandNumberofAtoms Example2.9TheMoleConcept 24 Chapter2.AtomsandElements TeachingTips SuggestionsandExamples 2.8AtomicMass:TheAverageMassofanElement'sAtoms Themassesofisotopesmustbereconciledwithan elementhavingonlywholenumberquantitiesofprotons andneutrons;thevaluesshouldbenearlyintegralsince themassofelectronsissosmall. Massspectrometryisaneffectivewaytodemonstrate wherevaluesofnaturalabundanceareobtained. 2.9MolarMass:CountingAtomsbyWeighingThem Reviewthestrategyforsolvingnumericalproblems:sort, strategize,solve,check. Estimatinganswersisanimportantskill;thenumberof atomswillbeverylarge(i.e.somelargepoweroften) evenfromasmallmassorsmallnumberofmoles. ConceptualConnection2.7Avogadro’sNumber ConceptualConnection2.8TheMole 25 MisconceptionsandPitfalls Studentsaretemptedto calculateaverageatomicmassby addingtogetherisotopicmasses anddividingbythenumberof isotopes. Atomicmassontheperiodic tableisusuallynotintegraleven thoughelementshaveonly wholenumbersofprotonsand neutrons. Manystudentsareintimidated byestimatinganswersin calculationsinvolvingpowersof ten. Chapter2.AtomsandElements Additional Problem for Converting between Number of Moles and Number of Atoms (Example 2.6) Calculate the number of moles of iron in a sample that has 3.83 x 1023 atoms of iron. Sort Given 3.83 x 1023 Fe atoms You are given a number of iron atoms and asked to find the amount of iron in moles. Find mol Fe Strategize Conceptual Plan Convert between number of atoms and number of moles using Avogadro’s number. atoms mol 1 mol Fe 6.022 1023 Fe atoms Relationships Used 6.022 x 1023 = 1 mol (Avogadro’s number) Solve Follow the conceptual plan. Begin with 3.83 x 1023 Fe atoms and multiply by the ratio that equates moles and Avogadro’s number. Check Solution 3.83 10 23 Fe atoms 1 mol Fe = 0.636 mol Fe 6.022 10 23 Fe atoms The sample was smaller than Avogadro’s number so the answer should be a fraction of a mole. The value of the sample has 3 significant figures, and the answer is provided in that form. 26 Chapter2.AtomsandElements Calculate the number of grams of silver in an American Silver Eagle coin that contains Additional Problem for Converting between Mass and Number of Moles (Example 2.7) 0.288 moles of silver. Sort Given 0.288 mol Ag You are given the amount of silver in moles and asked to find the mass of silver. Find g Ag Strategize Conceptual Plan Convert amount (in moles) to mass using the molar mass of the element. mol Ag g Ag 107.87 g Ag 1 mol Ag Relationships Used 107.87 g Ag = 1 mol Ag Solve Solution Follow the conceptual plan to solve the problem. Start with 0.288 mol, the given number, and multiply by the molar mass of silver. 0.288 mol Ag 107.87 g Ag = 31.07 g Ag 1 mol Ag 31.07 g = 31.1 g Ag The magnitude of the answer makes sense since we started with an amount smaller than a mole. The molar amount and answer both have 3 significant figures. Check 27 Chapter2.AtomsandElements Additional Problem for the Mole Concept— Converting between Mass and Number of Atoms (Example 2.8) What mass of iron (in grams) contains 1.20 1022 atoms of Fe? A paperclip contains about that number of iron atoms. Sort Given 1.20 1022 Fe atoms You are given a number of iron atoms and asked to find the mass of Fe. Find g Fe Strategize Conceptual Plan Convert the number of Fe atoms to moles using Avogadro’s number. Then convert moles Fe into grams of iron using the molar mass of Fe. Fe atoms mol Fe 1 mol Fe 6.022 10 23 Fe atoms g Fe 55.85 g Fe 1 mol Fe Relationships Used 6.022 1023 = 1 mol (Avogadro’s number) 55.85 g Fe = 1 mol Fe Solve Follow the conceptual plan to solve the problem. Begin with 1.20 x 1022 atoms of Fe, multiply by the ratio derived from Avogadro’s number, and finally multiply by the atomic mass of Fe. Check Solution 1.20 1022 Fe atoms 1 mol Fe 55.85 g Fe 23 6.022 10 Fe atoms 1 mol Fe = 1.11 g Fe The units and magnitude of the answer make sense. The sample is smaller than a mole. The number of atoms and mass both have 3 significant figures. 28 Chapter2.AtomsandElements Additional Problem for the Mole Concept (Example 2.9) An iron sphere contains 8.55 1022 iron atoms. What is the radius of the sphere in centimeters? The density of iron is 7.87 g/cm3. Sort Given 8.55 1022 Fe atoms d = 7.87 g/cm3 You are given the number of iron atoms in a sphere and the density of iron. You are asked to find the radius of the sphere. Find radius (r) of a sphere Strategize Conceptual Plan The critical parts of this problem are density, which relates mass to volume, and the mole, which relates number of atoms to mass: Fe atoms (cm3) mol Fe 55.85 g Fe 1 mol Fe 1 mol Fe 6.022 10 23 Fe atoms (1) Convert from the number of atoms to the number of moles using Avogadro’s number; V (cm3) (2) Convert from the number of moles to the number of grams using the molar mass of iron; V = (3) Convert from mass to volume using the density of iron; g Fe V 1 cm3 7.87 g Fe r (cm) 4 r3 3 Relationships Used 6.022 x 1023 = 1 mol (Avogadro’s number) (4) Find the radius using the formula for the volume of a sphere. 55.85 g Fe = 1 mol Fe d (density of Fe) = 7.87 g/cm3 V = 4/3 r3 [volume of a sphere with a radius of r] Solve Solution Follow the conceptual plan to solve the problem. Begin with 8.55 x 1022 Fe atoms and convert to moles, then to grams and finally to a volume in cm3. Solve for the radius using the rearranged equation. 8.55 1022 atoms 55.85 g Fe 1 mol Fe 23 6.022 10 atoms 1 mol Fe r = 3 3V = 4 3 1 cm3 = 1.00757 cm3 7.87 g Fe 3 1.00757 cm3 = 0.622 cm 4 The units (cm) are correct and the magnitude of the answer makes sense compared with previous problems. Check 29
© Copyright 2026 Paperzz